The High-Precision Thermometric and Coulometric Assay of Primary Standard 4-Aminopyridine William Charles Hoyle Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

The High-Precision Thermometric and Coulometric Assay of Primary Standard 4-Aminopyridine William Charles Hoyle Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 The high-precision thermometric and coulometric assay of primary standard 4-aminopyridine William Charles Hoyle Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Hoyle, William Charles, "The high-precision thermometric and coulometric assay of primary standard 4-aminopyridine " (1973). Retrospective Theses and Dissertations. 5017. https://lib.dr.iastate.edu/rtd/5017 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majori ty of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the unaerstanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 74-545 HOYLE, William Chaises, 1944- THE HIGH-PRECISION THEEMOMETRIC AND CODLOMETRIC ASSAY OF PRIMARY STANDARD 4-AMINOPYRIDINE. Iowa State University, Ph.D., 1973 Chemistry, analytical University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED. The hîgh-precisîon thermometric and coulometrîc assay of primary standard 4-aminopyridIne by William Charles Hoyle A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Chemistry Major: Analytical Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Signature was redacted for privacy. For the Graduate College Iowa State University AmeS; Iowa 1973 TABLE OF CONTENTS Page QUOTATION vîî CHAPTER I. THE FARADAY AND HIGH-PRECISION COULOMETERS 1 Significance and History 1 The Silver Coulometer 4 Cou 1ometry 10 High-Precision Coulometric Titrations 11 CHAPTER II. PROPERTIES OF 4-AMINOPYRIDINE 17 Synthesis 17 Purification 18 Dissociation Constant 25 Latent Heat of Fusion 25 CHAPTER III. PURITY OF 4-AMINOPYRIDINE AS DETERMINED FROM 30 FREEZING CURVES Freezing Curves and Melting Curves as Criteria of Purity 30 General Description of the Instrument for Obtaining 35 Melting Curves and Freezing Curves Details of Construction 38 Electrical Components 42 Operation of the Instrument to Obtain a Freezing Curve 46 Freezing Curves Obtained on High-Purity 4-AmInopyridine 47 Melting Temperature of Pure 4-Aminopyridine 47 Melting Curve of 4-Aminopyridine and Latent Heat of 48 Fusion of 4-Aminopyridine Using the Instrument for Obtaining Melting Curves and Freezing Curves î i i Specific Heat of Liquid 4-Aniinopyridine Cryoscopic Constant of 4-Aminopyridine Genera] Treatment of Data Obtained from a Freezing Curve Interpretation of Data Obtained from Freezing Curves of 4-Aminopyridine Analyses Made on 4-Aminopyridine Recovered Following Freezing Curve Experiments CHAPTER IV. HIGH-PRECISION COULOMETRIC TITRATION OF 4-AMINOPYRIDINE Titration Cell, Electrodes, and Electrolytes Measurement of Current, Potential, Weight and Time Failure to Anodic Generation of Hydrogen Ion in Sodium Perch 1orate Electrolyte Attempts to Make an Anode 100 Percent Efficient for the Generation of Hydrogen Ion A Hydrazinium Sulfate-Platinum Anode as a Generator of Hydrogen Ion End-point Detection Using the Hydrazinium Sulfate- Platinum Anode for the Titration of a Base Working Potential of the Hydrazine Sulfate-Platinum Anode Combination Hydrazinium Sulfate-Platinum Anode and Cathode as a Generator of Hydrogen Ion Titration of 4-Aminopyridine Using the Hydrazinium Sulfate-Platinum Anode Titration of 4-Aminopyridine Using Perchloric Acid Standardized Coulometrically Titration of Tris(hydroxymethyl)aminomethane Using the Hydrazinium Sulfate-Platinum Anode îv Page CHAPTER V. CALCULATION OF A VALUE FOR THE FARADAY 93 Molecular Weight of 4-Aminopyridine 93 Possible Effects on Molecular Weight of Chemical 95 Processing Calculation Using Data Obtained in the Various 96 Coulometric Titrations CHAPTER VI. SUMMARY 105 ACKNOWLEDGEMENTS 111 LITERATURE CITED 112 APPENDIX 119 V LIST OF TABLES Page Table 1. High-precision coulometric titrations 15 Table 2. Dissociation constant of 4-aminopyridine in 22 solutions of sodium perchlorate of various concentrations. 24.4°C Table 3. Dissociation constant of 4-amInopyridine at 22 various temperatures in 1.00 M sodium perchlorate Table 4. Depression of the freezing point, AT^, of 4- 65 aminopyridine as a function of time of contact in the molten state with the gold of the crucible Table 5. Coulometric titration of 4-aminopyridine with 98 acid generated at the hydrazinium su 1 fate- platinum anode. Series 1 Table 6. Coulometric titration of 4-aminopyridine with 99 perchloric acid (coulometric end-point) and standardization of perchloric acid coulo- metrically. Series 2 Table 7- Coulometric titration of 4-aminopyridine with 101 perchloric acid (coulometric end-point) and standardization of perchloric acid. Series 3 Table 8. Summary of recent values for the Faraday 104 vî LIST OF FIGURES Page Figure 1. Sublimation apparatus. 21 Figure 2. Calorimeter used in the determination of the 24 latent heat of fusion of 4-aminopyridine. Figure 3. Instrument for obtaining melting curves and 37 freezing curves. Figure 4. Stages in the assembly of the instrument for 4l obtaining melting curves and freezing curves. Figure 5. Components of the electrical measurement 44 system. Figure 6. Freezing curves. 56 Figure 7. Shield tube. 72 Figure 8. External, "drip" electrode. 74 vî î QUOTATION "Mosques fall, palaces crumble into dust but knowledge remains." Ulug Beg, the great Uzbet astronomer of the fifteenth century. 1 CHAPTER I. THE FARADAY AND HIGH-PRECISION COULOMETERS Significance and History The laws governing the relationship between electric current, time and the amount of chemical change effected by the electric current were discovered by Michael Faraday in 1833. Faraday expressed the relations In a series of statements, introducing at the same time a new terminology. 21 The principal of these statements are: 783. The chemical power of a current of electricity is in direct proportion to the absolute quantity of electricity which passes. 824. The numbers representing the proportions in which they (anions, cations) are evolved I propose to call electro­ chemical equivalents. 835. Electro-chemical equivalents are always consistent; I.e., the same number which represents the equivalent of substance A when it is separated from substance B, will also represent A when separating from a third substance C. 836. Electro-chemical equivalents coincide, and are the same, with ordinary chemical equivalents. Curiously, the text books for over a hundred years continued this non- symbolic statement of the laws and it was only about 1950 that the laws appeared in a textbook in the algebraic formulation ^ 1 Mol. Wt. 2 G being the weight of chemical undergoing change, in grams; I being the current, in amperes; t being the time, in seconds; Mol. wt./n being the equivalent weight, that is, the molecular weight divided by the number of electrons involved in the change (change in valence at the electrode). The proportionality factor, F, is appropriately called the "faraday." The work described in the present thesis deals with measurements leading to a numerical value of this constant. It is common in physical science that the evaluation of a proportion­ ality constant is tied up intimately with the establishment of units of measurement of the
Recommended publications
  • A Study of the Electrodynamometer
    A°)tud^Of The EkclrodvnamomeUr. A STUDY OF THE ELECTROD YN AMOM ETER BY ELEANOR FRANCES SEILER B. A. University of Denver, 1913 M.A. University of Denver, 1914 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS IN PHYSICS IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1916 Digitized by the Internet Archive in 2013 http://archive.org/details/studyofelectrodyOOseil UNIVERSITY OF ILLINOIS co THE GRADUATE SCHOOL Oo CM . Jnnfl J.. .191 6 1 HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY BLHABQR JKANQBS fiF!TT,Blft ENTITLED A....S.T.UDY.....QE......THE....ELE.CT.RanY.NAIiOIAE.TER.. BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF MASjES.R.....QE....S.C.IEif.C.S In Charge of Thesis Head of Department Recommendation concurred in :* Committee on Final Examination* "Required for doctor's degree but not for master's. 343113 UIUC V J 5 TABLE OF CONTENTS I INTRODUCTION II DESCRIPTION 0? APPARATUS I - General I - Specific 5 - The Spring g - Best Shape for Movable Coil 7 - Other Types of Electrodynamoraeters 12 - Rowland Elec trodynamome ter 12 - Absolute Electrodynarnometer 14 - Lord Kelvin Current Balance 1 III THEORY OF THE ELECTRODYNAMOMETER 1 - General J5 - When Used as an Ammeter 16 - When Usee} as a Wattmeter with Direct Current 19 - When U3ed as a Wattmeter with Alternating Current _ gj - When Used as a Voltmeter 23 - Use 13 a Method for Measuring Hysteresis . 24 IV PRELIMINARY WORK 04 - Calibrations 24 - Mechanical Difficulties 37 V MANIPULATION 38 VI DISCUSSION OF RESULTS 48 - Sources of Error 49 : ! I INTRODUCTION In thl3 investigation the primary object was to determine the wording conditions under which the beet results may be expected when the classic Siemens type of elec trodynaraometer is used as a watt- meter.
    [Show full text]
  • The Silver Voltameter—Part Iv
    .. 1 THE SILVER VOLTAMETER—PART IV THIRD SERIES OF QUANTITATIVE EXPERIMENTS AND SPECIAL INVESTIGATIONS By E. B. Rosa, G. W. Vinal, and A. S. McDanlel CONTENTS Page I. Introduction 476 II. DETERMINATION OP VOLTAGE OF THE WESTON NoRMAIv Cei.I< 477 A. Basis of reference for current and voltage measurements 478 1. Weston normal cells 478 2. Resistances 478 B. Meaning of the term " International volts" 478 C. Voltameters and materials 479 D. Tables of results 481 1. Corrections for acid present 482 2. Resultsof the porous pot and Smith's new-form voltameters. 485 3. Results of other forms of voltameters 492 4. Miscellaneous results 493 III. Speciai, Investigations 497 A. On the agreement of various forms 497 1 Comparative results 497 2 Possible explanations of observed differences 498 B. On the accuracy of the measurements. 501 C. Reliability of iodeosine as an indicator 502 D. Effect of acid 503 1 Effect on impure solutions 503 2 Nature of the action of acid 505 E. Influence of septa other than filter paper 508 1. Silk 508 2 Poroiis pots 510 3. Electrostenolysis 514 F. Purity of the silver deposit 516 1. Constancy of any error due to inclusions 516 2. Previous determinations of inclusions 517 3. Experiments on inclusions 519 (a) Detection of silver nitrate 519 (b) Estimation of included water and volatile material 52 (c) Estimation of organic material 522 (d) Titration of silver deposits 523 (e) Conclusion 523 475 476 Bulletin of the Bureau of Standards {Voi.io III. SpeciaIv Investigations—Continued. Page, G. Reversibility of the silver voltameter 523 H.
    [Show full text]
  • Recommendation for Use Hofmann Voltameter for Educational Purposes
    Glaswarenfabrik Tel. +49 (0) 9779 808 0 Karl Hecht Fax +49 (0) 9779 808 88 GmbH & Co KG Email: [email protected] Stettener Straße 22-24 Internet: www.assistent.eu 97647 Sondheim/Rhön VAT No. DE132198535 Germany Recommendation for use Hofmann voltameter for educational purposes Product number: 44285010 and 44286010 A water decomposition apparatus is used for the demonstration of electrolysis, i. e. for the decomposition of water into hydrogen and oxygen by means of electric current. The apparatus is consisting of a glass tube with pear-shaped funnel and two lateral measuring tubes 60 ml : 0.2 ml with glass stopcocks. There are two versions available: Product number 44285010 Spare parts Glass part No. 44287010 Metal tripod 2 Clamps No. 40870010 2 Platinum electrodes No. 44288010 Product number 44286010 Spare parts Glass part No. 44287010 Metal tripod 2 Clamps No. 40870010 2 Carbon electrodes No. 44289010 Experimental setup and test procedure Attach the voltameter with two clamps to the support. Insert the carbon or platinum electrodes into the measuring tubes. The stoppers have to be firmly in position in order to avoid leakage of liquid. For safety reasons place the apparatus into a glass tray. Pour in the electrolyte through the funnel while stopcocks are both open to let the air escape. Close the stopcocks as soon as the electrolyte has reached the level of stopcock bores. Connect the electrodes and the pole terminals at the tripod by means of two short connecting cables. Connect a DC voltage source and supply with electrical energy. The required direct voltage is about 10 V to 20 V at max.
    [Show full text]
  • INDIAN INSTITUTE of TECHNOLOGY KANPUR Department of Civil Engineering Environmental Engineering and Management Programme Kanpur-208016, INDIA
    INDIAN INSTITUTE OF TECHNOLOGY KANPUR Department of Civil Engineering Environmental Engineering and Management Programme Kanpur-208016, INDIA Dr. Vinod Tare Professor Tel : +91 512 259 7792 (O), Fax : +91 512 259 7395 (O); E-mail : [email protected] Enquiry Letter No. CE/EEM/2013/NC/VA/10 Date: Aug 22, 2013 Last Date: September 9, 2013 Letter Requesting Quotation for Voltameter Quotation is sought for a Voltameter with minimum specifications given in the list below. The quotation has to be submitted in two separately sealed envelopes, one containing the technical specifications and marked as “Technical Quote” on the envelope and the other containing the price and marked as the “Price Quote” on the envelope. Please apply the discounts admissible to the educational institutes such as IIT Kanpur and also note that IIT Kanpur is exempted from paying duties for imported items. Minimum Specification Required: • Voltameter: determination of transition metals like copper, tin ,vanadium , mercury and other metals based on Voltammetry principle with wide-band low-noise amplifier, potentiostat and galvanostat. Voltage Range: ± 5 V, Output Range: ± 12 V, Current Range: ± 80 mA with measurement resolution of 10nA to 10mA, sweep rate of 1mV/s to 3V/s and/or 35V/s • Electrode System: multimode SMDE, HMDE and DME, choice of multiple drop sizes, should minimize mercury requirement. Rotating disc electrode facility and various solid-state electrodes like Gold, Silver, Glassy Carbon, Platinum and Graphite. • Instrument Control and Analysis: Computer and Software must be provided for fully computer controlled operation, data acquisition and quantitative analysis. Software must be able to analyse by following voltametric techniques: Direct Current (DC), Sampled DC, Differential Pulse (DP), Square-wave (SQW), Alternating Current (AC) 1st and 2nd harmonic, phase selective, Cyclic Voltammetry (CV), Potentometric Stripping Analysis (PSA), Normal Pulse (NP) and Constant Current Potentiometric Stripping Analysis (CCPSA).
    [Show full text]
  • The Inclusion of Electrolyte by the Deposit in the Silver Voltameter
    ELECTROLYTE INCLUSION IN SILVER VOLTAMETER. 7 at the changes for the better that have taken place within my life time. Chemical research is in a healthy condition in our country and the signs of future growth are most promising. May I add in conclusion that, though circumstances have kept me out of the field of chemical work for some years past, I now see my way clear to entering that field again, and I can think of nothing that could give me greater pleasure than the prospect of taking up the work in chemistry that I had to abandon thirteen years ago. It is a little late for me to begin again, but I believe that I shall yet be able to experience some of the joys that came to me so abundantly in the past while struggling with my old, inanimate labora- tory friends. The transformation from university president to chemist is complete, and I rejoice. JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD. [CONTRIBUTIONFROM THE WOLCOTTGIBBS MEMORIALLABORATORY OF HARVARD UNIVERSITY.] THE INCLUSION OF ELECTROLYTE BY THE DEPOSIT IN THE SILVER VOLTAMETER. BY T. W. RICHARDSAND F. 0. ANDEREGO. Received October 31, 1914. I. Introduction. The silver voltameter (or better, coulometer) is an instrument of such great importance in fhe exact measurement of the electrical quantity that its study by many investigators is highly desirable; therefore, the wide- spread attention which it has received during recent years is gratifying. Since the classical researches of Lord Rayleigh and Mrs. Sidgwick' and F. and W. Kohlrausch,2 carried out between 1880 and 1883, the sub- ject has been studied in may places and from many points of view.
    [Show full text]
  • Simultaneous Coulcmetric Analtsis Dissertation
    SIMULTANEOUS COULCMETRIC ANALTSIS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By RICHARD DONALD McIVER, B«A. The Ohio State University 195k Approved by Adviser ACKNGWLED GMENTS I wish to express ny sincere appreciation to Dr® William MacNevin, a most competent adviser and friend, to the Proctor and Gamble Comparer and the Al­ lied Chemical Company both of which awarded me fellow­ ships, and to u$r wife who was both an inspiration and help during ray graduate studies® I also wish to thank Dr. Bertsil Baker for his assistance and suggestions and to the Department of Chemistry of The Ohio State University in which I served two years as a Graduate Assistant. i A. 4 8 2 7 2 TABLE OF CONTENTS page THE PROBLEM.............................................. 1 INI R QDUCTI O N ............................................ 2 The Faraday and Electrolysis.......................... 2 Instruments for Measuring the Number of Coulombs * . • • 2 Electrolysis at Constant Current ............... 3 Electrolysis at Controlled Potential ......... .... 5 i Devices for Controlling Electrode Potential ....... 6 Coulometric A n a l y s i s ................................. 7 Constant Current Coulometry ...................... * . 8 Controlled Electrode Potential Coulometry.............. 10 Coulometry Applied to Indirect Analysis ......... 11 Indirect Analysis and Simultaneous Equations........... 12 Propagation of Errors in Simultaneous Equations ......... 1U Applications of Coulometry to Indirect Analysis ..... 18 EXPERIMENTAL........................................... 20 General Apparatus and Materials ........ 20 Apparatus for the Automatic Control of Electrode Potential •• ........................... 20 Balance and Weights ......... ....... ... 2h Reagents ......... 2U Saturated Calomel Electrode ............. 2$ Barometer......... 25 Hydrogen-Ctxygen Coulometer...................... 25 ii Table of Contents (continued) Page Investigations with the Rydrogen-Qxygen Coulometer .
    [Show full text]
  • Electrochemical Methods of Analysis. Basic Elec
    JS CH3403 Interdisciplinary Chemistry Module 1. 2013/2014. Analytical Chemistry: Electrochemical methods of analysis. Basic Electroanalytical Chemistry. Potentiometric,Voltammetric and Coulometric measurement techniques. Professor Mike Lyons School of Chemistry TCD Room 3.2 Main Chemistry Building [email protected] Electro-analytical Chemistry. Electroanalytical techniques are concerned with the interplay between electricity & chemistry, namely the Electro-analytical chemists at work ! measurement of electrical quantities Beer sampling. such as current, potential or charge Sao Paulo Brazil 2004. and their relationship to chemical parameters such as concentration. The use of electrical measurements for analytical purposes has found large range of applications including environmental monitoring, industrial quality control & biomedical analysis. EU-LA Project MEDIS : Materials Engineering For the design of Intelligent Sensors. Outline of Lectures • Introduction to electroanalytical chemistry: basic ideas • Potentiometric methods of analysis • Amperometric methods of analysis • Coulombic methods of analysis J. Wang, Analytical Electrochemistry, 3rd edition. Wiley, 2006 R.G. Compton, C.E. Banks, Understanding Voltammetry, 2nd edition, Imperial College Press,2011. C.M.A. Brett, A.M.Oliveira Brett, Electrochemistry: Principles, methods and applications, Oxford Science Publications, 2000. Why Electroanalytical Chemistry ? Electroanalytical methods have certain advantages over other analytical methods. Electrochemical analysis allows for the determination
    [Show full text]
  • Inclusions in the Silver Voltameter Deposits
    .. INCLUSIONS IN THE SILVER VOLTAMETER DEPOSITS By G. W. Vinal and William M. Bovard CONTENTS Page 1. Introduction 147 2 Apparatus employed 149 The electric furnace 149 For heating by the flame method 150 The silver voltameters 151 3. The alloying of silver and platinum 152 4. Effect of alloying on the amount of silver deposited 157 5. Estimation of inclusions in deposits from pure electrolytes 159 6. The value of the Faraday 162 7 Additional experiments on the deposits 163 Successive heatings of the deposits 163 Effect of heating deposits to an abnormally high temperature 163 Effect of prolonged heating of the deposit 164 Heating the deposit after removal from cathode 164 The inclusions between the crystals and the surface of the cup 165 Inclusions in silver deposits from less pure electrolyte 167 The volume effect 167 8. Experiments on the anode liquid 169 9. Summary 171 1. INTRODUCTION In a previous paper ^ in this Bulletin a brief discussion of the question of inclusions of foreign materials in the silver voltameter deposits was given, together with a short resume of other papers on this subject and a few experiments which had been made at the Bureau of Standards. It was pointed out that in so far as the international ampere is concerned the value assigned to the electrochemical equivalent of silver by the London conference has been generally accepted by the various national laboratories as applying to the silver as we find it deposited in the voltameter without reference to any inclusions that it may contain. This is 1 The Silver Voltameter, Part IV, by Rosa, Vinal, and McDaniel.
    [Show full text]
  • Detecting Arsenic in Groundwater Using Portable Digital Voltameter
    DETECTING ARSENIC IN GROUNDWATER USING PORTABLE DIGITAL VOLTAMETER Magda Wajrak Centre for Ecosystem Management, Edith Cowan University, Perth [email protected] Arsenic Chemistry Bangladesh Story Anodic Stripping Voltammetry (ASV) Arsenic in its elemental state is a steel-grey, brittle, Decision made by the UN over 20 years ago to switch Voltammetry offers an alternative technique for arsenic crystalline semi-metallic solid (Figure 1). It belongs to from bacteria-laden surface water to ground water has detection. ASV measures very small current (micro Amps) Group V of the periodic table and exists in four valency now created the largest case of mass poisoning in the produced when a metal is converted to its most stable ion states, the most stable are; As3+ (arsenite) and As5+ world. The source of contamination is the pyritic after being concentrated onto an electrode. (arsenate). sedimentary rock laid down over the centuries by rivers that run down from the Himalayas, which has released high concentrations of arsenic into groundwater, that people are now drinking (Figure 4) [1]. Solution contains Reduction (deposition) Oxidation (stripping) Figure 1 Arsenic in its elemental state 3+ - 3+ - different ions As + 3e -> As(s) As(s) -> As + 3e Arsenic is widely distributed in earth’s crust (average arsenic levels in soil are 1-5ppm). It is found in many minerals, most commonly in arsenopyrites (FeAsS). Portable Digital Voltameter (PDV6000) Arsenic can be released into the environment from several sources. Natural processes include erupting Figure 4 Source of arsenic contamination in the Development of a less expensive, accurate, reliable and volcanoes or erosion of mineral deposits that contain groundwater in Bangladesh infield method for arsenic detection was done using arsenic, such as As2S2, As2S3, As4S3, As4S4, FeAsS.
    [Show full text]
  • A Micro Computer Controlled High Speed High Resolution Cyclic
    A micro computer controlled high speed high resolution cyclic voltammeter by Russell Allen Bonsteel A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Montana State University © Copyright by Russell Allen Bonsteel (1986) Abstract: In cyclic voltammetry, the technique of applying known voltages to an electrochemical cell and recordings the response waveform on an x-y recorder is a area of significant growth. In its infancy, the voltages applied to the cell were delivered by manual control through a network of vacuum tubes, resistors, and capacitors. The waveform response curves were both crude in accuracy and precision. The next generation of electronics brought about the operational amplifier. While this increased the accuracy of the waveforms, reproducibility was still lagging because of the manual timing application of the input voltages, especially for multiple run sequences. It is proposed that by using state of the art integrated circuits and computer control that the manual application of the voltages can be eliminated and thereby increase both the precision and the reproducibility of the voltammetric waveform. With the implementation of the integrated circuits and computer control new schematic designs had to be employed. Solid state analog switches were used to route precise currents or voltages to carefully matched operational amplifiers. Timing routines were generated to maximize the amount of data to be collected and stored in computer memory. A sophisticated language called FORTH was ascertained to be the best vehicle to communicate between the computer and the cyclic voltammetric interface. The results were excellent on the implementation of the voltages to the electrodes in the chemical cell.
    [Show full text]
  • Circular of the Bureau of Standards No. 531: Extension and Dissemination
    N. W. Bld^ s^o liig NBS CIRCULAR SJ/ Reference book not to b~ rafter) ffo-i fta L||,fgjy_ Extension and Dissemination of the Electricai and Magnetic Units by the Nationai Bureau of Standards UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BOREAO OF STANOANDS Related Publications of the National Bureau of Standards Announcement of Changes in Electrical and Photometric Units A report of new international agreements, adopted January 1, 1948, on units of electricity and light. International electrical units were in use for over 50 years. Since the latest previous adjustment in 1912, the increasingly close connection between various physical constants has made desirable the use of electrical units derived from the fundamental mechanical units of length, mass, and time. The system of photometric measurements is admittedly arbitrary because of the psychological factors involved. However, it represents a worldwide agreement on practical units not greatly different from those superseded. National Bureau of Standards Circular 459, 7 pages, 5 cents. Precision Resistors and their Measurement A systematic, practical discussion of the characteristics of precision resistance apparatus and of the National Bureau of Standards’ methods for measuring resistance, based largely on substitution procedures providing high accuracy. The circular contains chapters on resistance materials and construction methods, methods of com¬ parison of resistors, special apparatus for precision measurement, calibration of precision bridges, and resistivity of solid conductors. National Bureau of Standards Circular 470, 32 pages, 20 cents. Establishment and Maintenance of the Electrical Units An account of the history of the international system of electrical units, trends of development mak¬ ing them obsolete, and methods used in the measurements forming the basis for the new absolute units.
    [Show full text]
  • A Theoretical and Experimental Investigation of Proton Transport Between the Electrolyte in a Reversible Fuel Cell and a Carbon- Based Hydrogen Storage
    A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF PROTON TRANSPORT BETWEEN THE ELECTROLYTE IN A REVERSIBLE FUEL CELL AND A CARBON- BASED HYDROGEN STORAGE A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy By Shahin Heidari College of Science, Engineering and Health RMIT University Melbourne, Victoria, Australia March 2017 1 DECLARATION I, Shahin Heidari, hereby submit the thesis entitled “a theoretical and experimental investigation of proton transport between the electrolyte in a reversible fuel cell and a carbon- based hydrogen storage” for the degree of Doctor of Philosophy, and certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award, and that the content of the thesis is the result of work that has been carried out since the official commencement date of the approved research program. Shahin Heidari March 2017 2 ACKNOWLEDGMENTS I would like to acknowledge my senior supervisor, Professor John Andrews, for sharing his ideas and knowledge and supporting me in every step of my PhD journey. I would like to thank Professor Aliakbar Akbarzadeh and Doctor Abhijit date for giving me the opportunity of teaching and tutoring. I would like to thank all my friends and colleagues at RMIT University SAMME School and specifically Energy CARE group for their support. Many thanks also go to our hydrogen group at RMIT, specifically Dr. Amandeep Oberoi and Mr. Saeed Seif Mohammadi for sharing with me their knowledge in this field of study.
    [Show full text]