The Earth's Early Atmosphere

Total Page:16

File Type:pdf, Size:1020Kb

The Earth's Early Atmosphere The Earth's early atmosphere The Earth formed about 4.5 billion years ago. Scientists believe that its early atmosphere was produced by volcanic activity. Composition The early atmosphere probably contained: little or no oxygen a large amount of carbon dioxide water vapour small amounts of other gases, such as ammonia and methane Scientists cannot be sure about the early atmosphere, since it formed so long ago. They can only analyse evidence from other sources. Oxygen Some ancient rocks contain iron compounds that break down in the presence of oxygen. They could only have formed if there was little or no oxygen at the time. Carbon dioxide and water vapour A volcano releases large volumes of carbon dioxide and water vapour. Since the early atmosphere was produced by volcanic activity, it was likely to have contained a large amount of carbon dioxide and water vapour. Forming the modern atmosphere Compared to the Earth's early atmosphere, the modern atmosphere contains: less water vapour less carbon dioxide more oxygen The composition of the modern atmosphere Water vapour The Earth cooled after it formed. When it became cool enough, water vapour in the atmosphere condensed to liquid water. It fell as rain, creating the oceans. Carbon dioxide Carbon dioxide is a very soluble gas. It dissolves readily in water. As the oceans formed, carbon dioxide dissolved and its amount in the atmosphere decreased. Oxygen Plants make their own food by photosynthesis. In this process, carbon dioxide from the atmosphere reacts with water. Glucose is produced, with oxygen as a by-product: carbon dioxide + water → glucose + oxygen 6CO2(g) + 6H2O(l) → C6H12O6(aq) + 6O2(g) Photosynthesis by primitive plants and algae caused the removal of carbon dioxide from the air, and the release of oxygen. This had two effects: the amount of carbon dioxide decreased further the amount of oxygen in the atmosphere gradually increased The Atmosphere’s Layers Introduction The Earth’s atmosphere layers are similar to the layers in the interior of the Earth. There are five major layers of atmosphere above the Earth that are separated by temperature. Atmosphere gases The concentration of atmosphere gases varies depending on the atmosphere layers. The troposphere contains primarily nitrogen (78%) and oxygen (21%). The remaining 1% of the atmosphere is trace gases. The stratosphere contains a layer of relatively high concentrations of ozone. The lower part of the thermosphere is the ionosphere. This layer has free ions and electrons that are the result of ionization of gas molecules. As the distance increases from Earth the atmosphere becomes thinner as the molecules move further and further apart. Troposphere Lower boundary is the surface of the Earth. The upper boundary varies between 7 km (23,000 ft.) above the poles and 14 km (56,000 ft.) above the equator. This is the layer of the atmosphere where we live. The troposphere contains 75% of the total mass of the atmosphere. The air cools 6.5°C for each kilometer above sea level. Most of the energy from the sun travels through the atmosphere and is absorbed by the ground. The ground heats up warming the air above creating air currents. The rising of warm air and falling of cooler air creates convection currents that cause air circulation in this layer of the atmosphere. Stratosphere 7-17 km to 50 km The upper boundary of the stratosphere is 50 km (32 miles; 170,000 feet). The bottom layer of the stratosphere remains constantly at approximately 60°C. Jet streams form here as cold air from the poles meets the warmer air rising from the equator. The stratosphere contains the ozone layer. The layer acts as a shield from ultraviolet radiation from the sun. The upper part of the stratosphere warms up to approximately 18°C as the ozone reacts with ultraviolet radiation giving off enough heat to warm this layer. Mesosphere The mesosphere is the third layer of the atmosphere. It extends to an altitude between 80 and 85 km. The temperature begins to drop in this layer until it reaches - 90°C. The upper region of the mesosphere is the coldest region of the Earth’s atmosphere layers. Water vapor is sometimes present in this layer and it can be seen from Earth as thin feathery clouds of ice crystals. Many meteors entering the atmosphere burn up in this layer. The heat causes enough friction between a meteoroid and gas particles in the mesosphere to burn them up. Shooting stars are the trail of hot glowing gases as a meteoroid burns. Thermosphere Location of layer above Earth: 640 kilometers (400 miles; 2,100,000 feet) The atmosphere is very thin in the thermosphere. The space shuttles orbit in the thermosphere. Radio waves bounce off the thermosphere allowing communication with countries overseas. The temperature in this region can reach 1500°C. Exosphere The exosphere is the highest layer of the atmosphere. It extends up to 10,000 km (6,200 miles; 33,000,000 ft.) above the Earth. Satellites orbit the Earth in the exosphere. Life in the Troposphere Weather The troposphere is the lowest part of Earth's atmosphere. It contains about 75% of the atmosphere's mass and 99% of its water vapor. The troposphere is where Earth's weather like rain, snow, thunder, or storms occur. Clouds can form up to a height of 10–15 km. The troposphere is where people live, because it reaches down to ground level. In the troposphere, the temperature goes down as the altitude increases. This also means that the troposphere is quite unstable: gases can easily rise up or fall down. Hence the troposphere is well mixed. This vigorous atmospheric convection also causes the general atmospheric circulation. Greenhouse effect Generating energy from fossil fuels produces a build-up of gases which are thought to be a cause of global warming. Key points Burning fossil fuels increases the concentration of greenhouse gases, such as carbon dioxide and methane, in the atmosphere. The gases allow more of the sun's rays to enter the atmosphere and absorb solar radiation when it is reflected back which traps heat. Global warming could melt the world's ice caps and glaciers, causing an increase in sea levels and making many coastal areas uninhabitable. It could also affect weather patterns, causing droughts, flooding and hurricanes. Photosynthesis Animals need to eat food to get their energy. But green plants and algae do not. Instead they make their own food in a process called photosynthesis. Almost all life on Earth depends upon this process. Photosynthesis is also important in maintaining the levels of oxygen and carbon dioxide in the atmosphere. Photosynthesis takes place inside plant cells in small objects called chloroplasts which contain chlorophyll. This absorbs the light energy needed to make photosynthesis happen. For photosynthesis plants need: carbon dioxide water light Plants get carbon dioxide from the air through their leaves, and water from the ground through their roots. Light energy comes from the Sun. During photosynthesis plants create: oxygen glucose (for food) The oxygen produced is released into the air from the leaves and is used by animals to breathe. .
Recommended publications
  • Wastewater Technology Fact Sheet: Ammonia Stripping
    United States Office of Water EPA 832-F-00-019 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Ammonia Stripping DESCRIPTION Ammonia stripping is a simple desorption process used to lower the ammonia content of a wastewater stream. Some wastewaters contain large amounts of ammonia and/or nitrogen-containing compounds that may readily form ammonia. It is often easier and less expensive to remove nitrogen from wastewater in the form of ammonia than to convert it to nitrate-nitrogen before removing it (Culp et al., 1978). Ammonia (a weak base) reacts with water (a weak acid) to form ammonium hydroxide. In ammonia stripping, lime or caustic is added to the wastewater until the pH reaches 10.8 to 11.5 standard units which converts ammonium hydroxide ions to ammonia gas according to the following reaction(s): + - NH4 + OH 6 H2O + NH38 Source: Culp, et. al, 1978. Figure 1 illustrates two variations of ammonia FIGURE 1 TWO TYPES OF STRIPPING stripping towers, cross-flow and countercurrent. In TOWERS a cross-flow tower, the solvent gas (air) enters along the entire depth of fill and flows through the packing, as the alkaline wastewater flows it may be more economical to use alternate downward. A countercurrent tower draws air ammonia removal techniques, such as steam through openings at the bottom, as wastewater is stripping or biological methods. Air stripping may pumped to the top of a packed tower. Free also be used to remove many hydrophobic organic ammonia (NH3) is stripped from falling water molecules (Nutrient Control, 1983). droplets into the air stream, then discharged to the atmosphere.
    [Show full text]
  • Ozonedisinfection.Pdf
    ETI - Environmental Technology Initiative Project funded by the U.S. Environmental Protection Agency under Assistance Agreement No. CX824652 What is disinfection? Human exposure to wastewater discharged into the environment has increased in the last 15 to 20 years with the rise in population and the greater demand for water resources for recreation and other purposes. Disinfection of wastewater is done to prevent infectious diseases from being spread and to ensure that water is safe for human contact and the environment. There is no perfect disinfectant. However, there are certain characteristics to look for when choosing the most suitable disinfectant: • Ability to penetrate and destroy infectious agents under normal operating conditions; • Lack of characteristics that could be harmful to people and the environment; • Safe and easy handling, shipping, and storage; • Absence of toxic residuals, such as cancer-causing compounds, after disinfection; and • Affordable capital and operation and maintenance (O&M) costs. What is ozone disinfection? One common method of disinfecting wastewater is ozonation (also known as ozone disinfection). Ozone is an unstable gas that can destroy bacteria and viruses. It is formed when oxygen molecules (O2) collide with oxygen atoms to produce ozone (O3). Ozone is generated by an electrical discharge through dry air or pure oxygen and is generated onsite because it decomposes to elemental oxygen in a short amount of time. After generation, ozone is fed into a down-flow contact chamber containing the wastewater to be disinfected. From the bottom of the contact chamber, ozone is diffused into fine bubbles that mix with the downward flowing wastewater. See Figure 1 on page 2 for a schematic of the ozonation process.
    [Show full text]
  • Introduction to Co2 Chemistry in Sea Water
    INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water.
    [Show full text]
  • National Primary Drinking Water Regulations
    National Primary Drinking Water Regulations Potential health effects MCL or TT1 Common sources of contaminant in Public Health Contaminant from long-term3 exposure (mg/L)2 drinking water Goal (mg/L)2 above the MCL Nervous system or blood Added to water during sewage/ Acrylamide TT4 problems; increased risk of cancer wastewater treatment zero Eye, liver, kidney, or spleen Runoff from herbicide used on row Alachlor 0.002 problems; anemia; increased risk crops zero of cancer Erosion of natural deposits of certain 15 picocuries Alpha/photon minerals that are radioactive and per Liter Increased risk of cancer emitters may emit a form of radiation known zero (pCi/L) as alpha radiation Discharge from petroleum refineries; Increase in blood cholesterol; Antimony 0.006 fire retardants; ceramics; electronics; decrease in blood sugar 0.006 solder Skin damage or problems with Erosion of natural deposits; runoff Arsenic 0.010 circulatory systems, and may have from orchards; runoff from glass & 0 increased risk of getting cancer electronics production wastes Asbestos 7 million Increased risk of developing Decay of asbestos cement in water (fibers >10 fibers per Liter benign intestinal polyps mains; erosion of natural deposits 7 MFL micrometers) (MFL) Cardiovascular system or Runoff from herbicide used on row Atrazine 0.003 reproductive problems crops 0.003 Discharge of drilling wastes; discharge Barium 2 Increase in blood pressure from metal refineries; erosion 2 of natural deposits Anemia; decrease in blood Discharge from factories; leaching Benzene
    [Show full text]
  • 51. Astrobiology: the Final Frontier of Science Education
    www.astrosociety.org/uitc No. 51 - Summer 2000 © 2000, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Astrobiology: The Final Frontier of Science Education by Jodi Asbell-Clarke and Jeff Lockwood What (or Whom) Are We Looking For? Where Do We Look? Lessons from Our Past The Search Is On What Does the Public Have to Learn from All This? A High School Curriculum in Astrobiology Astrobiology seems to be all the buzz these days. It was the focus of the ASP science symposium this summer; the University of Washington is offering it as a new Ph.D. program, and TERC (Technical Education Research Center) is developing a high school integrated science course based on it. So what is astrobiology? The NASA Astrobiology Institute defines this new discipline as the study of the origin, evolution, distribution, and destiny of life in the Universe. What this means for scientists is finding the means to blend research fields such as microbiology, geoscience, and astrophysics to collectively answer the largest looming questions of humankind. What it means for educators is an engaging and exciting discipline that is ripe for an integrated approach to science education. Virtually every topic that one deals with in high school science is embedded in astrobiology. What (or Whom) Are We Looking For? Movies and television shows such as Contact and Star Trek have teased viewers with the idea of life on other planets and even in other galaxies. Illustration courtesy of and © 2000 by These fictional accounts almost always deal with intelligent beings that have Kathleen L.
    [Show full text]
  • Ammonia in Drinking-Water
    WHO/SDE/WSH/03.04/01 English only Ammonia in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality _______________________ Originally published in Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996. © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.
    [Show full text]
  • Origins of Life in the Universe Zackary Johnson
    11/4/2007 Origins of Life in the Universe Zackary Johnson OCN201 Fall 2007 [email protected] Zackary Johnson http://www.soest.hawaii.edu/oceanography/zij/education.html Uniiiversity of Hawaii Department of Oceanography Class Schedule Nov‐2Originsof Life and the Universe Nov‐5 Classification of Life Nov‐7 Primary Production Nov‐9Consumers Nov‐14 Evolution: Processes (Steward) Nov‐16 Evolution: Adaptation() (Steward) Nov‐19 Marine Microbiology Nov‐21 Benthic Communities Nov‐26 Whale Falls (Smith) Nov‐28 The Marine Food Web Nov‐30 Community Ecology Dec‐3 Fisheries Dec‐5Global Ecology Dec‐12 Final Major Concepts TIMETABLE Big Bang! • Life started early, but not at the beginning, of Earth’s Milky Way (and other galaxies formed) history • Abiogenesis is the leading hypothesis to explain the beginning of life on Earth • There are many competing theories as to how this happened • Some of the details have been worked out, but most Formation of Earth have not • Abiogenesis almost certainly occurred in the ocean 20‐15 15‐94.5Today Billions of Years Before Present 1 11/4/2007 Building Blocks TIMETABLE Big Bang! • Universe is mostly hydrogen (H) and helium (He); for Milky Way (and other galaxies formed) example –the sun is 70% H, 28% He and 2% all else! Abundance) e • Most elements of interest to biology (C, N, P, O, etc.) were (Relativ 10 produced via nuclear fusion Formation of Earth Log at very high temperature reactions in large stars after Big Bang 20‐13 13‐94.7Today Atomic Number Billions of Years Before Present ORIGIN OF LIFE ON EARTH Abiogenesis: 3 stages Divine Creation 1.
    [Show full text]
  • Chapter 11: Atmosphere
    The Atmosphere and the Oceans ff the Na Pali coast in Hawaii, clouds stretch toward O the horizon. In this unit, you’ll learn how the atmo- sphere and the oceans interact to produce clouds and crashing waves. You’ll come away from your studies with a deeper understanding of the common characteristics shared by Earth’s oceans and its atmosphere. Unit Contents 11 Atmosphere14 Climate 12 Meteorology15 Physical Oceanography 13 The Nature 16 The Marine Environment of Storms Go to the National Geographic Expedition on page 880 to learn more about topics that are con- nected to this unit. 268 Kauai, Hawaii 269 1111 AAtmospheretmosphere What You’ll Learn • The composition, struc- ture, and properties that make up Earth’s atmos- phere. • How solar energy, which fuels weather and climate, is distrib- uted throughout the atmosphere. • How water continually moves between Earth’s surface and the atmo- sphere in the water cycle. Why It’s Important Understanding Earth’s atmosphere and its interactions with solar energy is the key to understanding weather and climate, which con- trol so many different aspects of our lives. To find out more about the atmosphere, visit the Earth Science Web Site at earthgeu.com 270 DDiscoveryiscovery LLabab Dew Formation Dew forms when moist air near 4. Repeat the experiment outside. the ground cools and the water vapor Record the temperature of the in the air changes into water droplets. water and the air outside. In this activity, you will model the Observe In your science journal, formation of dew. describe what happened to the out- 1.
    [Show full text]
  • BOIL WATER NOTICE: Frequently Asked Questions (Faqs)
    BOIL WATER NOTICE: Frequently Asked Questions (FAQs) Who can be affected? Anyone who ingests contaminated water may become ill. Infants, young children, the elderly, and people with severely compromised immune systems are more at risk of illness. Why must I boil my water? A boil order has been issued to your water system because either recent testing has shown the presence of organisms that could cause illness (e.g. fecal or E. coli bacteria), or technical/physical problems in the water system have significantly increased possibility of bacterial contamination. How can I make my water safe? Boiling the water is the best way to ensure that it is free of illness-causing organisms. Bring water to a rolling boil for a minimum of one minute. When it cools, refrigerate the water in clean containers. (A pinch of salt per quart may improve the rather flat taste of boiled water). If you do not want to boil your water, you can disinfect it by adding 1/8 teaspoon of bleach (common household bleach containing 5.25 percent sodium hypochlorite) per gallon of water. Do not use bleach containing perfume, dyes, or other additives. Is it necessary to boil all water in the home during an advisory or order? During boil water advisories or boil water orders, you should boil all water used for drinking, preparing food, beverages, ice cubes, washing fruits and vegetables, or brushing teeth. Severely immuno- compromised individuals should always boil their tap water for the purposes noted above. Infant formulas should be prepared using boiled tap water, at all times.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons (Pahs)
    Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU
    [Show full text]
  • A 10-Year Story: the Water for Life Decade 2005
    A 10 YEAR STORY THE WATER FOR LIFE DECADE 2005-2015 AND BEYOND FOREWORD Josefina Maestu 2 INTRODUCTION 6 DRINKING WATER SUPPLY AND SANITATION, WOMEN´S PARTICIPATION AND LOCAL COOPERATION 10 INTEGRATED WATER RESOURCES MANAGEMENT AND TRANSBOUNDARY WATER COOPERATION 28 THE ROLE OF GLOBAL PROCESSES AND ACTORS 44 THE CONTRIBUTION OF THE WATER FOR LIFE 2005-2015 DECADE Looking to the end of the Decade and beyond 64 EPILOGUE: A NEW DECADE FOR ACTION ON WATER AND SUSTAINABLE DEVELOPMENT 84 A 10 YEAR STORY – THE WATER FOR LIFE DECADE 2005-2015 AND BEYOND - 2015 t Editing and texts-+PTFöOB .BFTUV 6OUVSCF t Production Manager3BNJSP "VSÓO -PQFSB t Editorial Production-.BSUB -ØQF[ 3BVSFMM t Illustrations and Cover- )JSPTIJ,JUBNVSBtLayout and Graphic Production-*OUFSDPN4USBUFHZT4-tPrinting and Binding-(SËöDBT0SUFMMT4-tPublisher-6OJUFE/BUJPOT0óDFUPTVQQPSUUIF *OUFSOBUJPOBM%FDBEFGPS"DUJPOA8BUFSGPS-JGF 6/8BUFS%FDBEF1SPHSBNNFPO"EWPDBDZBOE$PNNVOJDBUJPOtSponsor-"RVBF'PVOEBUJPO FOREWORD As the curtain falls on the Decade it is difficult to avoid feeling frustrated. Since 2005, we have been managing complexity on a global scale; interactions have increased exponentially thanks to social media and the Internet, but we can’t help but regret the missed opportunities. There were many. But now we have a full stop – a time to reflect. What has the Decade achieved? After 10 years, we’re finally approaching the end of the UN Decade for Water 2005-2015, and the office is reviewing, sifting, collating and editing 10 years of action on water into a form where we can report on and present it – all of it. Ten years have passed! For almost as long as we can remember, 2015 has been considered a critical year for the inter- national water and sanitation agenda.
    [Show full text]
  • 16 Nitrogen Contamination in Private Drinking Water Wells
    PRIVATE DRINKING WATER IN CONNECTICUT Publication Date: April 2009 Publication No. 16: Nitrogen Contamination in Private Drinking Water Wells The U.S. Environmental Protection Agency (EPA) currently does not regulate Private wells. Private well owners are responsible for the quality of their drinking water. Homeowners with private wells are generally not required to test their drinking water. However, they can use the public drinking standards as guidelines to ensure drinking water quality. Refer to Publication #23 Drinking Water Standards for more information. The Maximum Contaminant Level (MCL) for nitrate measured as nitrogen in drinking water is 10 milligrams per liter (mg/l)) or parts per million (ppm) as established by the EPA. In addition, EPA has set an MCL for nitrite-nitrogen in drinking water at 1 mg/l. Introduction Nitrogen, a component of protein, is essential to all living things. Nitrogen exists in the environment in many forms. It can change its form as it moves through the nitrogen cycle; organic nitrogen ↔ammonia ↔nitrite↔nitrate. Nitrate and nitrite are two forms of nitrogen of most concern in drinking water. Nitrite-nitrogen is indicative of recent pollution and is usually accompanied by highly elevated fecal coliform bacteria counts. Nitrate-nitrogen is indicative of older pollution and is the result of organic or nitrite nitrogen being “weathered or aged” as it passes through the soil overburden on its way to lower aquifers. • Both the nitrate and nitrite forms of nitrogen in drinking water are a health concern, especially for infants, pregnant women, and the elderly. • A water test is the only way to determine the presence and amount of these contaminants in well water.
    [Show full text]