Some Music Theory

Total Page:16

File Type:pdf, Size:1020Kb

Some Music Theory i i i i Chapter 3 Some Music Theory The musical language that made the classical style possible is that of tonality, which was not a massive, immobile system but a living, gradually changing language from its beginning. —Charles Rosen In this chapter we explore some music theory, concentrating on pitch and harmony. This will help us to appreciate some of the structural patterns in musical compositions. We begin by discussing musical intervals and chords, which describe how different pitches are related and combined. We then describe the basic guidelines that have been used for centuries to create music within the diatonic keys (the major and minor keys described in the previous chapter). Following those guidelines produces music that we shall refer to as diatonic music.1 A commonly used technique for composing diatonic music is tonal sequencing. Tonal sequencing is a prime example of a mathematical procedure in musical composition. We conclude the chapter by examining sequencing when the chromatic scale is used, which is known as real sequencing. 3.1 Intervals and Chords Most of Western music is composed from notes on the chromatic scale, often restricted to a specific diatonic scale (or key).2 When comparing two notes, we can consider the change on a score that separates one note from another. This change is called an interval. There are two types of intervals, melodic intervals and harmonic intervals. A melodic interval is the change on the score between two successive notes. A harmonic interval is the change on the score between two notes that are played simultaneously, as in a chord. Diatonic music uses intervals and chords for melody and harmony in a characteristic way, which we describe in the next section. 3.1.1 Melodic and Harmonic Intervals When two notes occur successively, as in a melody, then the interval between them is called a melodic interval. To compute a melodic interval, you count the number of spaces and lines on the score between the two notes, starting with 1 for the first note. For example, the note E4 lies on the lowest staff line of the treble clef staff. If the next note is G4, then it lies on the next staff line above. Counting all the lines and spaces between these two notes, inclusively, we get a count of 3. So the interval between E4 and G4 is called a third. Another example would be the notes C4 and B3, for these notes we count 1 ledger line and 1 space, inclusively. So the interval between C4 and B3 is a second. In Figure 3.1 we show some melodic intervals. Notice that the intervals are not dependent on whether the pitches are going up or down. To specify pitch direction we would say, in this example, 1It is also called tonal music, but we prefer to call it diatonic music. 2Although there has been a tendency within the last hundred years to avoid emphasis on diatonic scales, focusing exclusively on the chromatic scale (sometimes called atonal music or post-tonal music). 51 i i i i i i i i 52 3. Some Music Theory Third Second Fourth Fifth Sixth Figure 3.1. Some melodic intervals. that the first two notes go up a third, while the last two notes go down a sixth. There are two special cases of intervals. When two notes are exactly the same, then we say their interval is a unison. When two notes are separated by an octave, then we say their interval is an octave (rather than an eighth). Major and Minor Intervals If we consider the number of half steps between two pitches, then most intervals fall into two cate- gories, called major and minor. For example, the interval between G4 and B4 is a third, and so is the interval between D4 and F4. However, the number of half steps in the former case is 4, while in the latter case it is 3. The interval between G4 and B4 is called a major third, while the interval between D4 and F4 is called a minor third. In Figure 3.2, we show the classification of intervals according to whether they are major or minor. Notice that the intervals of unison, fourth, fifth, and octave do not Unison Min. 2nd Maj. 2nd Min. 3rd Maj. 3rd Per. 4th Aug. 4th Per. 5th Min. 6th Maj. 6th Min. 7th Maj. 7th Octave 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 Unison Min. 2nd Maj. 2nd Min. 3rd Maj. 3rd Per. 4th Aug. 4th Per. 5th Min. 6th Maj. 6th Min. 7th Maj. 7th Octave 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 Figure 3.2. Top: Some ascending melodic intervals. Minor is abbreviated as Min., and Major is abbreviated as Maj. Perfect is abbreviated as Per., and Augmented is abbreviated as Aug. Bottom: Some descending melodic intervals. Beneath the label for each interval are the number of half steps from the first note to the second note. have major or minor forms. The interval of a fifth is called a perfect fifth. An interval of a fourth can either be a perfect fourth (5 half steps), or an augmented fourth (6 half steps). The adjective perfect stems from ancient Greek theories of music. The augmented fourth is also referred to as a tritone.3 This categorizing of most intervals as major or minor is musically important. Because the number of half steps is related to the magnitude of frequency ratios between pitches, we will hear two notes that are a minor third apart as closer in pitch than two notes a major third apart. We have described the basic forms for melodic intervals. There are some additional classifications for intervals which occur less frequently, but we shall not discuss them.4 Harmonic Intervals When two pitches are played simultaneously then the interval between the notes is called a harmonic interval. The classification of harmonic intervals is essentially the same as for melodic intervals. The 3The precise definition of a tritone is an interval where the notes are 6 half steps apart on the chromatic clock. So, the notes ♯ ♭ D4 and G4 are an augmented fourth, a tritone. However, the notes C4 and G4 are a diminished fifth, also a tritone. In both cases, the notes are separated by 6 half steps. 4Any book on music theory will describe the complete classification of intervals. See, for example, S. Kostka and D. Payne, Tonal Harmony, with an introduction to twentieth century music, Sixth Edition, McGraw-Hill, 2009. i i i i i i i i 3.1 Intervals and Chords 53 counting of spaces and lines, and half steps, is always done from the lower pitch note to the higher pitch note. We summarize the main types of harmonic intervals in Figure 3.3. Min. 2nd Maj. 2nd Min. 3rd Maj. 3rd Per. 4th Aug. 4th Per. 5th Min. 6th Maj. 6th Min. 7th Maj. 7th Octave +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 Figure 3.3. Some harmonic intervals. In Figure 3.3, we did not include a unison interval because only one staff (for one instrument) was displayed. In scores where multiple instruments are employed, it is possible for two instruments to play the same notes simultaneously. The interval between these identical notes is a unison. 3.1.2 Chords When multiple pitches are played simultaneously, we say thata chord is being played. While the two notes in a harmonic interval can be thought of as a chord (called a dyadic or 2-note chord), the most important chords in diatonic music are the triadic chords. Triadic chords are 3-note chords. The most basic triadic chords in diatonic music are created by combining two harmonic intervals that are thirds. If the lowest pitch note and the middle pitch note form a major third, and the middle pitch note and the highest pitch note form a minor third, then the chord is called a major chord. If the lowest pitch note and the middle pitch note form a minor third, and the middle pitch note and the highest pitch note form a major third, then the chord is calleda minor chord. For example, in Figure 3.4 there are two chords with their notes and the half steps separating them, and a diagram illustrating how they are diagrammed on the chromatic clock. The first chord has a G A +3 ↑ +4 ↑ E F +4 ↑ +3 ↑ C D Figure 3.4. C-major chord and D-minor chords in root position, and their diagrams on the chromatic clock. major third between its lowest pitch note and middle pitch note, and a minor third between its middle pitch note and its highest pitch note. Therefore it is a major chord. It is called a C-major chord. The second chord has a minor third between its lowest pitch note and middle pitch note, and a major third between its middle pitch note and its highest pitch note. So it is a minor chord. It is called a D-minor chord. This diagram illustrates the following principle: Reading clockwise on the chromatic clock, a major chord always has 4 hours, followed by 3 hours, separating its notes. While a minor chord always has 3 hours, followed by 4 hours, separating its notes. Using this principle, we can identify underlying chords in musical passages by diagramming them on the chromatic clock. Examples of i i i i i i i i 54 3.
Recommended publications
  • Common Jazz Chord Symbols Here I Use the More Explicit Abbreviation 'Maj7' for Major Seventh
    Common jazz chord symbols Here I use the more explicit abbreviation 'maj7' for major seventh. Other common abbreviations include: C² C²7 CMA7 and CM7. Here I use the abbreviation 'm7' for minor seventh. Other common abbreviations include: C- C-7 Cmi7 and Cmin7. The variations given for Major 6th, Major 7th, Dominant 7th, basic altered dominant and minor 7th chords in the first five systems are essentially interchangeable, in other words, the 'color tones' shown added to these chords (9 and 13 on major and dominant seventh chords, 9, 13 and 11 on minor seventh chords) are commonly added even when not included in a chord symbol. For example, a chord notated Cmaj7 is often played with an added 6th and/or 9th, etc. Note that the 11th is not one of the basic color tones added to major and dominant 7th chords. Only #11 is added to these chords, which implies a different scale (lydian rather than major on maj7, lydian dominant rather than the 'seventh scale' on dominant 7th chords.) Although color tones above the seventh are sometimes added to the m7b5 chord, this chord is shown here without color tones, as it is often played without them, especially when a more basic approach is being taken to the minor ii-V-I. Note that the abbreviations Cmaj9, Cmaj13, C9, C13, Cm9 and Cm13 imply that the seventh is included. Major triad Major 6th chords C C6 C% w ww & w w w Major 7th chords (basic structure: root, 3rd, 5th and 7th of root's major scale) 4 CŒ„Š7 CŒ„Š9 CŒ„Š13 w w w w & w w w Dominant seventh chords (basic structure: root, 3rd, 5th and b7 of root's major scale) 7 C7 C9 C13 w bw bw bw & w w w basic altered dominant 7th chords 10 C7(b9) C7(#5) (aka C7+5 or C+7) C7[äÁ] bbw bw b bw & w # w # w Minor 7 flat 5, aka 'half diminished' fully diminished Minor seventh chords (root, b3, b5, b7).
    [Show full text]
  • Naming a Chord Once You Know the Common Names of the Intervals, the Naming of Chords Is a Little Less Daunting
    Naming a Chord Once you know the common names of the intervals, the naming of chords is a little less daunting. Still, there are a few conventions and short-hand terms that many musicians use, that may be confusing at times. A few terms are used throughout the maze of chord names, and it is good to know what they refer to: Major / Minor – a “minor” note is one half step below the “major.” When naming intervals, all but the “perfect” intervals (1,4, 5, 8) are either major or minor. Generally if neither word is used, major is assumed, unless the situation is obvious. However, when used in naming extended chords, the word “minor” usually is reserved to indicate that the third of the triad is flatted. The word “major” is reserved to designate the major seventh interval as opposed to the minor or dominant seventh. It is assumed that the third is major, unless the word “minor” is said, right after the letter name of the chord. Similarly, in a seventh chord, the seventh interval is assumed to be a minor seventh (aka “dominant seventh), unless the word “major” comes right before the word “seventh.” Thus a common “C7” would mean a C major triad with a dominant seventh (CEGBb) While a “Cmaj7” (or CM7) would mean a C major triad with the major seventh interval added (CEGB), And a “Cmin7” (or Cm7) would mean a C minor triad with a dominant seventh interval added (CEbGBb) The dissonant “Cm(M7)” – “C minor major seventh” is fairly uncommon outside of modern jazz: it would mean a C minor triad with the major seventh interval added (CEbGB) Suspended – To suspend a note would mean to raise it up a half step.
    [Show full text]
  • The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
    The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely.
    [Show full text]
  • MTO 0.7: Alphonce, Dissonance and Schumann's Reckless Counterpoint
    Volume 0, Number 7, March 1994 Copyright © 1994 Society for Music Theory Bo H. Alphonce KEYWORDS: Schumann, piano music, counterpoint, dissonance, rhythmic shift ABSTRACT: Work in progress about linearity in early romantic music. The essay discusses non-traditional dissonance treatment in some contrapuntal passages from Schumann’s Kreisleriana, opus 16, and his Grande Sonate F minor, opus 14, in particular some that involve a wedge-shaped linear motion or a rhythmic shift of one line relative to the harmonic progression. [1] The present paper is the first result of a planned project on linearity and other features of person- and period-style in early romantic music.(1) It is limited to Schumann's piano music from the eighteen-thirties and refers to score excerpts drawn exclusively from opus 14 and 16, the Grande Sonate in F minor and the Kreisleriana—the Finale of the former and the first two pieces of the latter. It deals with dissonance in foreground terms only and without reference to expressive connotations. Also, Eusebius, Florestan, E.T.A. Hoffmann, and Herr Kapellmeister Kreisler are kept gently off stage. [2] Schumann favours friction dissonances, especially the minor ninth and the major seventh, and he likes them raw: with little preparation and scant resolution. The sforzato clash of C and D in measures 131 and 261 of the Finale of the G minor Sonata, opus 22, offers a brilliant example, a peculiarly compressed dominant arrival just before the return of the main theme in G minor. The minor ninth often occurs exposed at the beginning of a phrase as in the second piece of the Davidsbuendler, opus 6: the opening chord is a V with an appoggiatura 6; as 6 goes to 5, the minor ninth enters together with the fundamental in, respectively, high and low peak registers.
    [Show full text]
  • A Group-Theoretical Classification of Three-Tone and Four-Tone Harmonic Chords3
    A GROUP-THEORETICAL CLASSIFICATION OF THREE-TONE AND FOUR-TONE HARMONIC CHORDS JASON K.C. POLAK Abstract. We classify three-tone and four-tone chords based on subgroups of the symmetric group acting on chords contained within a twelve-tone scale. The actions are inversion, major- minor duality, and augmented-diminished duality. These actions correspond to elements of symmetric groups, and also correspond directly to intuitive concepts in the harmony theory of music. We produce a graph of how these actions relate different seventh chords that suggests a concept of distance in the theory of harmony. Contents 1. Introduction 1 Acknowledgements 2 2. Three-tone harmonic chords 2 3. Four-tone harmonic chords 4 4. The chord graph 6 References 8 References 8 1. Introduction Early on in music theory we learn of the harmonic triads: major, minor, augmented, and diminished. Later on we find out about four-note chords such as seventh chords. We wish to describe a classification of these types of chords using the action of the finite symmetric groups. We represent notes by a number in the set Z/12 = {0, 1, 2,..., 10, 11}. Under this scheme, for example, 0 represents C, 1 represents C♯, 2 represents D, and so on. We consider only pitch classes modulo the octave. arXiv:2007.03134v1 [math.GR] 6 Jul 2020 We describe the sounding of simultaneous notes by an ordered increasing list of integers in Z/12 surrounded by parentheses. For example, a major second interval M2 would be repre- sented by (0, 2), and a major chord would be represented by (0, 4, 7).
    [Show full text]
  • THE MODES of ANCIENT GREECE by Elsie Hamilton
    THE MODES OF ANCIENT GREECE by Elsie Hamilton * * * * P R E F A C E Owing to requests from various people I have consented with humility to write a simple booklet on the Modes of Ancient Greece. The reason for this is largely because the monumental work “The Greek Aulos” by Kathleen Schlesinger, Fellow of the Institute of Archaeology at the University of Liverpool, is now unfortunately out of print. Let me at once say that all the theoretical knowledge I possess has been imparted to me by her through our long and happy friendship over many years. All I can claim as my own contribution is the use I have made of these Modes as a basis for modern composition, of which details have been given in Appendix 3 of “The Greek Aulos”. Demonstrations of Chamber Music in the Modes were given in Steinway Hall in 1917 with the assistance of some of the Queen’s Hall players, also 3 performances in the Etlinger Hall of the musical drama “Sensa”, by Mabel Collins, in 1919. A mime “Agave” was performed in the studio of Madame Matton-Painpare in 1924, and another mime “The Scorpions of Ysit”, at the Court Theatre in 1929. In 1935 this new language of Music was introduced at Stuttgart, Germany, where a small Chamber Orchestra was trained to play in the Greek Modes. Singers have also found little difficulty in singing these intervals which are not those of our modern well-tempered system, of which fuller details will be given later on in this booklet.
    [Show full text]
  • Playing Harmonica with Guitar & Ukulele
    Playing Harmonica with Guitar & Ukulele IT’S EASY WITH THE LEE OSKAR HARMONICA SYSTEM... SpiceSpice upup youryour songssongs withwith thethe soulfulsoulful soundsound ofof thethe harmonicaharmonica alongalong withwith youryour GuitarGuitar oror UkuleleUkulele playing!playing! Information all in one place! Online Video Guides Scan or visit: leeoskarquickguide.com ©2013-2016 Lee Oskar Productions Inc. - All Rights Reserved Major Diatonic Key labeled in 1st Position (Straight Harp) Available in 14 keys: Low F, G, Ab, A, Bb, B, C, Db, D, Eb, E, F, F#, High G Key of C MAJOR DIATONIC BLOW DRAW The Major Diatonic harmonica uses a standard Blues tuning and can be played in the 1st Position (Folk & Country) or the 2 nd Position (Blues, Rock/Pop Country). 1 st Position: Folk & Country Most Folk and Country music is played on the harmonica in the key of the blow (exhale) chord. This is called 1 st Position, or straight harp, playing. Begin by strumming your guitar / ukulele: C F G7 C F G7 With your C Major Diatonic harmonica Key of C MIDRANGE in its holder, starting from blow (exhale), BLOW try to pick out a melody in the midrange of the harmonica. DRAW Do Re Mi Fa So La Ti Do C Major scale played in 1st Position C D E F G A B C on a C Major Diatonic harmonica. 4 4 5 5 6 6 7 7 ©2013-2016 Lee Oskar Productions Inc. All Rights Reserved 2nd Position: Blues, Rock/Pop, Country Most Blues, Rock, and modern Country music is played on the harmonica in the key of the draw (inhale) chord.
    [Show full text]
  • A. Types of Chords in Tonal Music
    1 Kristen Masada and Razvan Bunescu: A Segmental CRF Model for Chord Recognition in Symbolic Music A. Types of Chords in Tonal Music minished triads most frequently contain a diminished A chord is a group of notes that form a cohesive har- seventh interval (9 half steps), producing a fully di- monic unit to the listener when sounding simulta- minished seventh chord, or a minor seventh interval, neously (Aldwell et al., 2011). We design our sys- creating a half-diminished seventh chord. tem to handle the following types of chords: triads, augmented 6th chords, suspended chords, and power A.2 Augmented 6th Chords chords. An augmented 6th chord is a type of chromatic chord defined by an augmented sixth interval between the A.1 Triads lowest and highest notes of the chord (Aldwell et al., A triad is the prototypical instance of a chord. It is 2011). The three most common types of augmented based on a root note, which forms the lowest note of a 6th chords are Italian, German, and French sixth chord in standard position. A third and a fifth are then chords, as shown in Figure 8 in the key of A minor. built on top of this root to create a three-note chord. In- In a minor scale, Italian sixth chords can be seen as verted triads also exist, where the third or fifth instead iv chords with a sharpened root, in the first inversion. appears as the lowest note. The chord labels used in Thus, they can be created by stacking the sixth, first, our system do not distinguish among inversions of the and sharpened fourth scale degrees.
    [Show full text]
  • 10 - Pathways to Harmony, Chapter 1
    Pathways to Harmony, Chapter 1. The Keyboard and Treble Clef Chapter 2. Bass Clef In this chapter you will: 1.Write bass clefs 2. Write some low notes 3. Match low notes on the keyboard with notes on the staff 4. Write eighth notes 5. Identify notes on ledger lines 6. Identify sharps and flats on the keyboard 7.Write sharps and flats on the staff 8. Write enharmonic equivalents date: 2.1 Write bass clefs • The symbol at the beginning of the above staff, , is an F or bass clef. • The F or bass clef says that the fourth line of the staff is the F below the piano’s middle C. This clef is used to write low notes. DRAW five bass clefs. After each clef, which itself includes two dots, put another dot on the F line. © Gilbert DeBenedetti - 10 - www.gmajormusictheory.org Pathways to Harmony, Chapter 1. The Keyboard and Treble Clef 2.2 Write some low notes •The notes on the spaces of a staff with bass clef starting from the bottom space are: A, C, E and G as in All Cows Eat Grass. •The notes on the lines of a staff with bass clef starting from the bottom line are: G, B, D, F and A as in Good Boys Do Fine Always. 1. IDENTIFY the notes in the song “This Old Man.” PLAY it. 2. WRITE the notes and bass clefs for the song, “Go Tell Aunt Rhodie” Q = quarter note H = half note W = whole note © Gilbert DeBenedetti - 11 - www.gmajormusictheory.org Pathways to Harmony, Chapter 1.
    [Show full text]
  • Day 17 AP Music Handout, Scale Degress.Mus
    Scale Degrees, Chord Quality, & Roman Numeral Analysis There are a total of seven scale degrees in both major and minor scales. Each of these degrees has a name which you are required to memorize tonight. 1 2 3 4 5 6 7 1 & w w w w w 1. tonicw 2.w supertonic 3.w mediant 4. subdominant 5. dominant 6. submediant 7. leading tone 1. tonic A triad can be built upon each scale degree. w w w w & w w w w w w w w 1. tonicw 2.w supertonic 3.w mediant 4. subdominant 5. dominant 6. submediant 7. leading tone 1. tonic The quality and scale degree of the triads is shown by Roman numerals. Captial numerals are used to indicate major triads with lowercase numerals used to show minor triads. Diminished triads are lowercase with a "degree" ( °) symbol following and augmented triads are capital followed by a "plus" ( +) symbol. Roman numerals written for a major key look as follows: w w w w & w w w w w w w w CM: wI (M) iiw (m) wiii (m) IV (M) V (M) vi (m) vii° (dim) I (M) EVERY MAJOR KEY FOLLOWS THE PATTERN ABOVE FOR ITS ROMAN NUMERALS! Because the seventh scale degree in a natural minor scale is a whole step below tonic instead of a half step, the name is changed to subtonic, rather than leading tone. Leading tone ALWAYS indicates a half step below tonic. Notice the change in the qualities and therefore Roman numerals when in the natural minor scale.
    [Show full text]
  • Discover Seventh Chords
    Seventh Chords Stack of Thirds - Begin with a major or natural minor scale (use raised leading tone for chords based on ^5 and ^7) - Build a four note stack of thirds on each note within the given key - Identify the characteristic intervals of each of the seventh chords w w w w w w w w % w w w w w w w Mw/M7 mw/m7 m/m7 M/M7 M/m7 m/m7 d/m7 w w w w w w % w w w w #w w #w mw/m7 d/wm7 Mw/M7 m/m7 M/m7 M/M7 d/d7 Seventh Chord Quality - Five common seventh chord types in diatonic music: * Major: Major Triad - Major 7th (M3 - m3 - M3) * Dominant: Major Triad - minor 7th (M3 - m3 - m3) * Minor: minor triad - minor 7th (m3 - M3 - m3) * Half-Diminished: diminished triad - minor 3rd (m3 - m3 - M3) * Diminished: diminished triad - diminished 7th (m3 - m3 - m3) - In the Major Scale (all major scales!) * Major 7th on scale degrees 1 & 4 * Minor 7th on scale degrees 2, 3, 6 * Dominant 7th on scale degree 5 * Half-Diminished 7th on scale degree 7 - In the Minor Scale (all minor scales!) with a raised leading tone for chords on ^5 and ^7 * Major 7th on scale degrees 3 & 6 * Minor 7th on scale degrees 1 & 4 * Dominant 7th on scale degree 5 * Half-Diminished 7th on scale degree 2 * Diminished 7th on scale degree 7 Using Roman Numerals for Triads - Roman Numeral labels allow us to identify any seventh chord within a given key.
    [Show full text]
  • Chapter 26 Scales a La Mode
    CHAPTER 26 SCALES A LA MODE Musical innovation is full of danger to the State, for when modes of music change, the laws of the State always change with them. PLATO WHAT IS A MODE? A mode is a type of scale. Modes are used in music like salsa, jazz, country, rock, fusion, speed metal, and more. The reason the Chapter image is of musicians jamming is that modes are important to understanding (and using) jazz theory, and helpful if you’re trying to understand improvisation. Certain modes go with certain chords. For more information about modes and their specific uses in jazz, read James Levine’s excellent book, Jazz Theory. On the Web at http://is.gd/iqufof These are also called “church modes” because they were first used in the Catholic Church back in Medieval times (remember good old Guido d’ Arezzo?). The names of the modes were taken from the Greek modes, but other than the names, they have no relation to the Greek modes. The two modes that have been used the most, and the only two most people know, are now called the Major and natural minor scales. Their original names were the Ionian mode (Major), and the Aeolian mode (natural minor). The other modes are: dorian, phrygian, lydian, mixolydian, and locrian. Modes are easy to understand. We’ll map out each mode’s series of whole and half steps and use the key of C so there aren’t any sharps or flats to bother with. THE MODES IONIAN Ionian is used in nearly all Western music, from Acid Rock to Zydeco.
    [Show full text]