1-D Ablation Model for a Thermal Protection System
Total Page:16
File Type:pdf, Size:1020Kb
1-D Ablation Model for a Thermal Protection System a project presented to The Faculty of the Department of Aerospace Engineering San José State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Reine Dominique Ntone Sike December 2018 approved by Dr. Periklis Papadopoulos Faculty Advisor ABSTRACT 1D ABLATION MODEL FOR A THERMAL PROTECTION SYSTEM by Reine Dominique Ntone Sike During the past decades, human presence is expanding beyond earth. Manned space vehicles are required to withstand extreme temperatures during atmospheric reentry. The focus of the project is on ablative thermal protection system. A deep understanding of thermo-chemical ablation of carbon-based materials is fundamental to assess results from numerical simulations. Ablation is a complex process to model since the majority of ablative materials are still not fully understood. This report is devoted to investigate ablative material’s behavior in operational conditions, present two different computational approaches, and study a thermal protection system sizing using TRAJ code and FIAT. Apollo 4 (AS-501) and Apollo 10, exposed to conditions similar to those during atmospheric reentry, are the selected test cases for the analysis. TRAJ trajectory code and FIAT are used to analyze the impact of changing parameters on the thermal protection system. The results show that for similar selected body geometry and initial conditions, an implementation of Apollo Guidance Computer subroutine is essential to obtain accurate results for thermal protection system sizing. iiii i ACKNOWLEDGEMENTS I would first like to thank my thesis advisor Professor Périklis Papadopoulos of the Aerospace Engineering Department at San Jose State University. The door to Prof. Papadopoulos office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right the direction whenever he thought I needed it. I would also like to thank the experts who were involved in the simulations using TRAJ and FIAT for this research project: Marcus Murbach and Gary Allen. Without their passionate participation and input, the numerical simulations could not have been successfully conducted. I would also like to acknowledge Heidi Livingston Eisips of the Writing Center at San Jose State University as the second reader of this thesis, and I am gratefully indebted to her for her very valuable comments. Finally, I must express my very profound gratitude to my parents and sisters for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you. iiii ii Contents 1. Introduction ......................................................................................................................................... 1 1.1 Problem Statement .................................................................................................................. 1 1.2 Project Objective and Methodology ........................................................................................ 2 1.2.1 Project Objective ...................................................................................................... 2 1.2.2 Methodology ............................................................................................................. 2 1.3 Reentry Phase .......................................................................................................................... 3 1.4 Composition of the Atmosphere .............................................................................................. 4 1.5 Major Classes of Materials for Thermal Protection System .................................................... 5 2. Early Thermal Protection Systems ...................................................................................................... 6 2.1 Apollo Capsule ........................................................................................................................ 6 2.2 SpaceX Dragon Capsule .......................................................................................................... 7 2.3 Boeing’s CST-100 Crew Module ............................................................................................ 7 2.4 Sierra Nevada Corporation’s Dream Chaser ........................................................................... 8 3. Flight Mechanics ................................................................................................................................. 9 3.1 Trade-Offs For Reentry Design Requirements ........................................................................ 9 3.1.1 Deceleration .............................................................................................................. 9 3.1.2 Heating ...................................................................................................................... 9 3.1.3 Accuracy of Landing or Impact .............................................................................. 10 3.2 Reentry Motion ..................................................................................................................... 10 3.3 Equations of Motion .............................................................................................................. 11 3.4 Vehicle Design and Trajectory Considerations ..................................................................... 11 4. Ablative materials ............................................................................................................................. 13 4.1 Ablation of Carbon ................................................................................................................ 13 4.1.1 Oxidation ................................................................................................................ 13 4.1.2 Reactions with Nitrogen ......................................................................................... 14 4.1.3 Sublimation ............................................................................................................. 15 4.1.4 Partition of Energy 1-D Model ............................................................................... 15 4.2 Pyrolysis and Pyrolyzable Materials ..................................................................................... 18 4.2.1 Phenolic Resin ........................................................................................................ 18 5. Multi-Dimensional Transient Computation of the Conduction inside the Ablator ........................... 21 5.1.1 Physical Procedure .................................................................................................. 21 5.1.2 Species Conservation .............................................................................................. 25 5.1.3 Momentum Equation .............................................................................................. 28 5.1.4 Energy Equation ..................................................................................................... 29 5.1.5 Energy Conservation .............................................................................................. 29 6. CFD Simulation of the Flow Fields for Simplified Boundary Conditions ........................................ 31 6.1.1 Governing Equations .............................................................................................. 31 6.1.2 Numerical Modeling ............................................................................................... 34 6.1.3 Experimental Conditions and Preliminary Test ...................................................... 35 6.1.4 Results .................................................................................................................... 35 7. Parametric Study of an Ablative TPS for a Lunar Return Capsule Vehicle ..................................... 37 7.1 Methodology ......................................................................................................................... 37 7.2 Body Geometry and Initial Conditions ................................................................................. 37 7.2.1 Body Geometry ....................................................................................................... 37 7.2.2 Atmospheric Entry Conditions ............................................................................... 37 7.3 Heat transfer and TPS ........................................................................................................... 38 iiii iv 7.3.1 Convective Heat Transfer ....................................................................................... 38 7.3.2 Radiative Heat Transfer .......................................................................................... 40 7.3.3 Total Heat Flux ....................................................................................................... 42 7.3.4 Stagnation Pressure ................................................................................................. 43 7.4 TPS Sizing ............................................................................................................................. 45 8. Facilities & Numerical Tool Testing ................................................................................................