The Trinomial Asset Pricing Model

Total Page:16

File Type:pdf, Size:1020Kb

The Trinomial Asset Pricing Model The Trinomial Asset Pricing Model MVEX01-16-26 Kandidatarbete inom civilingenj¨orsutbildningen vid Chalmers Johan Bj¨orefeldt Dick Hee Edvin Malmg˚ard Vilhelm Niklasson Tom Pettersson Jakob Rados Institutionen f¨or matematiska vetenskaper Chalmers tekniska h¨ogskola G¨oteborgs universitet G¨oteborg 2016 The Trinomial Asset Pricing Model Kandidatarbete i matematik inom civilingenj¨orsprogrammet Industriell ekonomi vid Chalmers Johan Bj¨orefeldt Edvin Malmg˚ard Vilhelm Niklasson Tom Pettersson Jakob Rados Kandidatarbete i matematik inom civilingenj¨orsprogrammet Teknisk matematik vid Chalmers Dick Hee Handledare: Simone Calogero Examinator: Maria Roginskaya Institutionen f¨or matematiska vetenskaper Chalmers tekniska h¨ogskola G¨oteborgs universitet G¨oteborg 2016 Institutionen f¨or matematiska vetenskaper G¨oteborg 2016 Popul¨arvetenskaplig presentation Har du n˚agong˚ang blivit frustrerad av att priset p˚an˚agotsom du planerade att k¨opa pl¨otsligt steg precis innan du skulle k¨opa det? Kanske hade du l¨ange planerat att ˚aka p˚aen semesterresa, men samma dag som du skulle k¨opa biljetter s˚ah¨ojde resebolaget priset med 3000 kr. Vad du skulle kunna haft nytta av i ett s˚adant l¨age ¨ar n˚agotsom kallas f¨or en option. En option ¨ar ett avtal mellan tv˚aparter som ger innehavaren r¨atten, men inte skyldigheten, att i framtiden k¨opa eller s¨alja en produkt (kallad underliggande tillg˚ang) till ett f¨orbest¨amt pris. F¨or att f˚aden h¨ar r¨attigheten betalar k¨oparen av op- tionen en liten summa pengar till den som st¨aller ut optionen. En kritisk fr˚aga ¨ar hur dessa optioner ska priss¨attas p˚aett r¨attvist s¨att. Det ¨ar i teorin m¨ojligt att teckna optioner f¨or m˚anga olika typer av produkter, ¨aven semesterresor. Vanligtvis anv¨ands dock optioner p˚aden finansiella marknaden och pro- dukterna i fr˚aga ¨ar aktier, det vill s¨aga sm˚a ¨agarandelar i f¨oretag. F¨or att kunna best¨am- ma priset p˚aen option m˚aste antaganden g¨oras kring hur v¨ardet av den underliggande tillg˚angen f¨or¨andras. En modell f¨or hur aktier kan modelleras beskrivs av den s˚akallade trinomialmodellen. Enligt denna modell s˚akan aktiepriset i varje tidsintervall, exem- pelvis varje dag eller varje timme, r¨ora sig i en av tre m¨ojliga riktningar med olika sannolikheter. Antingen r¨or sig priset upp eller ner med vissa specificerade procentsat- ser, eller s˚af¨orblir priset of¨or¨andrat. En av de vanligaste optionerna p˚aden finansiella marknaden ¨ar den s˚akallade europeiska k¨opoptionen. Denna option ger ¨agaren m¨ojligheten att i framtiden, vid den f¨orbest¨amda l¨osendagen, k¨opa en aktie f¨or ett visst l¨osenpris. Den avkastning (payoff) som optionen ger best¨ams av skillnaden mellan aktiens pris p˚al¨osendagen och det f¨orbest¨amda l¨o- senpriset. Om aktiepriset ¨ar l¨agre ¨an l¨osenpriset v¨aljer givetvis optionsinnehavaren att inte nyttja optionen eftersom det ¨ar billigare att k¨opa aktien f¨or dess verkliga pris och payoffen blir noll. Ett r¨attvist pris f¨or en option ska inte vara till varken s¨aljarens eller k¨oparens f¨ordel. Den som till exempel s¨aljer optionen ska allts˚ainte ha m¨ojlighet att g¨ora en garante- rad vinst oavsett hur s¨aljint¨akterna investeras. Utifr˚andetta antagande g˚ardet att visa att det r¨attvisa priset f¨or en option ¨ar den tidsjusterade (diskonterade) genomsnittliga payoffen givet vissa riskneutrala sannolikheter i trinomialmodellen. Eftersom det finns flera riskneutrala sannolikheter f¨or aktiepriset i trinomialmodellen s˚akommer dock inte det r¨attvisa priset att vara unikt. Som en f¨oljd av detta ¨ar det inte alltid m¨ojligt att replikera v¨ardet av en option (¨aven kallat hedga) i trinomialmodellen genom att endast investera i den underliggande aktien och en riskfri tillg˚ang(r¨antepapper). Marknaden s¨ags s˚aledes vara ofullst¨andig. Vid sidan om trinomialmodellen finns det m˚anga andra modeller f¨or att priss¨atta optio- ner d¨ar den vanligaste ¨ar Black-Scholes-modellen. Denna modell introducerades 1973 och flera av personerna bakom modellen bel¨onades med Sveriges Riksbanks pris i ekonomisk vetenskap till Alfred Nobels minne ˚ar1997. Inom den finansiella marknaden anses detta vara det korrekta priset f¨or optioner. En av f¨ordelarna med deras modell ¨ar att priset kan uttryckas med hj¨alp av en matematisk formel som enkelt kan ber¨aknas. En nackdel ¨ar dock att den inte fungerar till alla priss¨atta alla typer av optioner, vilket skapar ett behov av exempelvis trinomialmodellen som ¨ar mer generell men inte lika exakt. N¨ar tidsintervallen i trinomialmodellen s¨atts till v¨aldigt sm˚av¨arden i kombination med vissa villkor p˚a ¨ovriga parametrar i modellen n¨armar sig dock dess pris Black-Scholes-priset, f¨orutsatt att det sistn¨amnda priset existerar. En annan vanlig modell f¨or optionspriss¨attning ¨ar binomialmodellen. Till skillnad fr˚an trinomialmodellen bygger denna modell p˚aantagandet att priset f¨or den underliggande tillg˚angen endast kan r¨ora sig i tv˚aolika riktningar i varje tidsintervall, antingen upp eller ner. En s˚adanbegr¨ansning i r¨orelsem¨onstret g¨or det enklare att implementera bino- mialmodellen ¨an trinomialmodellen. Trinomialmodellen har dock f¨ordelen att det kr¨avs f¨arre tidsintervall innan priset stabiliseras och n¨armar sig Black-Scholes-priset. Detta m¨ojligg¨or kortare ber¨akningstider, vilket anses v¨ardefullt. Det ¨ar av speciellt intresse att anv¨anda trinomialmodellen f¨or att priss¨atta optioner med mer komplexa payoff-strukturer ¨an den som exempelvis beskrevs f¨or den europe- iska k¨opoptionen. Dessa s˚akallade exotiska optioner d¨ar payoffen exempelvis kan bero p˚aden underliggande aktiens genomsnittliga v¨arde under hela l¨optiden saknar ofta ett Black-Scholes-pris och det blir d¨arf¨or n¨odv¨andigt att till¨ampa andra modeller. Trino- mialmodellen kan f¨or det mesta till¨ampas och priset best¨ams som tidigare beskrivits utifr˚anden diskonterade genomsnittliga payoffen. P˚agrund av att ber¨akningarna ibland ¨ar v¨aldigt tidskr¨avande ¨ar det dock inte alltid en bra l¨osning att anv¨anda trinomialmo- dellen f¨or att priss¨atta s˚adana optioner. Med kunskap om optioner och trinomialmodellen samt dess breda till¨ampningsomr˚a- den b¨or det st˚aklart att det finns m˚angaf¨ordelar med att anv¨anda dem. Oavsett om det handlar om aktier eller semesterresor kan de implementeras med framg˚ang. Sammanfattning Optioner har en stor betydelse p˚aden finansiella marknaden. Under l˚ang tid har mate- matiker arbetat med att ta fram det r¨attvisa priset f¨or olika typer av optioner. I det h¨ar kandidatarbetet unders¨oker vi hur trinomialmodellen fungerar som priss¨attningsmetod. Vi ger en f¨orklaring till modellen och d¨arifr˚anh¨arleder vi villkoren som kr¨avs f¨or att den ska kunna anv¨andas f¨or att ber¨akna det r¨attvisa priset av europeiska optioner. Vi unders¨oker ¨aven hur modellen approximerar Black-Scholes-priset, samt applicerar trino- mialmodellen f¨or att priss¨atta sex olika typer av exotiska optioner. I v˚arslutsats har vi kommit fram till att f¨orutsatt vissa restriktioner konvergerar trinomi- almodellen mot Black-Scholes-priset. Vi har ¨aven kommit fram till att trinomialmodellen ¨ar v¨aldigt anv¨andbar f¨or att ber¨akna det r¨attvisa priset f¨or amerikanska optioner. Detta beror p˚aatt i j¨amf¨orelse med den mindre avancerade binomialmodellen konvergerar tri- nomialmodellen snabbare till Black-Scholes-priset. Vid priss¨attning av exotiska optioner ¨ar slutsatsen att trinomialmodellen ofta kan vara anv¨andbar n¨ar optionens slutv¨arde inte beror p˚av¨agen av den underliggande tillg˚angen. Abstract Options play an important part in financial markets. Throughout the years, several pricing theories have been developed to generate fair prices for options of different sorts. In this thesis we investigate the trinomial asset pricing model. After giving an expla- nation of its properties, we use the trinomial model to derive a fair price of standard European options. We study the trinomial model approximation of the Black-Scholes price and finally apply the trinomial model on six different exotic options. We have found that, under certain conditions on the model parameters, the trinomial price converges to the Black-Scholes price. Furthermore, we have established that pricing American put options works well using the trinomial model. Regarding the investigated exotic options, we conclude that the trinomial model can often be suitable to use when pricing exotic options that are not path dependent. In relation to the less advanced bi- nomial model, the trinomial model has the advantage of converging to the Black-Scholes price faster than the binomial model. Preface This thesis was produced at Chalmers University of Technology in Sweden, during the spring of 2016. The project group consisted of five students of the Industrial Engineering and Management programme, as well as one student of the Engineering Mathematics programme. The thesis has been written primarily in English, as we consider it to be the most fitting language for this type of project, however as it was done at a Swedish institution we have included abstract and popular science summary written in Swedish above, as well as an extended Swedish summary in Appendix D. All theorems included in this report have been produced by the project group, unless otherwise stated. We would like to thank everyone involved in this project. We would like to especially thank our supervisor, Simone Calogero, who has been driving us forward and supporting us every step of the way. We were first introduced to option pricing concepts during his course Options and Mathematics; without him we would have never gotten the chance to work on this interesting project.
Recommended publications
  • Trinomial Tree
    Trinomial Tree • Set up a trinomial approximation to the geometric Brownian motion dS=S = r dt + σ dW .a • The three stock prices at time ∆t are S, Su, and Sd, where ud = 1. • Impose the matching of mean and that of variance: 1 = pu + pm + pd; SM = (puu + pm + (pd=u)) S; 2 2 2 2 S V = pu(Su − SM) + pm(S − SM) + pd(Sd − SM) : aBoyle (1988). ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599 • Above, M ≡ er∆t; 2 V ≡ M 2(eσ ∆t − 1); by Eqs. (21) on p. 154. ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600 * - pu* Su * * pm- - j- S S * pd j j j- Sd - j ∆t ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601 Trinomial Tree (concluded) • Use linear algebra to verify that ( ) u V + M 2 − M − (M − 1) p = ; u (u − 1) (u2 − 1) ( ) u2 V + M 2 − M − u3(M − 1) p = : d (u − 1) (u2 − 1) { In practice, we must also make sure the probabilities lie between 0 and 1. • Countless variations. ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602 A Trinomial Tree p • Use u = eλσ ∆t, where λ ≥ 1 is a tunable parameter. • Then ( ) p r + σ2 ∆t ! 1 pu 2 + ; 2λ ( 2λσ) p 1 r − 2σ2 ∆t p ! − : d 2λ2 2λσ p • A nice choice for λ is π=2 .a aOmberg (1988). ⃝c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603 Barrier Options Revisited • BOPM introduces a specification error by replacing the barrier with a nonidentical effective barrier.
    [Show full text]
  • A Fuzzy Real Option Model for Pricing Grid Compute Resources
    A Fuzzy Real Option Model for Pricing Grid Compute Resources by David Allenotor A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Computer Science University of Manitoba Winnipeg Copyright ⃝c 2010 by David Allenotor Abstract Many of the grid compute resources (CPU cycles, network bandwidths, computing power, processor times, and software) exist as non-storable commodities, which we call grid compute commodities (gcc) and are distributed geographically across organizations. These organizations have dissimilar resource compositions and usage policies, which makes pricing grid resources and guaranteeing their availability a challenge. Several initiatives (Globus, Legion, Nimrod/G) have developed various frameworks for grid resource management. However, there has been a very little effort in pricing the resources. In this thesis, we propose financial option based model for pricing grid resources by devising three research threads: pricing the gcc as a problem of real option, modeling gcc spot price using a discrete time approach, and addressing uncertainty constraints in the provision of Quality of Service (QoS) using fuzzy logic. We used GridSim, a simulation tool for resource usage in a Grid to experiment and test our model. To further consolidate our model and validate our results, we analyzed usage traces from six real grids from across the world for which we priced a set of resources. We designed a Price Variant Function (PVF) in our model, which is a fuzzy value and its application attracts more patronage to a grid that has more resources to offer and also redirect patronage from a grid that is very busy to another grid.
    [Show full text]
  • Local Volatility Modelling
    LOCAL VOLATILITY MODELLING Roel van der Kamp July 13, 2009 A DISSERTATION SUBMITTED FOR THE DEGREE OF Master of Science in Applied Mathematics (Financial Engineering) I have to understand the world, you see. - Richard Philips Feynman Foreword This report serves as a dissertation for the completion of the Master programme in Applied Math- ematics (Financial Engineering) from the University of Twente. The project was devised from the collaboration of the University of Twente with Saen Options BV (during the course of the project Saen Options BV was integrated into AllOptions BV) at whose facilities the project was performed over a period of six months. This research project could not have been performed without the help of others. Most notably I would like to extend my gratitude towards my supervisors: Michel Vellekoop of the University of Twente, Julien Gosme of AllOptions BV and Fran¸coisMyburg of AllOptions BV. They provided me with the theoretical and practical knowledge necessary to perform this research. Their constant guidance, involvement and availability were an essential part of this project. My thanks goes out to Irakli Khomasuridze, who worked beside me for six months on his own project for the same degree. The many discussions I had with him greatly facilitated my progress and made the whole experience much more enjoyable. Finally I would like to thank AllOptions and their staff for making use of their facilities, getting access to their data and assisting me with all practical issues. RvdK Abstract Many different models exist that describe the behaviour of stock prices and are used to value op- tions on such an underlying asset.
    [Show full text]
  • Pricing Options Using Trinomial Trees
    Pricing Options Using Trinomial Trees Paul Clifford Yan Wang Oleg Zaboronski 30.12.2009 1 Introduction One of the first computational models used in the financial mathematics community was the binomial tree model. This model was popular for some time but in the last 15 years has become significantly outdated and is of little practical use. However it is still one of the first models students traditionally were taught. A more advanced model used for the project this semester, is the trinomial tree model. This improves upon the binomial model by allowing a stock price to move up, down or stay the same with certain probabilities, as shown in the diagram below. 2 Project description. The aim of the project is to apply the trinomial tree to the following problems: ² Pricing various European and American options ² Pricing barrier options ² Calculating the greeks More precisely, the students are asked to do the following: 1. Study the trinomial tree and its parameters, pu; pd; pm; u; d 2. Study the method to build the trinomial tree of share prices 3. Study the backward induction algorithms for option pricing on trees 4. Price various options such as European, American and barrier 1 5. Calculate the greeks using the tree Each of these topics will be explained very clearly in the following sections. Students are encouraged to ask questions during the lab sessions about certain terminology that they do not understand such as barrier options, hedging greeks and things of this nature. Answers to questions listed below should contain analysis of numerical results produced by the simulation.
    [Show full text]
  • On Trinomial Trees for One-Factor Short Rate Models∗
    On Trinomial Trees for One-Factor Short Rate Models∗ Markus Leippoldy Swiss Banking Institute, University of Zurich Zvi Wienerz School of Business Administration, Hebrew University of Jerusalem April 3, 2003 ∗Markus Leippold acknowledges the financial support of the Swiss National Science Foundation (NCCR FINRISK). Zvi Wiener acknowledges the financial support of the Krueger and Rosenberg funds at the He- brew University of Jerusalem. We welcome comments, including references to related papers we inadvertently overlooked. yCorrespondence Information: University of Zurich, ISB, Plattenstr. 14, 8032 Zurich, Switzerland; tel: +41 1-634-2951; fax: +41 1-634-4903; [email protected]. zCorrespondence Information: Hebrew University of Jerusalem, Mount Scopus, Jerusalem, 91905, Israel; tel: +972-2-588-3049; fax: +972-2-588-1341; [email protected]. On Trinomial Trees for One-Factor Short Rate Models ABSTRACT In this article we discuss the implementation of general one-factor short rate models with a trinomial tree. Taking the Hull-White model as a starting point, our contribution is threefold. First, we show how trees can be spanned using a set of general branching processes. Secondly, we improve Hull-White's procedure to calibrate the tree to bond prices by a much more efficient approach. This approach is applicable to a wide range of term structure models. Finally, we show how the tree can be adjusted to the volatility structure. The proposed approach leads to an efficient and flexible construction method for trinomial trees, which can be easily implemented and calibrated to both prices and volatilities. JEL Classification Codes: G13, C6. Key Words: Short Rate Models, Trinomial Trees, Forward Measure.
    [Show full text]
  • The Forward Smile in Stochastic Local Volatility Models
    The forward smile in stochastic local volatility models Andrea Mazzon∗ Andrea Pascucciy Abstract We introduce an approximation of forward start options in a multi-factor local-stochastic volatility model. We derive explicit expansion formulas for the so-called forward implied volatility which can be useful to price complex path-dependent options, as cliquets. The expansion involves only polynomials and can be computed without the need for numerical procedures or special functions. Recent results on the exploding behaviour of the forward smile in the Heston model are confirmed and generalized to a wider class of local-stochastic volatility models. We illustrate the effectiveness of the technique through some numerical tests. Keywords: forward implied volatility, cliquet option, local volatility, stochastic volatility, analytical ap- proximation Key messages • approximation for the forward implied volatility • local stochastic volatility models • explosion of the out-of-the-money forward smile 1 Introduction In an arbitrage-free market, we consider the risk-neutral dynamics described by the d-dimensional Markov diffusion dXt = µ(t; Xt)dt + σ(t; Xt)dWt; (1.1) where W is a m-dimensional Brownian motion. The first component X1 represents the log-price of an asset, while the other components of X represent a number of things, e.g., stochastic volatilities, economic indicators or functions of these quantities. We are interested in the forward start payoff + X1 −X1 k e t+τ t − e (1.2) ∗Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L'Aquila, Italy ([email protected]) yDipartimento di Matematica, Universit`a di Bologna, Piazza di Porta S.
    [Show full text]
  • New Frontiers in Practical Risk Management
    New Frontiers in Practical Risk Management English edition Issue n.6-S pring 2015 Iason ltd. and Energisk.org are the editors of Argo newsletter. Iason is the publisher. No one is al- lowed to reproduce or transmit any part of this document in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Iason ltd. Neither editor is responsible for any consequence directly or indirectly stem- ming from the use of any kind of adoption of the methods, models, and ideas appearing in the con- tributions contained in Argo newsletter, nor they assume any responsibility related to the appropri- ateness and/or truth of numbers, figures, and statements expressed by authors of those contributions. New Frontiers in Practical Risk Management Year 2 - Issue Number 6 - Spring 2015 Published in June 2015 First published in October 2013 Last published issues are available online: www.iasonltd.com www.energisk.org Spring 2015 NEW FRONTIERS IN PRACTICAL RISK MANAGEMENT Editors: Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Andrea RONCORONI (ESSEC Business School, Paris) Executive Editor: Luca OLIVO (Iason ltd) Scientific Editorial Board: Fred Espen BENTH (University of Oslo) Alvaro CARTEA (University College London) Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Mark CUMMINS (Dublin City University Business School) Gianluca FUSAI (Cass Business School, London) Sebastian JAIMUNGAL (University of Toronto) Fabio MERCURIO (Bloomberg LP) Andrea RONCORONI (ESSEC Business School, Paris) Rafal WERON (Wroclaw University of Technology) Iason ltd Registered Address: 6 O’Curry Street Limerick 4 Ireland Italian Address: Piazza 4 Novembre, 6 20124 Milano Italy Contact Information: [email protected] www.iasonltd.com Energisk.org Contact Information: [email protected] www.energisk.org Iason ltd and Energisk.org are registered trademark.
    [Show full text]
  • Regulatory Circular RG16-044
    Regulatory Circular RG16-044 Date: February 29, 2016 To: Trading Permit Holders From: Regulatory Division RE: Product Description and Margin and Net Capital Requirements - Asian Style Settlement FLEX Broad-Based Index Options - Cliquet Style Settlement FLEX Broad-Based Index Options KEY POINTS On March 21, 2016, Chicago Board Options Exchange, Incorporated (“CBOE” or “Exchange”) plans to commence trading Asian style settlement and Cliquet style settlement FLEX Broad-Based Index Options (“Asian options” and “Cliquet options,” respectively).1 Asian and Cliquet options are permitted only for broad-based indexes on which options are eligible for trading on CBOE. Asian and Cliquet options may not be exercised prior to the expiration date and must have a $100 multiplier. Asian style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is based on an arithmetic average of the specified closing prices of an underlying broad-based index taken on 12 predetermined monthly observation dates. Cliquet style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is equal to the greater of $0 or the sum of capped monthly returns (i.e., percent changes in the closing value of the underlying broad-based index from one month to the next month) applied over 12 predetermined monthly observation dates. The monthly observation date is set by the parties to a transaction. It is the date each month on which the value of the underlying broad-based index is observed for the purpose of calculating the exercise settlement value.
    [Show full text]
  • Volatility Curves of Incomplete Markets
    Master's thesis Volatility Curves of Incomplete Markets The Trinomial Option Pricing Model KATERYNA CHECHELNYTSKA Department of Mathematical Sciences Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2019 Thesis for the Degree of Master Science Volatility Curves of Incomplete Markets The Trinomial Option Pricing Model KATERYNA CHECHELNYTSKA Department of Mathematical Sciences Chalmers University of Technology University of Gothenburg SE - 412 96 Gothenburg, Sweden Gothenburg, Sweden 2019 Volatility Curves of Incomplete Markets The Trinomial Asset Pricing Model KATERYNA CHECHELNYTSKA © KATERYNA CHECHELNYTSKA, 2019. Supervisor: Docent Simone Calogero, Department of Mathematical Sciences Examiner: Docent Patrik Albin, Department of Mathematical Sciences Master's Thesis 2019 Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg Telephone +46 31 772 1000 Typeset in LATEX Printed by Chalmers Reproservice Gothenburg, Sweden 2019 4 Volatility Curves of Incomplete Markets The Trinomial Option Pricing Model KATERYNA CHECHELNYTSKA Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Abstract The graph of the implied volatility of call options as a function of the strike price is called volatility curve. If the options market were perfectly described by the Black-Scholes model, the implied volatility would be independent of the strike price and thus the volatility curve would be a flat horizontal line. However the volatility curve of real markets is often found to have recurrent convex shapes called volatility smile and volatility skew. The common approach to explain this phenomena is by assuming that the volatility of the underlying stock is a stochastic process (while in Black-Scholes it is assumed to be a deterministic constant).
    [Show full text]
  • Robust Option Pricing: the Uncertain Volatility Model
    Imperial College London Department of Mathematics Robust option pricing: the uncertain volatility model Supervisor: Dr. Pietro SIORPAES Author: Hicham EL JERRARI (CID: 01792391) A thesis submitted for the degree of MSc in Mathematics and Finance, 2019-2020 El Jerrari Robust option pricing Declaration The work contained in this thesis is my own work unless otherwise stated. Signature and date: 06/09/2020 Hicham EL JERRARI 1 El Jerrari Robust option pricing Acknowledgements I would like to thank my supervisor: Dr. Pietro SIORPAES for giving me the opportunity to work on this exciting subject. I am very grateful to him for his help throughout my project. Thanks to his advice, his supervision, as well as the discussions I had with him, this experience was very enriching for me. I would also like to thank Imperial College and more particularly the \Msc Mathemat- ics and Finance" for this year rich in learning, for their support and their dedication especially in this particular year of pandemic. On a personal level, I want to thank my parents for giving me the opportunity to study this master's year at Imperial College and to be present and support me throughout my studies. I also thank my brother and my two sisters for their encouragement. Last but not least, I dedicate this work to my grandmother for her moral support and a tribute to my late grandfather. 2 El Jerrari Robust option pricing Abstract This study presents the uncertain volatility model (UVM) which proposes a new approach for the pricing and hedging of derivatives by considering a band of spot's volatility as input.
    [Show full text]
  • The Hull-White Model • Hull and White (1987) Postulate the Following Model, Ds √ = R Dt + V Dw , S 1 Dv = Μvv Dt + Bv Dw2
    The Hull-White Model • Hull and White (1987) postulate the following model, dS p = r dt + V dW ; S 1 dV = µvV dt + bV dW2: • Above, V is the instantaneous variance. • They assume µv depends on V and t (but not S). ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599 The SABR Model • Hagan, Kumar, Lesniewski, and Woodward (2002) postulate the following model, dS = r dt + SθV dW ; S 1 dV = bV dW2; for 0 ≤ θ ≤ 1. • A nice feature of this model is that the implied volatility surface has a compact approximate closed form. ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600 The Hilliard-Schwartz Model • Hilliard and Schwartz (1996) postulate the following general model, dS = r dt + f(S)V a dW ; S 1 dV = µ(V ) dt + bV dW2; for some well-behaved function f(S) and constant a. ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601 The Blacher Model • Blacher (2002) postulates the following model, dS [ ] = r dt + σ 1 + α(S − S ) + β(S − S )2 dW ; S 0 0 1 dσ = κ(θ − σ) dt + ϵσ dW2: • So the volatility σ follows a mean-reverting process to level θ. ⃝c 2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602 Heston's Stochastic-Volatility Model • Heston (1993) assumes the stock price follows dS p = (µ − q) dt + V dW1; (64) S p dV = κ(θ − V ) dt + σ V dW2: (65) { V is the instantaneous variance, which follows a square-root process. { dW1 and dW2 have correlation ρ.
    [Show full text]
  • Calibration Risk for Exotic Options
    Forschungsgemeinschaft through through Forschungsgemeinschaft SFB 649DiscussionPaper2006-001 * CASE - Center for Applied Statistics and Economics, Statisticsand Center forApplied - * CASE Calibration Riskfor This research was supported by the Deutsche the Deutsche by was supported This research Wolfgang K.Härdle** Humboldt-Universität zuBerlin,Germany SFB 649, Humboldt-Universität zu Berlin zu SFB 649,Humboldt-Universität Exotic Options Spandauer Straße 1,D-10178 Berlin Spandauer http://sfb649.wiwi.hu-berlin.de http://sfb649.wiwi.hu-berlin.de Kai Detlefsen* ISSN 1860-5664 the SFB 649 "Economic Risk". "Economic the SFB649 SFB 6 4 9 E C O N O M I C R I S K B E R L I N Calibration Risk for Exotic Options K. Detlefsen and W. K. H¨ardle CASE - Center for Applied Statistics and Economics Humboldt-Universit¨atzu Berlin Wirtschaftswissenschaftliche Fakult¨at Spandauer Strasse 1, 10178 Berlin, Germany Abstract Option pricing models are calibrated to market data of plain vanil- las by minimization of an error functional. From the economic view- point, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different sets of calibrated model parameters and the resulting prices of exotic options vary significantly. These price differences often exceed the usual profit margin of exotic options. We provide evidence for this calibration risk in a time series of DAX implied volatility surfaces from April 2003 to March 2004. We analyze in the Heston and in the Bates model factors influencing these price differences of exotic options and finally recommend an error func- tional.
    [Show full text]