Studies of Hydrate Cohesion, Adhesion and Interfacial

Total Page:16

File Type:pdf, Size:1020Kb

Studies of Hydrate Cohesion, Adhesion and Interfacial STUDIES OF HYDRATE COHESION, ADHESION AND INTERFACIAL PROPERTIES USING MICROMECHANICAL FORCE MEASUREMENTS by Erika P. Brown c Copyright by Erika P. Brown, 2016 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering). Golden, Colorado Date Signed: Erika P. Brown Signed: Dr. Carolyn A. Koh Thesis Advisor Golden, Colorado Date Signed: Dr. David Marr Professor and Head Department of Chemical and Biochemical Engineering ii ABSTRACT The oil and gas production industry continues to innovate in new exploration and pro- duction techniques that allow the extraction of energy resources from increasingly extreme conditions. One consequence of this advancement is the increasing threat of hydrate plugs forming in the oil and gas production lines due to favorable thermodynamic conditions for hydrate formation. Complete inhibition of hydrates, which is traditionally the preferred method in hydrate treatment, can become prohibitively expensive or challenging due to en- vironmental regulations. As such, the industry has observed a shift in focus from hydrate avoidance to hydrate management. In this strategy, hydrates are allowed to form and flow as a slurry. The goal in hydrate management is to prevent the aggregation and deposition of hydrates so that the flowline can produce without impediment. In order to accomplish this, a sound understanding of the cohesive (particle-particle) and adhesive (particle-surface) forces of hydrates particles is needed. This thesis seeks to advance the knowledge available on hydrate cohesion and adhesion, especially in the presence of surfactant additives. Several models involve the cohesive/adhesive force in their calculations; the Capillary Bridge Theory uses interfacial variables to predict the inter-particle force, while the Camargo and Palermo Model balances the cohesion force with shear forces to predict the extent of aggregation in a hydrate-bearing system. Each of these systems was analyzed for the sensitivity of each variable and how the inter-particle force affects each system. A method for measuring the contact angle of water on the hydrate surface was developed to study changes in hydrate wettability in systems both without and with surfactants present. This method was verified using two apparatuses and three operators, and it was shown that the contact angle measurement was repeatable. Using this method, the contact angle of a water droplet on a cyclopentane surface was found to be 94◦±5◦. This contact angle is less hydrophilic than previous estimates, and it represents an important update to prediction iii efforts using Capillary Bridge Theory. Based on the updated estimate of the contact angle, the embracing angle for a pure system was estimated as α =4.9◦. Studies were also conducted to determine whether the Micromechanical Force (MMF) apparatus could be used to rank anti-agglomerants (AAs) by their performance. Four AAs were used in a blind test and were ranked based on the reduction in cohesion force measured. The final ranking determined agreed closely with the results provided by an industrial lab us- ing a typical macro-scale method. The MMF, which focuses on interfacial-scale interactions, is attractive for ranking measurements due to the speed, precision, visualization capabilities and small sample size needed. The visual nature of the MMF measurements also provided insight into the mechanisms of the AAs and morphological changes that resulted from AA addition. Changes in the wettability of the particles were proposed as a mechanism due to a strong correlation between contact angle and force measured in the presence of the AAs. In addition to particle-particle interactions, particle surface interactions were studied in the presence of AAs. It was found that AAs decreased the adhesion force between a stainless steel surface and a hydrate particle, but that the forces may increase if the surface was coated with a petroleum wax. Forces also increased with the addition of dissolved wax for a system with no AA as well as an oil-soluble AA. A water-soluble AA exhibited no changes with the addition of wax to the system. Changes in the hydrate shell micro-structure were studied by measuring the force neces- sary to puncture a hydrate particle using a glass cantilever. It was found that the addition of model surfactants caused the force needed to puncture the shell to decrease. The reduced shell strength was compared to other phenomena in the system such as interfacial tension, growth rate and cohesion force. Model surfactant studies were continued by comparing the force reduction for several chemicals that were added simultaneously to the system. Three classes of interactions were identified based on these measurements: synergistic, antagonistic and those showing no interaction. iv The effect of subcooling on cohesion was investigated based on improved measurement and error calculation techniques. It was found that the cohesion force increases significantly near the equilibrium temperature, but tapers to a near-constant value at high subcoolings. This trend agrees with measurements made on ice systems, as well as trends observed in the water layer on ice particles. The temperature dependence was found to persist for annealing times up to two hours. Finally, design of a high pressure Micromechanical Force apparatus was performed, in- cluding the identification of nano-manipulators which make the cell design possible. This system was tested using 3D printing for low pressure experiments before the final design was produced. Initial tests indicated reproducible experiments using gas hydrates and showed that CO2 was not an appropriate hydrate former for this system. v TABLE OF CONTENTS ABSTRACT ......................................... iii LISTOFFIGURES ......................................x LISTOFTABLES ......................................xxi LISTOFSYMBOLS.................................... xxii LISTOFABBREVIATIONS ............................... xxiv ACKNOWLEDGMENTS ................................. xxv CHAPTER1 INTRODUCTION ...............................1 1.1 ClathrateHydrateBackground . ....1 1.2 AgglomerationMechanisms . ...6 1.3 History of the Micromechanical Force Apparatus . ........13 1.4 HydrateInterfacialandGrowthStudies. ....... 16 1.5 Thesissummaryandorganization . ..... 17 1.5.1 Publicationsarisingfromthiswork . ..... 20 CHAPTER 2 APPARATUS AND PROCEDURE . 21 2.1 MicromechanicalForceApparatus . ..... 21 2.1.1 Cohesion/AdhesionForce . 23 2.1.2 ShellStrength................................ 25 2.1.3 ShellThickness ............................... 26 2.1.4 GrowthRate ................................ 28 2.1.5 ContactAngle................................ 28 vi 2.2 High Pressure Micromechanical Force Apparatus . ........30 2.3 InterfacialTension .............................. 32 2.4 NoteonProcedures................................. 35 CHAPTER 3 SENSITIVITY OF PARTICLE COHESION . 38 3.1 CapillaryBridgeTheory . 38 3.2 CamargoandPalermoModel . 47 3.3 Conclusions ..................................... 54 CHAPTER 4 CONTACT ANGLE MEASUREMENTS ON HYDRATE SURFACES . 56 4.1 PureHydrateMeasurements . 56 4.2 Predictions Using Capillary Bridge Theory . ........59 4.3 ContactAngleChangeswithSurfactants . ...... 61 4.4 Conclusions ..................................... 66 CHAPTER 5 INDUSTRY AA RANKING STUDY . 68 5.1 CohesionTestsandIFT .............................. 68 5.2 MorphologicalObservations . ..... 74 5.3 ContactAngleMeasurementsofIndustrialAAs . ..... 82 5.4 Conclusions ..................................... 87 CHAPTER 6 ADHESION MEASUREMENTS WITH WAXES AND ANTI-AGGLOMERANTS ......................... 90 6.1 AABaselines ....................................92 6.2 WaxBaselines.................................... 95 6.3 Wax/AAInteractions............................... 100 6.4 CrudeOilAddition................................ 105 vii 6.5 Conclusions .................................... 107 CHAPTER7 SHELLSTRENGTH ........................... 108 7.1 Introduction.................................... 109 7.2 Materials ..................................... 110 7.3 ResultsandDiscussion . 111 7.4 Conclusions .................................... 119 CHAPTER 8 COMPETITIVE EFFECTS OF CHEMICALS . 120 8.1 Introduction.................................... 121 8.2 Materials ..................................... 122 8.3 SingleChemicals ................................. 123 8.4 ChemicalMixtures ................................ 126 8.5 Conclusions .................................... 129 CHAPTER 9 FUNDAMENTAL COHESION STUDIES . 130 9.1 TemperatureDependence . 130 9.2 Annealingtime .................................. 133 9.3 GlassBeads .................................... 134 9.4 Conclusions .................................... 137 CHAPTER 10 HIGH PRESSURE MICROMECHANICAL FORCE APPARATUS . 139 10.1 ApparatusDevelopment . 139 10.2InitialTesting................................. 142 10.3Conclusions .................................... 145 CHAPTER 11SUMMARY AND CONCLUSIONS . 147 CHAPTER 12SUGGESTIONS FOR FUTURE WORK . 152 viii 12.1 Expansionofsurfactantstudies . ...... 152 12.2 Highpressureapparatus . 155 REFERENCESCITED .................................. 157 ix LIST OF FIGURES Figure 1.1 Cage structures for Structure I and II hydrates, and numbers of each cage necessary to form a unit cell (the smallest repeating unit) of each structure. Modified from Grim with permission.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Water Olympics, They Will Each Fold and Float: Need a Copy of the Score Card
    WMER OLYMPICS I. Topic Area molecules and the paper fibers is greater than the Properties of water cohesive force between the water molecules. This causes the water molecules to be pulled up the paper towel Il. Introductory Statement against the force of gravity. The attraction between unlike This is a series of four activities that deal with some of molecules is called adhesion. the properties of water. The activities are short and may Bubble Rings: See the background information in the be done one at a time or all together in an “Olympic” “Bubble Busters” activity in this book. format. The activities can be used as an introduction to a water unit with the students discovering some of the VII. ManagementSuggestions properties of water, or they can be used as culminating These four activities may be done as individual lessons activities. Either way, it is important that the children or as centers in an “olympic” format with students rotating discuss the properties of water they have observed after through the activities. The task cards can be run off and doing the activities. placed at each center. Students should be responsible for cleaning up a center before moving on to the next one. III. Math Skills Science Processes An extra supply of paper towels may be placed at each a. Computation a. Observing center to facilitate clean up. It is important that these ac- b. Measuring b. Predicting tivities be followed by class discussions which focus on c. Collecting and recording the water properties involved. data d. Controlling variables VIII. Procedure The procedures for each activity are given on the task IV.
    [Show full text]
  • 11 Fluid Statics
    CHAPTER 11 | FLUID STATICS 357 11 FLUID STATICS Figure 11.1 The fluid essential to all life has a beauty of its own. It also helps support the weight of this swimmer. (credit: Terren, Wikimedia Commons) Learning Objectives 11.1. What Is a Fluid? • State the common phases of matter. • Explain the physical characteristics of solids, liquids, and gases. • Describe the arrangement of atoms in solids, liquids, and gases. 11.2. Density • Define density. • Calculate the mass of a reservoir from its density. • Compare and contrast the densities of various substances. 11.3. Pressure • Define pressure. • Explain the relationship between pressure and force. • Calculate force given pressure and area. 11.4. Variation of Pressure with Depth in a Fluid • Define pressure in terms of weight. • Explain the variation of pressure with depth in a fluid. • Calculate density given pressure and altitude. 11.5. Pascal’s Principle • Define pressure. • State Pascal’s principle. • Understand applications of Pascal’s principle. • Derive relationships between forces in a hydraulic system. 11.6. Gauge Pressure, Absolute Pressure, and Pressure Measurement • Define gauge pressure and absolute pressure. • Understand the working of aneroid and open-tube barometers. 11.7. Archimedes’ Principle • Define buoyant force. • State Archimedes’ principle. • Understand why objects float or sink. • Understand the relationship between density and Archimedes’ principle. 11.8. Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action • Understand cohesive and adhesive forces. • Define surface tension. • Understand capillary action. 11.9. Pressures in the Body • Explain the concept of pressure the in human body. • Explain systolic and diastolic blood pressures. • Describe pressures in the eye, lungs, spinal column, bladder, and skeletal system.
    [Show full text]
  • Adhesion and Cohesion
    Hindawi Publishing Corporation International Journal of Dentistry Volume 2012, Article ID 951324, 8 pages doi:10.1155/2012/951324 Review Article Adhesion and Cohesion J. Anthony von Fraunhofer School of Dentistry, University of Maryland, Baltimore, MD 21201, USA Correspondence should be addressed to J. Anthony von Fraunhofer, [email protected] Received 18 October 2011; Accepted 14 November 2011 Academic Editor: Cornelis H. Pameijer Copyright © 2012 J. Anthony von Fraunhofer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its impor- tance with regard to adhesive dentistry and bonding to enamel and dentin is discussed. 1. Introduction molecular attraction by which the particles of a body are uni- ted throughout the mass. In other words, adhesion is any at- Every clinician has experienced the failure of a restoration, be traction process between dissimilar molecular species, which it loosening of a crown, loss of an anterior Class V restora- have been brought into direct contact such that the adhesive tion, or leakage of a composite restoration.
    [Show full text]
  • Cohesion and Adhesion with Proteins
    Cohesion and Adhesion with Proteins Charles R. Frihart Forest Products Laboratory Madison, WI 53726, USA [email protected] Introduction These aggregates can be broken up and may be somewhat uncoiled at pH extremes, especially at high pH conditions, With increasing interest in bio-based adhesives, re- when electrostatic repulsion overcomes hydrophobic at- search on proteins has expanded because historically they traction. Additions of chaotropic agents, some surfactants, have been used by both nature and humans as adhesives. A and certain salts are also used to disaggregate and maybe wide variety of proteins have been used as wood adhe- somewhat uncoil the protein structure. sives. Ancient Egyptians most likely used collagens to bond veneer to wood furniture, then came casein (milk), Table 1. Important reactive components in soy pro- blood, fish scales, and soy adhesives, with soybeans and teins as percent of total protein weight. caseins being important for the development of the ply- Amino Acid Structure % Soy Protein wood and glulam industries. Despite many years of re- - + H2NH2CH2CH2CH2C CH COO Na search on developing adhesive products, it is not clear how Lysine NH2 6.4 the proteins provide good adhesive strength, but some N - + thoughts are expressed here. CH2 CH2 COO Na Histidine N 2.6 H NH2 Protein Structure NH - + Arginine H2N C NHCH2CH2CH2 CH COO Na 7.3 NH2 Understanding protein macromolecular structure is a - + prerequisite for understanding properties because protein Tyrosine HO CH2 COO Na 3.8 structure is so different from that of other adhesives. Ex- NH2 - + cept for structural proteins, such as silk, collagen, and ker- CH2 COO Na Tryptophan 1.4 atin, proteins mainly form globular shapes due to the hy- NH2 N drophobicity of their protein sequences.
    [Show full text]
  • Unique Properties of Water!
    Name: _______ANSWER KEY_______________ Class: _____ Date: _______________ Unique Properties of Water! Word Bank: Adhesion Evaporation Polar Surface tension Cohesion Freezing Positive Universal solvent Condensation Melting Sublimation Dissolve Negative 1. The electrons are not shared equally between the hydrogen and oxygen atoms of water creating a Polar molecule. 2. The polarity of water allows it to dissolve most substances. Because of this it is referred to as the universal solvent 3. Water molecules stick to other water molecules. This property is called cohesion. 4. Hydrogen bonds form between adjacent water molecules because the positive charged hydrogen end of one water molecule attracts the negative charged oxygen end of another water molecule. 5. Water molecules stick to other materials due to its polar nature. This property is called adhesion. 6. Hydrogen bonds hold water molecules closely together which causes water to have high surface tension. This is why water tends to clump together to form drops rather than spread out into a thin film. 7. Condensation is when water changes from a gas to a liquid. 8. Sublimation is when water changes from a solid directly to a gas. 9. Freezing is when water changes from a liquid to a solid. 10. Melting is when water changes from a solid to a liquid. 11. Evaporation is when water changes from a liquid to a gas. 12. Why does ice float? Water expands as it freezes, so it is LESS DENSE AS A SOLID. 13. What property refers to water molecules resembling magnets? How are these alike? Polar bonds create positive and negative ends of the molecule.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • SUGGESTED ACTIVITIES (States of Matter)
    SUGGESTED ACTIVITIES (States of Matter) From Invitations to Science Inquiry 2nd Edition by Tik L. Liem: Activity Page Number Concept • Can the container hold more? 91 Molecular spacing • The shrinking balloon 92 Molecular spacing • The shrinking mixture of liquids 93 Molecular spacing • The clinging water streams 108 Cohesion • The smaller, the stronger 109 Capillary action • Pour water along a string 110 Adhesion • Where does the cork float? 111 Surface tension • How many pennies can go in? 112 Surface tension • The detergent propelled boat 115 Surface tension From NSF/IERI Science IDEAS Project (See following pages): Activity Page Number Concept • Kids as molecules See following pages Molecular spacing • Poured gas “ “ “ States of Matter • Sticky water “ “ “ Adhesion • The shrinking mixture of liquids w/ measurement Molecular spacing • A”Mazing” Water “ “ “ Cohesion • Cheesecloth Demo “ “ “ Cohesion/Adhesion • Magic Pepper Sinker “ “ “ Cohesion • Merging Streams “ “ “ Cohesion • Pour Water sideways “ “ “ Cohesion/Adhesion • Where does the cork float “ “ “ Surface tension • Magical drops “ “ “ Surface tension • Propel the boat “ “ “ Cohesion From Harcourt Science Teacher’s Ed. Unit E: (For ALL grade levels) Activity Page Number Concept • Solids are smaller E17 (3rd grade text) Molecular spacing NSF/IERI Science IDEAS Project Grant #0228353 CAN THE CONTAINER HOLD MORE? A. Question: How much can a container really hold? B. Materials Needed: 1. A transparent container (glass or plastic). 2. Marbles, sand water and a graduated beaker. C: Procedure: 1. Fill the transparent container up to the brim with marbles. 2. Show the students that you still have sand and water; ask them: “Can I add any other material to this container?” 3. Add sand to the container (shake to settle the sand in between the marbles); ask the same question again.
    [Show full text]
  • Water Drops on a Penny
    Water Drops on a Penny Introduction SCIENTIFIC Why do water droplets bead when dropped on a waxy surface? Why can some insects walk on water? These observations can be attributed to the high surface tension of water. Surface tension is the result of attractive forces between molecules. Water’s large contribution to life on Earth depends on its unique properties. Without it, life on Earth would be impossible. Concepts • Cohesion • Polarity • Surface tension • Surfactants Materials Beaker, 50-mL Pipets, disposable, 2 Dish soap, liquid Water, tap Paper towels Pennies, 2 Safety Precautions Although this activity is considered nonhazardous, please follow all laboratory safety guidelines. Wash hands thoroughly with soap and water before leaving the laboratory. Procedure Part A. 1. Rinse a penny in tap water. Dry thoroughly with a paper towel. 2. Place the penny on a fresh paper towel. 3. Fill a beaker with 25 mL of tap water. 4. Using a pipet, slowly drop individual droplets of water onto the surface of the penny. 5. Count each drop until the water begins to spill over the sides of the penny. Record your observations in a data table. Note: Watch the penny from above rather than from the side while making observations. 6. Repeat steps 1–5 for a total of 3 trials. Thoroughly dry the penny between each trial. Part B. 1. Rinse a new penny in tap water. Dry thoroughly with a paper towel. 2. Place the penny on a fresh paper towel. 3. Fill a beaker with 25 mL of tap water. Add 2 drops of liquid dish soap to the beaker and stir.
    [Show full text]
  • Water and Life: the Molecule That Supports All Live Water and Life: the Molecule That Supports All Life
    BIOLOGY 101 CHAPTER 3: Water and Life: The Molecule that supports all Live Water and Life: The Molecule that Supports all Life CONCEPTS: • 3.1 Polar covalent bonds in water molecules result in hydrogen bonding • 3.2 Four emergent properties of water contribute to Earth's suitability for life • 3.3 Acidic and basic conditions affect living organisms Water and Life: The Molecule that Supports all Life OVERVIEW: • The physical properties of water are dictated by the laws of thermodynamics The First Law of Thermodynamics Energy cannot be created or destroyed, it can only be transformed The Second Law of Thermodynamics The total entropy of an isolated system always increases over time or… High energy systems spontaneously change to lower energy systems Water and Life: The Molecule that Supports all Life 3.1 Polar covalent bonds in water molecules result in hydrogen bonding: • A water molecule is shaped like a wide V, with two hydrogen atoms joined to an oxygen atom by single polar covalent bonds. • Because oxygen is more electronegative than hydrogen, a water molecule is a polar molecule in which opposite ends of the molecule have opposite charges. ✓ Polar molecules have a separation of charges, having both positively and negatively charged regions Water and Life: The Molecule that Supports all Life 3.1 Polar covalent bonds in water molecules result in hydrogen bonding: • A water molecule is shaped like a wide V, with two hydrogen atoms joined to an oxygen atom by single polar covalent bonds. • Because oxygen is more electronegative than hydrogen, a water molecule is a polar molecule in which opposite ends of the molecule have opposite charges.
    [Show full text]
  • Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action∗
    Connexions module: m42197 1 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action∗ OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 3.0y Abstract • Understand cohesive and adhesive forces. • Dene surface tension. • Understand capillary action. 1 Cohesion and Adhesion in Liquids Children blow soap bubbles and play in the spray of a sprinkler on a hot summer day. (See Figure 1.) An underwater spider keeps his air supply in a shiny bubble he carries wrapped around him. A technician draws blood into a small-diameter tube just by touching it to a drop on a pricked nger. A premature infant struggles to inate her lungs. What is the common thread? All these activities are dominated by the attractive forces between atoms and molecules in liquidsboth within a liquid and between the liquid and its surroundings. Attractive forces between molecules of the same type are called cohesive forces. Liquids can, for example, be held in open containers because cohesive forces hold the molecules together. Attractive forces between molecules of dierent types are called adhesive forces. Such forces cause liquid drops to cling to window panes, for example. In this section we examine eects directly attributable to cohesive and adhesive forces in liquids. : Attractive forces between molecules of the same type are called cohesive forces. : Attractive forces between molecules of dierent types are called adhesive forces. ∗Version 1.5: Feb 20, 2014 10:48 am +0000 yhttp://creativecommons.org/licenses/by/3.0/ http://cnx.org/content/m42197/1.5/ Connexions module: m42197 2 Figure 1: The soap bubbles in this photograph are caused by cohesive forces among molecules in liquids.
    [Show full text]
  • Observing and Describing Cohesion, Surface Tension, and Adhesion
    Science 5 Life LESSON 37 Physical Earth and Space Observing and describing cohesion, surface tension, and adhesion Lesson Preparation Science Word List C Program Materials • Child’s Booklet C Investigating Matter and Its Interactions cohesion (pp. 6–8) • Lesson 37 Slide Show (see website, Lesson 37) surface tension • Lesson Activity 37 adhesion • Science Word List C (see inset) • Lesson Review 37 Tool Kit Materials • Pipette Collected Materials • Yellow highlighter • Cup with water • Sandwich-size plastic bags • Small piece of aluminum foil • Paper towel • Penny The Lesson “In your last science lessons, you learned about matter changing state.” “Let’s review what you learned.” “Take out your chemistry booklet and highlighter.” • Allow time for your child to do this. “Open your booklet to pages 6 and 7.” “What happens during the process of condensation?” A gas changes to a liquid. “What happens during the process of ionization?” A gas changes to plasma. “What is the process of plasma changing to a gas called?” deionization 254 © Nancy Larson. All rights reserved. Reproduction prohibited. Science 5, Lesson 37 “What happens during the process of sublimation?” A solid changes to a gas. “What is the process of a gas changing to a solid called?” deposition “What happens during the process of vaporization?” A liquid changes to a gas. “What are two types of vaporization?” boiling and evaporation “What are two ways boiling and evaporation differ?” Boiling occurs throughout the liquid and evaporation occurs only at the surface of the liquid; boiling occurs at the liquid’s boiling point and evaporation occurs at temperatures below the boiling point.
    [Show full text]