Frederick Hanley Seares Papers: Finding Aid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Comet's Tale, and Therefore the Object As a Whole Would the Section Director Nick James Highlighted Have a Low Surface Brightness
1 Diebold Schilling, Disaster in connection with two comets sighted in 1456, Lucerne Chronicle, 1513 (Wikimedia Commons) THE COMET’S TALE Comet Section – British Astronomical Association Journal – Number 38 2019 June britastro.org/comet Evolution of the comet C/2016 R2 (PANSTARRS) along a total of ten days on January 2018. Composition of pictures taken with a zoom lens from Teide Observatory in Canary Islands. J.J Chambó Bris 2 Table of Contents Contents Author Page 1 Director’s Welcome Nick James 3 Section Director 2 Melvyn Taylor’s Alex Pratt 6 Observations of Comet C/1995 01 (Hale-Bopp) 3 The Enigma of Neil Norman 9 Comet Encke 4 Setting up the David Swan 14 C*Hyperstar for Imaging Comets 5 Comet Software Owen Brazell 19 6 Pro-Am José Joaquín Chambó Bris 25 Astrophotography of Comets 7 Elizabeth Roemer: A Denis Buczynski 28 Consummate Comet Section Secretary Observer 8 Historical Cometary Amar A Sharma 37 Observations in India: Part 2 – Mughal Empire 16th and 17th Century 9 Dr Reginald Denis Buczynski 42 Waterfield and His Section Secretary Medals 10 Contacts 45 Picture Gallery Please note that copyright 46 of all images belongs with the Observer 3 1 From the Director – Nick James I hope you enjoy reading this issue of the We have had a couple of relatively bright Comet’s Tale. Many thanks to Janice but diffuse comets through the winter and McClean for editing this issue and to Denis there are plenty of images of Buczynski for soliciting contributions. 46P/Wirtanen and C/2018 Y1 (Iwamoto) Thanks also to the section committee for in our archive. -
Ira Sprague Bowen Papers, 1940-1973
http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington. -
Illinois—Where Astronomical Photometry Grew Up
Beaman and Svec, JAAVSO Volume 40, 2012 141 Illinois—Where Astronomical Photometry Grew Up Barry B. Beaman 6804 Alvina Road, Rockford, IL 61101; [email protected] Michael T. Svec Furman University, Department of Education, 3300 Poinsett Highway, Greenville SC 29613; Internet: [email protected] Presented at the 100th Annual Meeting of the AAVSO, October 7, 2011; received January 21, 2012; revised February 2, 2012; accepted February 6, 2012 Abstract In 1903 Dr. Joel Stebbins joined the University of Illinois faculty as an astronomy instructor and Director of the University of Illinois Observatory. In 1905 he and F. C. Brown began experimenting with selenium sell photometry and developed the equipment and many of the photometric practices used then. Those practices formed the foundation on which present day photometry processes are based. This paper will trace the history of Stebbins’ career and his development of photoelectric photometry from 1903 to 1922. This story explains how Stebbins’ wife, May, caused a change in astronomical observing that continues today. 1. Introduction The prairies of central Illinois may seem an unlikely place to begin a photometric revolution. Illinois is a flat land state with only about 100 clear nights per year, the average elevation is only 600 feet above sea level, and the highest point is only at 1,500 feet. Yet, Illinois has produced its share of prominent and innovative astronomers. George Ellery Hale built his Kenwood Observatory in the heart of Chicago. Edwin Hubble spent his teen years in the Chicago suburbs and was educated at University of Chicago. Grote Reber built the World’s first parabolic-steerable radio telescope. -
The Worshipful Company of Clockmakers Past Masters Since 1631
The Worshipful Company of Clockmakers Past Masters since 1631 1631 David Ramsey (named in the Charter) 1700 Charles Gretton 1800 Matthew Dutton 1632 David Ramsey (sworn 22nd October) 1701 William Speakman 1801 William Plumley 1633 David Ramsey, represented by his Deputy, Henry Archer 1702 Joseph Windmills 1802 Edward Gibson 1634 Sampson Shelton 1703 Thomas Tompion 1803 Timothy Chisman 1635 John Willow 1704 Robert Webster 1804 William Pearce 1636 Elias Allen 1705 Benjamin Graves 1805 William Robins 1638 John Smith 1706 John Finch 1806 Francis S Perigal Jnr 1639 Sampson Shelton 1707 John Pepys 1807 Samuel Taylor 1640 John Charleton 1708 Daniel Quare 1808 Thomas Dolley 1641 John Harris 1709 George Etherington 1809 William Robson 1642 Richard Masterson 1710 Thomas Taylor 1810 Paul Philip Barraud 1643 John Harris 1711 Thomas Gibbs 1811 Paul Philip Barraud 1644 John Harris 1712 John Shaw 1812 Harry Potter (died) 1645 Edward East 1713 Sir George Mettins (Lord Mayor 1724–1725) 1813 Isaac Rogers 1646 Simon Hackett 1714 John Barrow 1814 William Robins 1647 Simon Hackett 1715 Thomas Feilder 1815 John Thwaites 1648 Robert Grinkin 1716 William Jaques 1816 William Robson 1649 Robert Grinkin 1717 Nathaniel Chamberlain 1817 John Roger Arnold 1650 Simon Bartram 1718 Thomas Windmills 1818 William Robson 1651 Simon Bartram 1719 Edward Crouch 1819 John Thwaites 1652 Edward East 1720 James Markwick 1820 John Thwaites 1653 John Nicasius 1721 Martin Jackson 1821 Benjamin Lewis Vulliamy 1654 Robert Grinkin 1722 George Graham 1822 John Jackson Jnr 1655 John Nicasius -
Download the AAS 2011 Annual Report
2011 ANNUAL REPORT AMERICAN ASTRONOMICAL SOCIETY aas mission and vision statement The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the universe. 1. The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public. 2. The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests. 3. The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science. 4. The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy. A 5. The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering. Adopted 7 June 2009 A S 2011 ANNUAL REPORT - CONTENTS 4 president’s message 5 executive officer’s message 6 financial report 8 press & media 9 education & outreach 10 membership 12 charitable donors 14 AAS/division meetings 15 divisions, committees & workingA groups 16 publishing 17 public policy A18 prize winners 19 member deaths 19 society highlights Established in 1899, the American Astronomical Society (AAS) is the major organization of professional astronomers in North America. -
Transactions 1905
THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. The Royal Astronomical Society of Canada. THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. TABLE OF CONTENTS. The Dominion Observatory, Ottawa (Frontispiece) List of Officers, Fellows and A ssociates..................... - - 3 Treasurer’s R eport.....................--------- 12 President’s Address and Summary of Work ------ 13 List of Papers and Lectures, 1905 - - - - ..................... 26 The Dominion Observatory at Ottawa - - W. F. King 27 Solar Spots and Magnetic Storms for 1904 Arthur Harvey 35 Stellar Legends of American Indians - - J. C. Hamilton 47 Personal Profit from Astronomical Study - R. Atkinson 51 The Eclipse Expedition to Labrador, August, 1905 A. T. DeLury 57 Gravity Determinations in Labrador - - Louis B. Stewart 70 Magnetic and Meteorological Observations at North-West River, Labrador - - - - R. F. Stupart 97 Plates and Filters for Monochromatic and Three-Color Photography of the Corona J. S. Plaskett 89 Photographing the Sun and Moon with a 5-inch Refracting Telescope . .......................... D. B. Marsh 108 The Astronomy of Tennyson - - - - John A. Paterson 112 Achievements of Nineteenth Century Astronomy , L. H. Graham 125 A Lunar Tide on Lake Huron - - - - W. J. Loudon 131 Contributions...............................................J. Miller Barr I. New Variable Stars - - - - - - - - - - - 141 II. The Variable Star ξ Bootis -------- 143 III. The Colors of Helium Stars - - - ..................... 144 IV. A New Problem in Solar Physics ------ 146 Stellar Classification ------ W. Balfour Musson 151 On the Possibility of Fife in Other Worlds A. -
Dirk Brouwer
NATIONAL ACADEMY OF SCIENCES D I R K B R O U W ER 1902—1966 A Biographical Memoir by G . M . C LEMENCE Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1970 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. DIRK BROUWER September 1, 1902-January 31, 1966 BY G. M. CLEMENCE IRK BROUWER, who contributed more to dynamical astron- D omy than any other astronomer of his time, died on January 31, 1966, after a week in hospital; his death was occa- sioned by an acute disorder of the heart. He is survived by his widow and an only son, James. Brouwer was born in Rotterdam, the Netherlands, on September 1, 1902, the son of a civil service employee. As a stu- dent in the University of Leiden he studied mathematics and astronomy, coming under the influence of Willem de Sitter, who in his own day was the dean of that branch of astronomy in which Brouwer was to do most of his work. Receiving the Ph.D. degree in 1927 under de Sitter, Brouwer came to the United States as a fellow of the International Education Board, spending a year at the University of California in Berkeley and at Yale University, where he was to remain the rest of his life. His initial appointment at Yale was in 1928 as research as- sistant to Ernest W. Brown, who was then the greatest living authority on the motion of the moon. -
Chapter I Review Papers Harlow Shapley
Chapter I Review Papers Harlow Shapley Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 25 Sep 2021 at 08:30:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900042340 Helen Sawyer Hogg and Willis Shapley remembering Willis Shapley fielding questions on his father Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 25 Sep 2021 at 08:30:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0074180900042340 SHAPLEY'S DEBATE Michael Hoskin Cambridge University The attempt to make three-dimensional sense of the Milky Way goes back to a most unlikely origin: the English antiquary of the early eighteenth century, William Stukeley, remembered today for associating the Druids with Stonehenge. Stukeley came from Lincolnshire and so was a fellow-countryman of Isaac Newton, and as a result he was privileged to talk with the great man from time to time. In his Memoirs of Newton Stukeley records one conversation they had in about 1720, in which Stukeley proposed that the Sun and the brightest stars of the night sky make up what we today would term a globular cluster, and this cluster is surrounded by a gap, outside of which lie the small stars of the Milky Way in the form of a flattened ring. Stukeley's remarkable suggestion was recorded only in his manuscript memoirs, and had no effect on the subsequent history of astronomy. -
Our Milky Way.Key
Our Milky Way Learning Objectives ! What is the Milky Way? The Herschels thought we were at the center of our Galaxy...why were they wrong? ! How did Shapley prove we aren’t at the center? What are globular clusters? Cepheid Variable stars? ! How do we use Cepheid Variables to measure distance? ! What are the components of our Galaxy? What color are old stars? Young stars? Does our Galaxy get older or younger as you move out (i.e. from the disk to the halo)? ! How do we know our Galaxy is a spiral galaxy? ! Do stars in our Galaxy’s disk orbit as Kepler’s Laws would predict? What is a rotation curve? Why does our Galaxy’s rotation curve suggest dark matter exists? The Milky Way ! Our Galaxy is a collection of stars, nebulae, molecular clouds, and stellar remnants ! All bound together by gravity ! Connected by the stellar evolution cycle Determining the Shape of our Galaxy ! The number of 6400 ly stars were counted in all directions from 1300 ly the Sun by Sun Caroline Herschel and her brother William ! They assumed that all stars have the same brightness and that space contains no dust – these are incorrect assumptions ! They thus concluded that the Sun is at the center of the Universe - which is not true The Importance of Dust ! Dust dims and reddens starlight ! There is more dust toward the center of the Galaxy ! Consequence: We underestimate the number of stars in one direction ! We appear to be near the center, but we’re not Us Star Sun Can’t see stars here (if we’re looking for blue light from them) How Do We Find the Galactic Center? -
212 Publications of the Some Pioneer
212 PUBLICATIONS OF THE SOME PIONEER OBSERVERS1 By Frank Schlesinger In choosing a subject upon which to speak to you this eve- ning, I have had to bear in mind that, although this is a meeting of the Astronomical Society of the Pacific, not many of my audience are astronomers, and I am therefore debarred from speaking on too technical a matter. Under these circumstances I have thought that a historical subject, and one that has been somewhat neglected by the, formal historians of our science, may be of interest. I propose to outline, very briefly of course, the history of the advances that have been made in the accuracy of astronomical measurements. To do this within an hour, I must confine myself to the measurement of the relative places of objects not very close together, neglecting not only measure- ments other than of angles, but also such as can be carried out, for example, by the filar micrometer and the interferometer; these form a somewhat distinct chapter and would be well worth your consideration in an evening by themselves. It is clear to you, I hope, in how restricted a sense I am using the word observer ; Galileo, Herschel, and Barnard were great observers in another sense and they were great pioneers. But of their kind of observing I am not to speak to you tonight. My pioneers are five in number ; they are Hipparchus in the second century b.c., Tycho in the sixteenth century, Bradley in the eighteenth, Bessel in the first half of the nineteenth century and Rüther fur d in the second half. -
Executive Summary
The Boston University Astronomy Department Annual Report 2010 Chair: James Jackson Administrator: Laura Wipf 1 2 TABLE OF CONTENTS Executive Summary 5 Faculty and Staff 5 Teaching 6 Undergraduate Programs 6 Observatory and Facilities 8 Graduate Program 9 Colloquium Series 10 Alumni Affairs/Public Outreach 10 Research 11 Funding 12 Future Plans/Departmental Needs 13 APPENDIX A: Faculty, Staff, and Graduate Students 16 APPENDIX B: 2009/2010 Astronomy Graduates 18 APPENDIX C: Seminar Series 19 APPENDIX D: Sponsored Project Funding 21 APPENDIX E: Accounts Income Expenditures 25 APPENDIX F: Publications 27 Cover photo: An ultraviolet image of Saturn taken by Prof. John Clarke and his group using the Hubble Space Telescope. The oval ribbons toward the top and bottom of the image shows the location of auroral activity near Saturn’s poles. This activity is analogous to Earth’s aurora borealis and aurora australis, the so-called “northern” and “southern lights,” and is caused by energetic particles from the sun trapped in Saturn’s magnetic field. 3 4 EXECUTIVE SUMMARY associates authored or co-authored a total of 204 refereed, scholarly papers in the disciplines’ most The Department of Astronomy teaches science to prestigious journals. hundreds of non-science majors from throughout the university, and runs one of the largest astronomy degree The funding of the Astronomy Department, the Center programs in the country. Research within the for Space Physics, and the Institute for Astrophysical Astronomy Department is thriving, and we retain our Research was changed this past year. In previous years, strong commitment to teaching and service. only the research centers received research funding, but last year the Department received a portion of this The Department graduated a class of twelve research funding based on grant activity by its faculty. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.