Table of Artificial Satellites Launched in 1979

Total Page:16

File Type:pdf, Size:1020Kb

Table of Artificial Satellites Launched in 1979 This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections. La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service. Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT. (ITU) ﻟﻼﺗﺼﺎﻻﺕ ﺍﻟﺪﻭﻟﻲ ﺍﻻﺗﺤﺎﺩ ﻓﻲ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﺃﺟﺮﺍﻩ ﺍﻟﻀﻮﺋﻲ ﺑﺎﻟﻤﺴﺢ ﺗﺼﻮﻳﺮ ﻧﺘﺎﺝ (PDF) ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻨﺴﺨﺔ ﻫﺬﻩ .ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﻓﻲ ﺍﻟﻤﺘﻮﻓﺮﺓ ﺍﻟﻮﺛﺎﺋﻖ ﺿﻤﻦ ﺃﺻﻠﻴﺔ ﻭﺭﻗﻴﺔ ﻭﺛﻴﻘﺔ ﻣﻦ ﻧﻘﻼ ً◌ 此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。 Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ. © International Telecommunication Union TELECOMMUNICATION JOURNAL - VOL. 47 - IV/1980 C0SM0S-1101 1979 42B MOLNYA-3 (11) 1979 4 A COSMOS-1102 1979 43 A MOLNYA-3 (12) 1979 48 A A COSMOS-1103 1979 45A D COSMOS-1104 1979 46 A ARIANE-6 1979 104A C0SM0S-1105 1979 52A DMSP-4 1979 50A N ARIEL-6 1979 47A COSMOS-1106 1979 54A DSCS-II 13 1979 98A AYAME 1979 9 A COSMOS-1107 1979 55A DSCS-II 14 1979 98B NOAA-6 1979 57A COSMOS-11 08 1979 56A D C0SM0S-1109 1979 58A F D COSM0S-1110 1979 60 A L. D COSMOS-1111 19 79 61A r BHASKARA 1979 51A COSMOS-1112 1979 63A EKRAN-3 1979 15A BIOSPUTNIK-7 1979 83A PROGRESS-5 1979 22A COSMOS-1113 1979 64A EKRAN-4 1979 87A PROGRESS-6 1979 39A COSMOS-1114 1979 65 A PROGRESS-7 1979 59A COSMOS-1115 1979 66A C COSMOS-1116 1979 67 A rF CORSA-B 1979 14A COSMOS-1117 1979 68A n COSMOS-1118 1979 69A K COSMOS-1070 1979 1 A FLT SATCQM-2 1979 38 A C0SM0S-1071 1979 2 A COSMOS-1119 1979 71 A RADUGA-4 1979 35A COSMOS—1072 1979 3A COSMOS-1120 1979 73A RCA-SATCOM-3 1979 101A COSM0S-1073 1979 6A COSMOS-1121 1979 74A COSMOS-1074 1979 8A COSMOS-1122 1979 75 A G COSMOS-1075 1979 10A COSMOS-1123 1979 76A G0RIZ0NT-2 1979 62A c COSM0S-1076 1979 11A COSMOS-1124 1979 77A GORIZONT-3 1979 105 A v C0SM0S-1077 1979 12A COSMOS-1125 1979 78A SAGE 1979 13A COSMOS-1126 1979 79A COSMOS-1078 1979 16A 1979 7A COSMOS-1127 1979 80 A SCATHA COSMOS-1079 19 79 19A 1979 51A COSMOS-1128 1979 81A H SEO COSMOS-IO8O 1979 23A SOLWIND 1979 17A COSMOS-1129 1979 83A COSMOS—1081 1979 24A HAKUCHO 1979 14A SOYUZ-32 1979 18A COSMOS-1130 1979 84A COSMOS-1082 1979 24B HEAO-3 1979 82A SOYUZ-33 1979 29A COSMOS-1131 1979 84B C0SM0S-1083 1979 24C SOYUZ-34 1979 49A COSMOS-1132 1979 84 C COSM0S-1084 1979 24D SOYUZ-T 1979 103A COSMOS-1133 1979 84D 1 COSMOS-1085 1979 24E STATSIONAR-1 1979 35A COSMOS-1134 1979 84 E COSMOS-1086 1979 24F STATSIONAR—4 1979 62A COSMOS-1135 1979 84F C0SM0S-1087 1979 246 INTERCOSMOS-19 1979 20A STATSIONAR-5 1979 105A COSMOS—1088 1979 24H COSMOS-1136 1979 84G INTERCOSMOS-20 1979 96A ST AT S10NAR-T 1979 87A COSMOS—1089 COSMOS-1137 1979 84H 1979 26 A STP P78-1 1979 17A COSMOS-1138 1979 8 5A C0SM0S-109Q 1979 27A STP P78-2 1979 7 A C0SM0S-1091 1979 28A COSMOS-1139 1979 88 A COSMOS—109 2 1979 30A C0SM0S-1140 1979 89A M C0SM0S-1093 1979 32A COSMOS-1141 1979 90A COSMOS-1094 1979 33A COSMOS-1142 1979 92 A MAGSAT 1979 94A u C0SM0S-1095 1979 34A COSMOS-1143 1979 93 A METEOR-1 (29) 1979 5A UK-6 1979 47 A C0SM0S-1096 1979 36A COSMOS-1144 1979 97A METEOR-2 (4) 1979 21A CCSMOS-1097 19 79 37A COSMOS-1145 1979 99A METEOR-2 (5) 1979 95A COSMOS-1098 1979 40A COSMOS-1146 1979 100A MOLNYA-1 (43) 1979 31 A W COSMOS-1099 1979 41A COSMOS-1147 1979 1 02A MOLNYA-1 (44) 1979 70A COSMOS-11 00 1979 42 A COSMOS-1148 1979 1 06 A MOLNYA-1 (45) 1979 91A WESTAR-3 1979 72A C ountry Code name international Organization Perigee Period Frequencies Date Observations Spacecraft description num ber Site o f Apogee Inclination Transmitter p ow e r launching Cosmos-1070 1979-1-A USSR 11 Jan. 214 km 89.5 min Reconnaissance satellite. (PLE) 316 km 62.8° Recovered on 20 January 1979 Cosmos-1071 197 9 -2 -A USSR 13 Jan. 190 km 89.7 min High-resolution reconnaissance satellite. (PLE) 360 km 62.8° Recovered on 26 January 1979 Cosmos-1072 1979 -3-A USSR 16 Jan. 983 km 105.0 min Navigation satellite (PLE) 1030 km 83.0° 11th Molnya-3 19 7 9-4-A USSR 18 Jan. 474 km 5.9-6.2 GHz Carries apparatus for transmitting television programs (PLE) 40 806 km 62.8° (reception) and multichannel radiocommunications 3-axis stabilized satellite; mass: 1500 kg 3.6-3.9 GHz (transmission) 29th Meteor-1 19 7 9-5-A USSR 25 Jan. 628 km 97.4 min Meteorological satellite (PLE) 656 km 98.0° 3-axis stabilized cylindrical satellite; mass: 2200 kg; sun- oriented solar panels Cosmos-1073 1979-6-A USSR 30 Jan. 187 km 89.6 min Reconnaissance satellite. (PLE) 350 km 62.8° Recovered on 12 February 1979 SCATHA (STP P78-2) 19 7 9-7-A United States 30 Jan. 184 km 794.8 min 2241.5; 2244.5 MHz Spacecraft Charging AT High Altitudes. Carries 12 ex­ USAF 43 905 km 27.4° 5 W periments to identify and measure sources of electrical spin-stabilized cylindrical (ETR) charge build-up spacecraft; diameter: 1.70 m; 5765.0 MHz height: 1.80 m; mass: 343 kg 400 W 2250.5 MHz 3W 2222.5 MHz Cosmos-1074 19 7 9-8-A USSR 31 Jan. 203 km 88.8 min Decayed on 1 April 1979 256 km 51.6° Ayame 1979-9-A Japan 6 Feb. 193 km 604 min 31.65 GHz Experimental telecommunication satellite intended NSDA 34 411 km 24.1 ° 3.2 W for geostationary orbit. Ceased transmission on 9 Feb­ cylindrical satellite; diameter: (TSC) ruary during an attempt to move it into synchronous 1 m; height: 1.50 m; mass 4.075; 4.080 GHz orbit 260 kg 4.7 W 3.940 GHz 3.5 W 136.112 MHz 2 and 8 W 1 TELECOMMUNICATION JOURNAL - VOL. 47 - IVI1980 Country Code name International Organization Perigee Period Frequencies Date Observations Spacecraft description num ber Site o f Apogee Inclination Transmitter p ow e r launching Cosmos-1075 1979-10-A USSR 8 Feb. 475 km 94.6 min Space intercept program (PLE) 521 km 6 5.8 “ Cosmos-1076 1979-11-A USSR 13 Feb. 647 km 97.0 min Oceanographic satellite (PLE) 678 km 82.0° Cosmos-1077 1979-12-A USSR 14 Feb. 629 km 97.3 min (PLE) 651 km 81.2° SAGE 1979-13-A United States 18 Feb. 544 km 96.9 min Stratospheric Aerosol and Gas Experiment. Objectives: (W l) 655 km 57.9° to obtain global data on stratospheric aerosols and 3-axis stabilized spacecraft; ozone during at least one year. Carries a 4-spectral 6-sided prism shape; height: radiometer to measure solar intensity attenuation after 0.64 m; mass: 147 kg; 2 solar sunrise and before sunset in wavebands centred at panels 0.385, 0.45, 0.6 and 1.0 //m CORSA-B (Hakucho) 1979-14-A Japan 21 Feb. 545 km 96.0 min 136.725 MHz COsmic Radiation SAtellite. Objectives: cosmic and University of 577 km 29.9° 500 mW X-ray stellar observation.Two experiments cover the octagonal spacecraft; breadth: Tokyo 400.45 MHz ranges 0.1 to 2 keV and 1.5 to 30 keV 0.82 m; height: 0.46 m; gross (KSC) 100 mW mass: 96 kg; solar cells (data transmission) 148 MHz (reception of commands) Ekran-3 1979-15-A USSR 21 Feb. 35 780 km 1436 min 5.7-6.2 GHz Carries equipment for television transmission (BAI) 0.35° (reception) 3-axis stabilized satellite; mass: in geostati Dnary orbit 5 tonnes; solar cells at 53 ° E 3.4-3.9 GHz (transmission) Cosmos-1078 1979-16-A USSR 22 Feb. 180 km 89 min Reconnaissance satellite. (PLE) 306 km 72.9° Recovered on 2 March 1979 Solwind (STP P78-1) 1979-17-A United States 24 Feb. 560 km 96.3 min 2242,5; 2247.5 MHz Space Test Program. Carries gamma-ray spectrometer USAF 600 km 97.9° 10 W and six other experiments designed to gather data on mass. 1331 kg; similar to OSO-7 (WTR) 2252.5 MHz solar wind, solar flares, electron build-up around the (1971-83-A) 2 W Earth's polar regions and the distribution of aerosols (telemetry) and ozone in the atmosphere Soyuz-32 1979-18-A USSR 25 Feb. 244 km 89.6 min Two-man spacecraft: V. Lyakhov, flight commander; (BAI) 283 km 51.6° V. Ryumin, flight engineer. Docked with S alyut-6 (1977 3-part spacecraft: 2 spherical 97-A) on 26 February. On 1 March Soyuz-32 was used habitable modules (orbital com­ as a locomotive to transfer Salyut-6 into a higher orbit partment and command module) (308/328 km).
Recommended publications
  • Soviet Steps Toward Permanent Human Presence in Space
    SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations.
    [Show full text]
  • Spacecalc Current Space Demographics
    Spaceflight Now Current Space Demographics Post STS-100 Statistics SpaceCalc Current Space Demographics Post Soyuz Taxi Launch Rank Nation No. Records Days Flights Total Fliers 403 1 U.S. 253 Avdeyev 748 3 Men 366 2 USSR 72 V. Polyakov 679 2 Women 37 3 CIS 23 A. Solovyov 652 5 Total Tickets 884 4 Germany 9 Krikalev 624 5 5 France 8 Afanasayev 546 3 United States 253 5 Canada 8 Manarov 541 2 US Men 224 6 Japan 5 Viktorenko 489 4 US Women 29 7 Italy 3 Romanenko 430 3 8 Bulgaria 2 Volkov 392 3 Soviet Union 72 Afghanistan 1 V. Titov 387 4 USSR Men 70 Austria 1 Usachev 386 3 (in 4th) USSR Women 2 Belgium 1 Tsibliev 383 2 CIS 23 Britain 1 Kizim 375 3 CIS Men 22 Cuba 1 Serebrov 374 4 CIS Women 1 Czechoslovakia 1 Ryumin 372 4 Others 55 East Germany 1 Solovyev 362 2 Other Men 50 Hungary 1 Kaleri 343 3 Other Women 5 India 1 Lyakhov 333 3 Mexico 1 Gidzenko 319 2 Men with 6 flights 5 Mongolia 1 Women with 6 flights 0 Netherlands 1 YEARS 24 57 Men with 5 flights 14 North Vietnam 1 Women with 5 flights 6 Poland 1 U.S. Data Days Flights Men with 4 flights 41 Romania 1 Women with 4 flights 1 Saudi Arabia 1 Lucid 223 5 Men with 3 flights 66 Spain 1 Foale 168 5 Women with 3 flights 9 Switzerland 1 Thomas 163 3 Page 1 Spaceflight Now Current Space Demographics Post STS-100 Statistics All with 2 flights 100 Syria 1 Blaha 161 5 All with 1 flight 161 Slovakia 1 Shepherd 158 5 Linenger 143 2 TOTAL 403 TOTALS 29 403 Wolf 142 2 1 Flight 2 Flights 3 Flights 4 Flights 5 Flights 6 Flights Name Flts Sex-Nation 161 100 75 42 20 5 Acton, Loren 1 M-US STS-51F Adamson, James 2 M-US STS-28 STS-44 Afanasyev, Viktor 3 M-USSR TM-11 TM-18 TM-29 Akers, Thomas 4 M-US STS-41 STS-49 STS-61 STS-79 Akiyama, Toyohiro 1 M-Japan TM-11 Aksenov, Vladimir 2 M-USSR Soyuz 22 Soyuz T2 Aldrin, Edwin 2 M-US Gemini 12 Apollo 11 Alexandrov, Alexander 2 M-USSR Soyuz T9 TM-3 Alexandrov, Alexander 1 M-Bulgaria TM-5 Allen, Andrew 3 M-US STS-46 STS-62 STS-75 Allen, Joseph 2 M-US STS-5 STS-51A AlSaud, Sultan 1 M-S.
    [Show full text]
  • California State University, Northridge Low Earth Orbit
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOW EARTH ORBIT BUSINESS CENTER A Project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Dallas Gene Bienhoff May 1985 The Proj'ectof Dallas Gene Bienhoff is approved: Dr. B. J. Bluth Professor T1mothy Wm. Fox - Chair California State University, Northridge ii iii ACKNOWLEDGEHENTS I wish to express my gratitude to those who have helped me over the years to complete this thesis by providing encouragement, prodding and understanding: my advisor, Tim Fox, Chair of Mechanical and Chemical Engineering; Dr. B. J. Bluth for her excellent comments on human factors; Dr. B. J. Campbell for improving the clarity; Richard Swaim, design engineer at Rocketdyne Division of Rockwell International for providing excellent engineering drawings of LEOBC; Mike Morrow, of the Advanced Engineering Department at Rockwell International who provided the Low Earth Orbit Business Center panel figures; Bob Bovill, a commercial artist, who did all the artistic drawings because of his interest in space commercialization; Linda Martin for her word processing skills; my wife, Yolanda, for egging me on without nagging; and finally Erik and Danielle for putting up with the excuse, "I have to v10rk on my paper," for too many years. iv 0 ' PREFACE The Low Earth Orbit Business Center (LEOBC) was initially conceived as a modular structure to be launched aboard the Space Shuttle, it evolved to its present configuration as a result of research, discussions and the desire to increase the efficiency of space utilization. Although the idea of placing space stations into Earth orbit is not new, as is discussed in the first chapter, and the configuration offers nothing new, LEOBC is unique in its application.
    [Show full text]
  • Spacecalc Current Space Demographics
    CBS News/Spaceflight Now Current Space Demographics Page 1 SpaceCalc Current Space Demographics Post Soyuz TMA-05M Nation No. Rank Space Endurance Days/FLTs Total Fliers 528 1 Afghanistan 1 1 Sergei Krikalev 803/6 Nations 38 2 Austria 1 2 Alexander Kaleri 770/5 Men 472 3 Belgium 2 3 Sergei Avdeyev 748/3 Women 56 4 Brazil 1 4 Valery Polyakov 679/2 Total Tickets 1189 5 Bulgaria 2 5 Anatoly Solovyev 652/5 6 Canada 9 6 Gennady Padalka 586/3 United States 335 7 China 8 7 Victor Afanasyev 556/4 US Men 290 8 Cuba 1 8 Yury Usachev 553/4 US Women 45 9 Czech. 1 9 Musa Manarov 541/2 10 E. Germany 1 10 Yuri Malenchenko 515/4 Soviet Union 72 11 France 9 11 Alexander Viktorenko 489/4 USSR Men 70 12 Germany 9 12 Nikolai Budarin 446/3 USSR Women 2 13 Hungary 1 13 Yuri Romanenko 430/3 Russia/CIS 40 14 India 1 14 Alexander Volkov 392/3 Russian Men 39 15 Israel 1 15 Yury Onufrienko 389/2 Russian Women 1 16 Italy 5 16 Vladimir Titov 387/4 17 Japan 9 17 Vasily Tsibliev 383/2 Others 81 18 Kazakhstan 1 18 Mike Fincke 382/3 Other Men 73 19 Malaysia 1 19 Valery Korzun 382/2 Other Women 8 20 Mexico 1 20 Pavel Vinogradov 381/2 21 Mongolia 1 21 Peggy Whitson 377/2 Men with 7 flights 2 22 Netherlands 2 22 Leonid Kizim 375/3 Women with 7 flights 0 23 N.
    [Show full text]
  • The Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey
    ariel The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey Towards an H-R Diagram for Planets A Candidate for the ESA M4 Mission TABLE OF CONTENTS 1 Executive Summary ....................................................................................................... 1 2 Science Case ................................................................................................................ 3 2.1 The ARIEL Mission as Part of Cosmic Vision .................................................................... 3 2.1.1 Background: highlights & limits of current knowledge of planets ....................................... 3 2.1.2 The way forward: the chemical composition of a large sample of planets .............................. 4 2.1.3 Current observations of exo-atmospheres: strengths & pitfalls .......................................... 4 2.1.4 The way forward: ARIEL ....................................................................................... 5 2.2 Key Science Questions Addressed by Ariel ....................................................................... 6 2.3 Key Q&A about Ariel ................................................................................................. 6 2.4 Assumptions Needed to Achieve the Science Objectives ..................................................... 10 2.4.1 How do we observe exo-atmospheres? ..................................................................... 10 2.4.2 Targets available for ARIEL ..................................................................................
    [Show full text]
  • Desind Finding
    NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application.
    [Show full text]
  • Association of Space Explorers XXII Planetary Congress Prague, Czech Republic 2009
    Association of Space Explorers XXII Planetary Congress Prague, Czech Republic 2009 Commemorative Poster Signature Key Viktor Afanasyev Vladimir Aksyonov Alexander Alexandrov Soyuz TM-11, Soyuz TM-18, Soyuz 22, Soyuz T-2 Soyuz T-9, Soyuz TM-3 Soyuz TM-29, Soyuz TM-33 Alexander Alexandrov Sergei Avdeev Alexander Balandin Soyuz TM-5 Soyuz TM-15, Soyuz TM-22, Soyuz TM-9 Soyuz TM-28 Yuri Baturin Karol Bobko Vance Brand Soyuz TM-28, Soyuz TM-32 STS 6, STS 51D, STS 51J ASTP, STS 5, STS 41B, STS 35 Jean-François Clervoy Roger Crouch Reinhold Ewald STS 66, STS 84, STS 103 STS 83, STS 94 Soyuz TM-25 John Fabian Bertalan Farkas Anatoli Filipchenko STS 7, STS 51G Soyuz 36 Soyuz 36 Jake Garn Owen Garriott Richard Garriott STS 51D Skylab 3, STS 9 Soyuz TMA-13 Georgi Grechko Chris Hadfield Henry Hartsfield Soyuz 17, Soyuz 26, Soyuz T-14 STS 74, STS 100 STS 4, STS 41D, STS 61A Miroslaw Hermaszewski Georgi Ivanov Oleg Kotov Soyuz 30 Soyuz 33 Soyuz TMA-10, Soyuz TMA-17., Expedition 22 Alexei Leonov Vladimir Lyakhov Pam Melroy Voskhod 2, ASTP Soyuz 32, Soyuz T-9, STS 92, STS 112, STS 120 Soyuz TM-6 Dumitru-Dorin Prunariu Kenneth Reightler, Jr. Vladimir Remek Soyuz 40 STS 48, STS 60 Soyuz 28 Richard Richards Viktor Savinykh Rusty Schweickart STS 28, STS 41, STS 50, STS 64 Soyuz T-4, Soyuz T-13, Soyuz Apollo 9 TM-5 Alexander Serebrov Vladimir Shatalov Yuri Usachev Soyuz T-7, Soyuz T-8, Soyuz Soyuz 4, Soyuz 8, Soyuz 10 Soyuz TM-18, Soyuz TM-23, TM-8, Soyuz TM-17 STS 101/Expedition 2/STS 102 Franz Viehbock Pavel Vinogradov Sergei Volkov Soyuz TM-13 Soyuz TM-26, Soyuz TMA-8/ Soyuz TMA-12, Expedition 17 Expedition 13 James Voss Charles Walker Yi Soyeon STS 44, STS 53, STS 69, STS 101/ STS 41D, STS 51D, STS 61B Soyuz TMA-12 Expedition 2/STS 102 Forty-nine astronauts and cosmonauts* from 14 nations gathered October 4-10, 2009 in Prague, Czech Republic for the XXII Planetary Congress of the Association of Space Explorers (ASE).
    [Show full text]
  • Insight to Mars 07> Beagle 2 Found
    SpaceFlight A British Interplanetary Society publication Volume 60 No.7 July 2018 £5.00 Deep impact: InSIGHT to Mars 07> Beagle 2 found 634072 Space age prophet 770038 9 Soyuz landing sites CONTENTS Features 14 Along paths trod by Vikings NASA’s InSIGHT Mars mission is off and running but how does it fit within the general pattern of Mars exploration and what can we expect of it, with its twin CubeSats designed to relay communications during the crucial descent? 14 18 Lost & Found Letter from the Editor Dr Jim Clemmet explains how Beagle 2 came to Just as we were going to press, be found residing apparently intact on the news broke of the death of Alan surface of Mars and how images from Mars Bean, Lunar Module Pilot for Reconnaissance Orbiter have helped rewrite the NASA’s second Moon landing and final chapter of this so very nearly successful Commander of the second mission. expedition to Skylab. An exceptional astronaut, we will 26 Prophet of the Space Age carry a formal obituary of Alan Author of a seminal biography of the renowned next month. In the meantime, for a 18 very personal insight into this space age publicist Willy Ley, Jared S Buss gets remarkable man, please see the behind this sometimes enigmatic character and letter from Nick Spall on page 42. helps us understand how he planted the first Elsewhere in this issue, we look seeds of expectation before Wernher von Braun into the mission of NASA’s next picked up the baton. Mars lander, now on its way to the planet, and hear from the chief 30 Happy landings engineer for the Beagle 2 Phillip S.
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]
  • Part 2 Almaz, Salyut, And
    Part 2 Almaz/Salyut/Mir largely concerned with assembly in 12, 1964, Chelomei called upon his Part 2 Earth orbit of a vehicle for circumlu- staff to develop a military station for Almaz, Salyut, nar flight, but also described a small two to three cosmonauts, with a station made up of independently design life of 1 to 2 years. They and Mir launched modules. Three cosmo- designed an integrated system: a nauts were to reach the station single-launch space station dubbed aboard a manned transport spacecraft Almaz (“diamond”) and a Transport called Siber (or Sever) (“north”), Logistics Spacecraft (Russian 2.1 Overview shown in figure 2-2. They would acronym TKS) for reaching it (see live in a habitation module and section 3.3). Chelomei’s three-stage Figure 2-1 is a space station family observe Earth from a “science- Proton booster would launch them tree depicting the evolutionary package” module. Korolev’s Vostok both. Almaz was to be equipped relationships described in this rocket (a converted ICBM) was with a crew capsule, radar remote- section. tapped to launch both Siber and the sensing apparatus for imaging the station modules. In 1965, Korolev Earth’s surface, cameras, two reentry 2.1.1 Early Concepts (1903, proposed a 90-ton space station to be capsules for returning data to Earth, 1962) launched by the N-1 rocket. It was and an antiaircraft cannon to defend to have had a docking module with against American attack.5 An ports for four Soyuz spacecraft.2, 3 interdepartmental commission The space station concept is very old approved the system in 1967.
    [Show full text]
  • A Study of Background for IXPE
    A Study of background for IXPE F. Xiea,∗, R. Ferrazzolia, P. Soffittaa, S. Fabiania, E. Costaa, F. Muleria, A. Di Marcoa aINAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma, Italy Abstract Focal plane X-ray polarimetry is intended for relatively bright sources with a negligible impact of background. However this might not be always possible for IXPE (Imaging X-ray Polarimetry Explorer) when observing faint extended sources like supernova remnants. We present for the first time the expected background of IXPE by Monte Carlo simulation and its impact on real observations of point and extended X-ray sources. The simulation of background has been performed by Monte Carlo based on GEANT4 framework. The spacecraft and the detector units have been modeled, and the expected background components in IXPE orbital environment have been evaluated. We studied different background rejection techniques based on the analysis of the tracks collected by the Gas Pixel Detectors on board IXPE. The estimated background is about 2.9 times larger than the requirement, yet it is still negligible when observing point like sources. Albeit small, the impact on supernova remnants indicates the need for a background subtraction for the observation of the extended sources. Keywords: X-Ray, polarimeter, background 1. Introduction 16.1% ± 1.4% at 160:2° ± 2:6°, with a 10 standard deviation significance in six days observation. Furthermore, [6] reported The Imaging X-ray Polarimetry Explorer (IXPE) is a NASA with the same polarimeter the polarization measurement of the Astrophysics Small Explorer (SMEX) mission, selected in Jan- Crab nebula without pulsar contamination, resulting on a po- uary 2017.
    [Show full text]
  • Table of Manned Space Flights Spacecalc
    CBS News Manned Space Flights Current through STS-117 Table of Manned Space Flights SpaceCalc Total: 260 Crew Launch Land Duration By Robert A. Braeunig* Vostok 1 Yuri Gagarin 04/12/61 04/12/61 1h:48m First manned space flight (1 orbit). MR 3 Alan Shepard 05/05/61 05/05/61 15m:22s First American in space (suborbital). Freedom 7. MR 4 Virgil Grissom 07/21/61 07/21/61 15m:37s Second suborbital flight; spacecraft sank, Grissom rescued. Liberty Bell 7. Vostok 2 Guerman Titov 08/06/61 08/07/61 1d:01h:18m First flight longer than 24 hours (17 orbits). MA 6 John Glenn 02/20/62 02/20/62 04h:55m First American in orbit (3 orbits); telemetry falsely indicated heatshield unlatched. Friendship 7. MA 7 Scott Carpenter 05/24/62 05/24/62 04h:56m Initiated space flight experiments; manual retrofire error caused 250 mile landing overshoot. Aurora 7. Vostok 3 Andrian Nikolayev 08/11/62 08/15/62 3d:22h:22m First twinned flight, with Vostok 4. Vostok 4 Pavel Popovich 08/12/62 08/15/62 2d:22h:57m First twinned flight. On first orbit came within 3 miles of Vostok 3. MA 8 Walter Schirra 10/03/62 10/03/62 09h:13m Developed techniques for long duration missions (6 orbits); closest splashdown to target to date (4.5 miles). Sigma 7. MA 9 Gordon Cooper 05/15/63 05/16/63 1d:10h:20m First U.S. evaluation of effects of one day in space (22 orbits); performed manual reentry after systems failure, landing 4 miles from target.
    [Show full text]