Toric Topology

Total Page:16

File Type:pdf, Size:1020Kb

Toric Topology Mathematical Surveys and Monographs Volume 204 Toric Topology Victor M. Buchstaber Taras E. Panov American Mathematical Society Toric Topology http://dx.doi.org/10.1090/surv/204 Mathematical Surveys and Monographs Volume 204 Toric Topology Victor M. Buchstaber Taras E. Panov American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Robert Guralnick Constantin Teleman Michael A. Singer, Chair MichaelI.Weinstein Benjamin Sudakov 2010 Mathematics Subject Classification. Primary 13F55, 14M25, 32Q55, 52B05, 53D12, 55N22, 55N91, 55Q15 57R85, 57R91. For additional information and updates on this book, visit www.ams.org/bookpages/surv-204 Library of Congress Cataloging-in-Publication Data Buchstaber,V.M. Toric topology / Victor M. Buchstaber, Taras E. Panov. pages cm. – (Mathematical surveys and monographs ; volume 204) Includes bibliographical references and index. ISBN 978-1-4704-2214-1 (alk. paper) 1. Toric varieties. 2. Algebraic varieties. 3. Algebraic topology. 4. Geometry, Algebraic. I. Panov, Taras E., 1975– II. Title QA613.2.B82 2015 516.35–dc23 2015006771 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2015 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 201918171615 Contents Introduction ix Chapter guide x Acknowledgements xiii Chapter 1. Geometry and Combinatorics of Polytopes 1 1.1. Convex polytopes 1 1.2. Gale duality and Gale diagrams 9 1.3. Face vectors and Dehn–Sommerville relations 14 1.4. Characterising the face vectors of polytopes 19 Polytopes: Additional Topics 25 1.5. Nestohedra and graph-associahedra 25 1.6. Flagtopes and truncated cubes 38 1.7. Differential algebra of combinatorial polytopes 44 1.8. Families of polytopes and differential equations 48 Chapter 2. Combinatorial Structures 55 2.1. Polyhedral fans 56 2.2. Simplicial complexes 59 2.3. Barycentric subdivision and flag complexes 64 2.4. Alexander duality 66 2.5. Classes of triangulated spheres 69 2.6. Triangulated manifolds 75 2.7. Stellar subdivisions and bistellar moves 78 2.8. Simplicial posets and simplicial cell complexes 81 2.9. Cubical complexes 83 Chapter 3. Combinatorial Algebra of Face Rings 91 3.1. Face rings of simplicial complexes 92 3.2. Tor-algebras and Betti numbers 97 3.3. Cohen–Macaulay complexes 104 3.4. Gorenstein complexes and Dehn–Sommerville relations 111 3.5. Face rings of simplicial posets 114 Face Rings: Additional Topics 121 3.6. Cohen–Macaulay simplicial posets 121 3.7. Gorenstein simplicial posets 125 3.8. Generalised Dehn–Sommerville relations 127 Chapter 4. Moment-Angle Complexes 129 4.1. Basic definitions 131 4.2. Polyhedral products 135 v vi CONTENTS 4.3. Homotopical properties 139 4.4. Cell decomposition 143 4.5. Cohomology ring 144 4.6. Bigraded Betti numbers 150 4.7. Coordinate subspace arrangements 157 Moment-Angle Complexes: Additional Topics 162 4.8. Free and almost free torus actions on moment-angle complexes 162 4.9. Massey products in the cohomology of moment-angle complexes 168 4.10. Moment-angle complexes from simplicial posets 171 Chapter 5. Toric Varieties and Manifolds 179 5.1. Classical construction from rational fans 179 5.2. Projective toric varieties and polytopes 183 5.3. Cohomology of toric manifolds 185 5.4. Algebraic quotient construction 188 5.5. Hamiltonian actions and symplectic reduction 195 Chapter 6. Geometric Structures on Moment-Angle Manifolds 201 6.1. Intersections of quadrics 201 6.2. Moment-angle manifolds from polytopes 205 6.3. Symplectic reduction and moment maps revisited 209 6.4. Complex structures on intersections of quadrics 212 6.5. Moment-angle manifolds from simplicial fans 215 6.6. Complex structures on moment-angle manifolds 219 6.7. Holomorphic principal bundles and Dolbeault cohomology 224 6.8. Hamiltonian-minimal Lagrangian submanifolds 231 Chapter 7. Half-Dimensional Torus Actions 239 7.1. Locally standard actions and manifolds with corners 240 7.2. Toric manifolds and their quotients 242 7.3. Quasitoric manifolds 243 7.4. Locally standard T -manifolds and torus manifolds 257 7.5. Topological toric manifolds 278 7.6. Relationship between different classes of T -manifolds 282 7.7. Bounded flag manifolds 284 7.8. Bott towers 287 7.9. Weight graphs 302 Chapter 8. Homotopy Theory of Polyhedral Products 313 8.1. Rational homotopy theory of polyhedral products 314 8.2. Wedges of spheres and connected sums of sphere products 321 8.3. Stable decompositions of polyhedral products 326 8.4. Loop spaces, Whitehead and Samelson products 331 8.5. The case of flag complexes 340 Chapter 9. Torus Actions and Complex Cobordism 347 9.1. Toric and quasitoric representatives in complex bordism classes 347 9.2. The universal toric genus 357 9.3. Equivariant genera, rigidity and fibre multiplicativity 364 9.4. Isolated fixed points: localisation formulae 367 CONTENTS vii 9.5. Quasitoric manifolds and genera 376 9.6. Genera for homogeneous spaces of compact Lie groups 380 9.7. Rigid genera and functional equations 385 Appendix A. Commutative and Homological Algebra 395 A.1. Algebras and modules 395 A.2. Homological theory of graded rings and modules 398 A.3. Regular sequences and Cohen–Macaulay algebras 405 A.4. Formality and Massey products 409 Appendix B. Algebraic Topology 413 B.1. Homotopy and homology 413 B.2. Elements of rational homotopy theory 424 B.3. Eilenberg–Moore spectral sequences 426 B.4. Group actions and equivariant topology 428 B.5. Stably complex structures 433 B.6. Weights and signs of torus actions 434 Appendix C. Categorical Constructions 439 C.1. Diagrams and model categories 439 C.2. Algebraic model categories 444 C.3. Homotopy limits and colimits 450 Appendix D. Bordism and Cobordism 453 D.1. Bordism of manifolds 453 D.2. Thom spaces and cobordism functors 454 D.3. Oriented and complex bordism 457 D.4. Characteristic classes and numbers 463 D.5. Structure results 467 D.6. Ring generators 468 Appendix E. Formal Group Laws and Hirzebruch Genera 473 E.1. Elements of the theory of formal group laws 473 E.2. Formal group law of geometric cobordisms 477 E.3. Hirzebruch genera (complex case) 479 E.4. Hirzebruch genera (oriented case) 486 E.5. Krichever genus 488 Bibliography 495 Index 511 Introduction Traditionally, the study of torus actions on topological spaces has been consid- ered as a classical field of algebraic topology. Specific problems connected with torus actions arise in different areas of mathematics and mathematical physics, which re- sults in permanent interest in the theory, new applications and penetration of new ideas into topology. Since the 1970s, algebraic and symplectic viewpoints on torus actions have enriched the subject with new combinatorial ideas and methods, largely based on the convex-geometric concept of polytopes. The study of algebraic torus actions on algebraic varieties has quickly devel- oped into a highly successful branch of algebraic geometry, known as toric geometry. It gives a bijection between, on the one hand, toric varieties, which are complex algebraic varieties equipped with an action of an algebraic torus with a dense or- bit, and on the other hand, fans, which are combinatorial objects. The fan allows one to completely translate various algebraic-geometric notions into combinatorics. Projective toric varieties correspond to fans which arise from convex polytopes. A valuable aspect of this theory is that it provides many explicit examples of alge- braic varieties, leading to applications in deep subjects such as singularity theory and mirror symmetry. In symplectic geometry, since the early 1980s there has been much activity in the field of Hamiltonian group actions on symplectic manifolds. Such an action defines the moment map from the manifold to a Euclidean space (more precisely, the dual Lie algebra of the torus) whose image is a convex polytope. If the torus has half the dimension of the manifold, the image of the moment map determines the manifold up to equivariant symplectomorphism. The class of polytopes which arise as the images of moment maps can be described explicitly, together with an effective procedure for recovering a symplectic manifold from such a polytope. In symplectic geometry, as in algebraic geometry, one translates various geometric constructions into the language of convex polytopes and combinatorics. There is a tight relationship between the algebraic and the symplectic pictures: a projective embedding of a toric manifold determines a symplectic form and a moment map. The image of the moment map is a convex polytope that is dual to the fan. In both the smooth algebraic-geometric and the symplectic situations, the compact torus action is locally isomorphic to the standard action of (S1)n on Cn by rotation of the coordinates.
Recommended publications
  • The Motivic Fundamental Group of the Punctured Projective Line
    THE MOTIVIC FUNDAMENTAL GROUP OF THE PUNCTURED PROJECTIVE LINE BERTRAND J. GUILLOU Abstract. We describe a construction of an object associated to the fundamental group of P1 −{0, 1, ∞} in the Bloch-Kriz category of mixed Tate motives. This description involves Massey products of Steinberg symbols in the motivic cohomology of the ground field. Contents 1. Introduction 2 2. Motivic Cohomology 4 2.1. The conjectural picture 4 2.2. Bloch’s cycle complex 6 2.3. Friedlander-Suslin-Voevodsky variant 8 2.4. Cocycles for functions 11 3. Mixed Tate Motives 13 3.1. Mixed Tate categories 13 3.2. The approach of Bloch-Kriz 14 3.3. The homotopy category of cell modules 17 3.4. The approach of Kriz-May 19 3.5. Minimal modules 20 4. The motivic fundamental group 21 4.1. The n = 2 case 21 arXiv:0903.1705v1 [math.AG] 10 Mar 2009 4.2. Massey products 23 4.3. The n = 3 case 24 4.4. The general case 28 4.5. Trimming the fat 31 4.6. Vanishing of Massey Products 33 4.7. Bloch-Totaro cycles 35 4.8. 3-fold and 4-fold Massey products 35 References 36 Date: October 15, 2018. 1 2 BERTRAND J. GUILLOU 1. Introduction The importance of the algebraic fundamental group of P1 − {0, 1, ∞} has been known for some time: “[A. Grothendieck] m’a aussi dit, avec force, que le compl´et´e 1 profiniπ ˆ1 du groupe fondamental de X := P (C)−{0, 1, ∞}, avec son action de Gal(Q/Q) est un objet remarquable, et qu’il faudrait l’´etudier.” -[Del] Indeed, Belyi’s theorem implies that the canonical action of Gal(Q/Q) is faithful.
    [Show full text]
  • Samuel Eilenberg Assistant Professorships
    Faculty of Mathematics, Informatics and Mechanics Dean, Professor Paweł Strzelecki Samuel Eilenberg Assistant Professorships Four academic positions in the group of researchers and lecturers are vailable at the Faculty of Mathematics, Informatics and Mechanics Pursuant to the Law on Higher Education and Science, the Univeristy of Warsaw invites the applications for four positions of Samuel Eilenberg Assistant Professorships. Samuel Eilenberg (1913-1998) obtained his PhD degree in Mathematics at the University of Warsaw in 1936 under the supervision of Kazimierz Kuratowski and Karol Borsuk. He spent most of his career in the USA as a professor at Columbia Univeristy. He exerted a critical influence on contemporary mathematics and theoretical computer science; he was a co- founder of modern topology, category theory, homological algebra, and automata theory. His scientific development epitomizes openness to new ideas and readiness to face demanding intellectual challenges. Terms of employment: starting date October 1, 2020; full time job, competitive salary, fixed term employment contract for 2 or 4 years (to be decided with successful applicants). The candidates will concentrate on intensive research and will have reduced teaching duties (120 teaching hours per academic year). Requirements. Successful candidates for Samuel Eilenberg Professorships should have: 1. a PhD degree in mathematics, computer science or related fields obtained in the past 5 years; 2. significant papers in mathematics or computer science, published in refereed, globally recognized journals or confer- ences; 3. teaching experience and willingness to undertake organizational activities related to teaching; 4. significant international experience (internships or post-doctoral fellowships, projects etc.). Candidates obtain extra points for: • research fellowships outside Poland within the last two years; • high pace of scientific development that is confirmed by high quality papers; a clear concept of maintaining this development is required.
    [Show full text]
  • Poincar\'E Duality for Spaces with Isolated Singularities
    POINCARÉ DUALITY FOR SPACES WITH ISOLATED SINGULARITIES MATHIEU KLIMCZAK Abstract. In this paper we assign, under reasonable hypothesis, to each pseudomanifold with isolated singularities a rational Poincaré duality space. These spaces are constructed with the formalism of intersection spaces defined by Markus Banagl and are indeed related to them in the even dimensional case. 1. Introduction We are concerned with rational Poincaré duality for singular spaces. There is at least two ways to restore it in this context : • As a self-dual sheaf. This is for instance the case with rational intersection homology. • As a spatialization. That is, given a singular space X, trying to associate to it a new topological space XDP that satisfies Poincaré duality. This strategy is at the origin of the concept of intersection spaces. Let us briefly recall this two approaches. While seeking for a theory of characteristic numbers for complex analytic vari- eties and other singular spaces, Mark Goresky and Robert MacPherson discovered (and then defined in [9] for PL pseudomanifolds and in [8] for topological pseudo- p manifolds) a family of groups IH∗ (X) called intersection homology groups of X. These groups depend on a multi-index p called a perversity. Intersection homology is able to restore Poincaré duality on topological stratified pseudomanifolds. If X is a compact oriented pseudomanifold of dimension n and p, q are two complementary perversities, over Q we have an isomorphism p ∼ n−r IHr (X) = IHq (X), n−r q With IHq (X) := hom(IHn−r(X), Q). Intersection spaces were defined by Markus Banagl in [2] as an attempt to spa- tialize Poincaré duality for singular spaces.
    [Show full text]
  • Homotopy Properties of Thom Complexes (English Translation with the Author’S Comments) S.P.Novikov1
    Homotopy Properties of Thom Complexes (English translation with the author’s comments) S.P.Novikov1 Contents Introduction 2 1. Thom Spaces 3 1.1. G-framed submanifolds. Classes of L-equivalent submanifolds 3 1.2. Thom spaces. The classifying properties of Thom spaces 4 1.3. The cohomologies of Thom spaces modulo p for p > 2 6 1.4. Cohomologies of Thom spaces modulo 2 8 1.5. Diagonal Homomorphisms 11 2. Inner Homology Rings 13 2.1. Modules with One Generator 13 2.2. Modules over the Steenrod Algebra. The Case of a Prime p > 2 16 2.3. Modules over the Steenrod Algebra. The Case of p = 2 17 1The author’s comments: As it is well-known, calculation of the multiplicative structure of the orientable cobordism ring modulo 2-torsion was announced in the works of J.Milnor (see [18]) and of the present author (see [19]) in 1960. In the same works the ideas of cobordisms were extended. In particular, very important unitary (”complex’) cobordism ring was invented and calculated; many results were obtained also by the present author studying special unitary and symplectic cobordisms. Some western topologists (in particular, F.Adams) claimed on the basis of private communication that J.Milnor in fact knew the above mentioned results on the orientable and unitary cobordism rings earlier but nothing was written. F.Hirzebruch announced some Milnors results in the volume of Edinburgh Congress lectures published in 1960. Anyway, no written information about that was available till 1960; nothing was known in the Soviet Union, so the results published in 1960 were obtained completely independently.
    [Show full text]
  • HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
    RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition.
    [Show full text]
  • Arxiv:Math/0401075V1 [Math.AT] 8 Jan 2004 Ojcue1.1
    CONFIGURATION SPACES ARE NOT HOMOTOPY INVARIANT RICCARDO LONGONI AND PAOLO SALVATORE Abstract. We present a counterexample to the conjecture on the homotopy invariance of configuration spaces. More precisely, we consider the lens spaces L7,1 and L7,2, and prove that their configuration spaces are not homotopy equivalent by showing that their universal coverings have different Massey products. 1. Introduction The configuration space Fn(M) of pairwise distinct n-tuples of points in a man- ifold M has been much studied in the literature. Levitt reported in [4] as “long- standing” the following Conjecture 1.1. The homotopy type of Fn(M), for M a closed compact smooth manifold, depends only on the homotopy type of M. There was some evidence in favor: Levitt proved that the loop space ΩFn(M) is a homotopy invariant of M. Recently Aouina and Klein [1] have proved that a suitable iterated suspension of Fn(M) is a homotopy invariant. For example the double suspension of F2(M) is a homotopy invariant. Moreover F2(M) is a homotopy invariant when M is 2-connected (see [4]). A rational homotopy theoretic version of this fact appears in [3]. On the other hand there is a similar situation n suggesting that the conjecture might fail: the Euclidean configuration space F3(R ) has the homotopy type of a bundle over Sn−1 with fiber Sn−1 ∨ Sn−1 but it does n not split as a product in general [6]. However the loop spaces of F3(R ) and of the product Sn−1 × (Sn−1 ∨ Sn−1) are homotopy equivalent and also the suspensions of the two spaces are homotopic.
    [Show full text]
  • Cohomology Theory of Lie Groups and Lie Algebras
    COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS BY CLAUDE CHEVALLEY AND SAMUEL EILENBERG Introduction The present paper lays no claim to deep originality. Its main purpose is to give a systematic treatment of the methods by which topological questions concerning compact Lie groups may be reduced to algebraic questions con- cerning Lie algebras^). This reduction proceeds in three steps: (1) replacing questions on homology groups by questions on differential forms. This is accomplished by de Rham's theorems(2) (which, incidentally, seem to have been conjectured by Cartan for this very purpose); (2) replacing the con- sideration of arbitrary differential forms by that of invariant differential forms: this is accomplished by using invariant integration on the group manifold; (3) replacing the consideration of invariant differential forms by that of alternating multilinear forms on the Lie algebra of the group. We study here the question not only of the topological nature of the whole group, but also of the manifolds on which the group operates. Chapter I is concerned essentially with step 2 of the list above (step 1 depending here, as in the case of the whole group, on de Rham's theorems). Besides consider- ing invariant forms, we also introduce "equivariant" forms, defined in terms of a suitable linear representation of the group; Theorem 2.2 states that, when this representation does not contain the trivial representation, equi- variant forms are of no use for topology; however, it states this negative result in the form of a positive property of equivariant forms which is of interest by itself, since it is the key to Levi's theorem (cf.
    [Show full text]
  • Arxiv:1402.0409V1 [Math.HO]
    THE PICARD SCHEME STEVEN L. KLEIMAN Abstract. This article introduces, informally, the substance and the spirit of Grothendieck’s theory of the Picard scheme, highlighting its elegant simplicity, natural generality, and ingenious originality against the larger historical record. 1. Introduction A scientific biography should be written in which we indicate the “flow” of mathematics ... discussing a certain aspect of Grothendieck’s work, indicating possible roots, then describing the leap Grothendieck made from those roots to general ideas, and finally setting forth the impact of those ideas. Frans Oort [60, p. 2] Alexander Grothendieck sketched his proof of the existence of the Picard scheme in his February 1962 Bourbaki talk. Then, in his May 1962 Bourbaki talk, he sketched his proofs of various general properties of the scheme. Shortly afterwards, these two talks were reprinted in [31], commonly known as FGA, along with his commentaries, which included statements of nine finiteness theorems that refine the single finiteness theorem in his May talk and answer several related questions. However, Grothendieck had already defined the Picard scheme, via the functor it represents, on pp.195-15,16 of his February 1960 Bourbaki talk. Furthermore, on p.212-01 of his February 1961 Bourbaki talk, he had announced that the scheme can be constructed by combining results on quotients sketched in that talk along with results on the Hilbert scheme to be sketched in his forthcoming May 1961 Bourbaki talk. Those three talks plus three earlier talks, which prepare the way, were also reprinted in [31]. arXiv:1402.0409v1 [math.HO] 3 Feb 2014 Moreover, Grothendieck noted in [31, p.
    [Show full text]
  • All That Math Portraits of Mathematicians As Young Researchers
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep.
    [Show full text]
  • Analysis in Complex Geometry
    1946-4 School and Conference on Differential Geometry 2 - 20 June 2008 Analysis in Complex Geometry Shing-Tung Yau Harvard University, Dept. of Mathematics Cambridge, MA 02138 United States of America Analysis in Complex Geometry Shing-Tung Yau Harvard University ICTP, June 18, 2008 1 An important question in complex geometry is to char- acterize those topological manifolds that admit a com- plex structure. Once a complex structure is found, one wants to search for the existence of algebraic or geo- metric structures that are compatible with the complex structure. 2 Most geometric structures are given by Hermitian met- rics or connections that are compatible with the com- plex structure. In most cases, we look for connections with special holonomy group. A connection may have torsion. The torsion tensor is not well-understood. Much more research need to be done especially for those Hermitian connections with special holonomy group. 3 Karen Uhlenbeck Simon Donaldson By using the theorem of Donaldson-Uhlenbeck-Yau, it is possible to construct special holonomy connections with torsion. Their significance in relation to complex or algebraic structure need to be explored. 4 K¨ahler metrics have no torsion and their geometry is very close to that of algebraic geometry. Yet, as was demonstrated by Voisin, there are K¨ahler manifolds that are not homotopy equivalent to any algebraic manifolds. The distinction between K¨ahler and algebraic geometry is therefore rather delicate. Erich K¨ahler 5 Algebraic geometry is a classical subject and there are several natural equivalences of algebraic manifolds: bi- rational equivalence, biregular equivalence, and arith- metic equivalence.
    [Show full text]
  • Combinatorial Topology
    Chapter 6 Basics of Combinatorial Topology 6.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union of simple building blocks glued together in a “clean fashion”. The building blocks should be simple geometric objects, for example, points, lines segments, triangles, tehrahedra and more generally simplices, or even convex polytopes. We will begin by using simplices as building blocks. The material presented in this chapter consists of the most basic notions of combinatorial topology, going back roughly to the 1900-1930 period and it is covered in nearly every algebraic topology book (certainly the “classics”). A classic text (slightly old fashion especially for the notation and terminology) is Alexandrov [1], Volume 1 and another more “modern” source is Munkres [30]. An excellent treatment from the point of view of computational geometry can be found is Boissonnat and Yvinec [8], especially Chapters 7 and 10. Another fascinating book covering a lot of the basics but devoted mostly to three-dimensional topology and geometry is Thurston [41]. Recall that a simplex is just the convex hull of a finite number of affinely independent points. We also need to define faces, the boundary, and the interior of a simplex. Definition 6.1 Let be any normed affine space, say = Em with its usual Euclidean norm. Given any n+1E affinely independentpoints a ,...,aE in , the n-simplex (or simplex) 0 n E σ defined by a0,...,an is the convex hull of the points a0,...,an,thatis,thesetofallconvex combinations λ a + + λ a ,whereλ + + λ =1andλ 0foralli,0 i n.
    [Show full text]
  • Algebraic Topology - Wikipedia, the Free Encyclopedia Page 1 of 5
    Algebraic topology - Wikipedia, the free encyclopedia Page 1 of 5 Algebraic topology From Wikipedia, the free encyclopedia Algebraic topology is a branch of mathematics which uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Contents 1 The method of algebraic invariants 2 Setting in category theory 3 Results on homology 4 Applications of algebraic topology 5 Notable algebraic topologists 6 Important theorems in algebraic topology 7 See also 8 Notes 9 References 10 Further reading The method of algebraic invariants An older name for the subject was combinatorial topology , implying an emphasis on how a space X was constructed from simpler ones (the modern standard tool for such construction is the CW-complex ). The basic method now applied in algebraic topology is to investigate spaces via algebraic invariants by mapping them, for example, to groups which have a great deal of manageable structure in a way that respects the relation of homeomorphism (or more general homotopy) of spaces. This allows one to recast statements about topological spaces into statements about groups, which are often easier to prove. Two major ways in which this can be done are through fundamental groups, or more generally homotopy theory, and through homology and cohomology groups.
    [Show full text]