Lentiviral Vectors Pseudotyped with Baculovirus Gp64 Efficiently

Total Page:16

File Type:pdf, Size:1020Kb

Lentiviral Vectors Pseudotyped with Baculovirus Gp64 Efficiently Gene Therapy (2004) 11, 266–275 & 2004 Nature Publishing Group All rights reserved 0969-7128/04 $25.00 www.nature.com/gt RESEARCH ARTICLE Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro CA Schauber, MJ Tuerk, CD Pacheco1, PA Escarpe and G Veres Cell Genesys Inc., South San Francisco, CA, USA The envelope glycoprotein from vesicular stomatitis virus found that gp64-pseudotyped lentiviral vectors could effi- (VSV-G) has been used extensively to pseudotype lentiviral ciently transduce a variety of cell lines in vitro, although gp64 vectors, but has several drawbacks including cytotoxicity, showed a more restricted tropism than VSV-G, with potential for priming of immune responses against transgene especially poor ability to transduce hematopoietic cell types products through efficient transduction of antigen-presenting including dendritic cells (DCs). Although we found that gp64- cells (APCs) and sensitivity to inactivation by human pseudotyped vectors are also sensitive to inactivation by complement. As an alternative to VSV-G, we extensively human complement, gp64 nevertheless has advantages characterized lentiviral vectors pseudotyped with the gp64 over VSV-G, because of its lack of cytotoxicity and narrower envelope glycoprotein from baculovirus both in vitro and in tropism. Consequently, gp64 is an attractive alternative to vivo. We demonstrated for the first time that gp64-pseudo- VSV-G because it can efficiently transduce cells in vivo and typed vectors could be delivered efficiently in vivo in mice via may reduce immune responses against the transgene portal vein injection. Following delivery, the efficiency of product or viral vector by avoiding transduction of APCs mouse cell transduction and the transgene expression is such as DCs. comparable to VSV-G-pseudotyped vectors. In addition, we Gene Therapy (2004) 11, 266–275. doi:10.1038/sj.gt.3302170 Keywords: lentivirus; pseudotype; baculovirus; gp64; complement Introduction expression of the gene to specific cell types. Following systemic administration, the VSV-G pseudotyped vectors The G glycoprotein from vesicular stomatitis virus (VSV- transduce target cells of interest, but can also transduce G) has been used extensively for pseudotyping retroviral other cell types that would have undesirable effects in and lentiviral vectors.1,2 VSV-G is advantageous for gene- gene-therapy protocols. For example, antigen-presenting transfer protocols because of its broad species and tissue cells (APCs) could cause deleterious immune responses tropism, and its ability to confer physical stability and if they are transduced inadvertently. Unfortunately, VSV- high infectivity to vector particles.3 However, the high G-pseudotyped lentivectors can efficiently transduce fusogenicity of VSV-G causes rapid syncytia formation APCs from mice and humans, and can elicit immune and cell death, making it difficult to generate stable cell responses against the transgene product, thus potentially lines expressing the protein.4 A number of groups have negating the therapeutic effects of the protein expres- generated stable packaging and producer cell lines using sion.7–10 VSV-G, but in all cases a repressible or inducible Systemic administration of viral vectors also exposes promoter regulates the expression of VSV-G.4–6 While the particles to possible inactivation by serum comple- regulated expression avoids the problem of VSV-G ment.11 Complement inactivation of vectors is dependent cytotoxicity, it makes stable production of viral vectors on the species derivation of the cell line used to produce more complicated and cell line generation more time- the vectors, as well as the identity of the envelope consuming. glycoprotein used for pseudotyping.12,13 VSV-G pseudo- The broad tissue tropism of VSV-G has its disadvan- types, regardless of producer cell type, will be inacti- tages as well. For certain in vivo gene-therapy applica- vated by human serum complement, while vectors tions, it may be important to restrict the transfer and pseudotyped with other envelope glycoproteins such as the MLV amphotropic envelope (Ampho) or RD114 are resistant to inactivation.14,15 Correspondence: PA Escarpe, Cell Genesys Inc., 500 Forbes Blvd. South Owing to the many disadvantages of VSV-G, there is San Francisco, CA 94080, USA 1Department of Neuroscience, University of Michigan, Ann Arbor, MI, considerable interest in examining alternative envelope USA glycoproteins that might have more suitable properties Received 14 May 2003; accepted 03 September 2003 for use with retroviral or lentiviral vectors in gene- gp64-pseudotyped lentiviral vectors in vivo CA Schauber et al 267 transfer applications. Of particular advantage would be transduce three human cell lines. Several independent identification of an envelope that could confer high titer batches of third-generation HIV-1 vector particles carry- in vivo, low cytotoxicity to enable producer cell line ing the gene-encoding green fluorescent protein (GFP) development, resistance to complement and reduced were prepared by transient transfection, and pseudo- ability to transduce APCs. typed with the VSV-G envelope glycoprotein or baculo- We became interested in testing the major envelope virus gp64. The unconcentrated viral supernatants from protein of baculovirus, gp64, for its ability to pseudotype the transfected cells were tested for infectious titer using lentiviral vectors based on the infectivity characteristics 293T, HuH7 human hepatoma and HeLa cells as targets of baculoviral vectors. Baculovirus (Autographa californica (Figure 1a). We found that the gp64-pseudotyped vector nuclear polyhedrosis virus, AcNPV) is an enveloped was infectious in all the three cell lines, with average insect virus that is being developed as a vector for gene titers ranging from 8.1 Â 104 to 1.2 Â 106 transducing therapy.16 Early studies showed that baculovirus vectors units (TU)/ml. The titers of the VSV-G-pseudotyped could efficiently transduce human hepatocyte cell lines vectors ranged from 7.8 Â 105 to 4 Â 106 TU/ml on the and explanted human liver tissue.17,18 Subsequently, it same cell types. The gp64-pseudotyped vector titers were was demonstrated that baculovirus vectors could enter a reduced 25-fold on 293T cells compared to VSV-G, but broader variety of human cell types.19–21 We set out to were only three-fold lower than VSV-G on HuH7 cells. determine whether gp64 could be used to pseudotype The relative titer was the highest on HeLa cells, with other viral vectors and confer high infectivity in cells of gp64 titer (9.3 Â 105 TU/ml) slightly higher than the VSV- hepatic origin, which are primary targets for many gene- G titer (7.8 Â 105 TU/ml). In addition, we found that the therapy applications. Very recently, a report was published that described the use of baculovirus gp64 for pseudotyping HIV-1 a 22 VSVG gp64 vectors. These studies demonstrated that gp64-pseu- 7 dotyped vectors had high titer on several cell lines, and 10 could be concentrated 100-fold by ultracentrifugation. Importantly, it was also shown that gp64 could be 6 constitutively expressed in a stable cell line with no 10 cytotoxic effects.22 The authors showed that this stable cell line could be used to package lentiviral vectors and Titer might enable large-scale production of vectors without 105 regulated expression of the envelope.22 To further explore the utility of gp64 pseudotyping, we carried units/ml) (Transducing out extensive analysis of gp64 for cell and species 4 tropism in vitro, using 24 different target cell lines, and 10 determined the sensitivity of gp64-pseudotyped vectors 293T HeLa 293T HeLa to human complement inactivation. We also scaled up HuH7 HuH7 production of gp64-pseudotyped vectors, and deter- Target cell line mined the binding and elution properties of these vectors b VSVG gp64 during particle purification by anion-exchange chroma- 105 tography. Finally, we carried out two distinct experi- ments to analyze the in vivo transduction efficiency of gp64-pseudotyped vectors. Here we show that gp64 104 confers efficient gene transfer in vivo, and that gp64- pseudotyped vectors are human complement sensitive and have tropism restricted against hematopoietic cells 22 3 including human dendritic cells (DCs). Infectivity 10 Results units/ng p24) (Transducing 102 Baculovirus gp64 envelope protein confers high 293T HuH7 HeLa 293T HuH7 HeLa infectivity to third-generation HIV-1 lentiviral vectors Target cell line Kumar et al22 recently reported that the baculovirus gp64 envelope protein could pseudotype viral vectors based Figure 1 Comparison of VSV-G and gp64 pseudotype titers and on HIV-1. While our vector of choice (also derived from infectivities on three target cell lines. (a) Unconcentrated preparations of third-generation lentiviral vectors carrying a GFP transgene were HIV-1) is slightly different from that used in their produced by transient transfection, and were pseudotyped with either the published studies, we were also interested in using VSV-G (left) or gp64 (right) envelope glycoprotein. These preparations gp64 for pseudotyping, based on the ability of baculo- were assayed for end-point titers on 293T (black bars; n¼3), HuH7 human virus vectors to infect human cell types. Our third- hepatoma (gray bars; n¼5) and HeLa cells (hatched bars; n¼2). Titer generation vector differs in that there are three additional values (TU/ml) were calculated based on % GFP-positive cells, as HIV genes deleted (tat, nef and vpu) and the vector is determined by FACS analysis. Standard deviations of titers determined for 23 independent vector preparations are shown as error bars. (b) To normalize produced through expression of Rev protein in trans. To the TU to total particles in the lentiviral vector preparations, p24Gag confirm that gp64 could also pseudotype this more concentrations in ng/ml were determined by ELISA. Infectivity values advanced HIV vector, pseudotyped lentiviral vector (TU/ng p24Gag) of the preparations were calculated by dividing the titer particles were prepared and tested for their ability to values in (a) in TU/ml by the p24Gag concentrations in ng/ml.
Recommended publications
  • Neutralizing Antibody Against SARS-Cov-2 Spike in COVID-19 Patients, Health Care Workers, and Convalescent Plasma Donors
    TECHNICAL ADVANCE Neutralizing antibody against SARS-CoV-2 spike in COVID-19 patients, health care workers, and convalescent plasma donors Cong Zeng,1,2 John P. Evans,1,2,3 Rebecca Pearson,4 Panke Qu,1,2 Yi-Min Zheng,1,2 Richard T. Robinson,5 Luanne Hall-Stoodley,5 Jacob Yount,5 Sonal Pannu,6 Rama K. Mallampalli,6 Linda Saif,7,8 Eugene Oltz,5 Gerard Lozanski,4 and Shan-Lu Liu1,2,5,8 1Center for Retrovirus Research, 2Department of Veterinary Biosciences, 3Molecular, Cellular and Developmental Biology Program, 4Department of Pathology, 5Department of Microbial Infection and Immunity, and 6Department of Medicine, The Ohio State University (OSU), Columbus, Ohio, USA. 7Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA. 8Viruses and Emerging Pathogens Program, Infectious Diseases Institute, OSU, Columbus, Ohio, USA. Rapid and specific antibody testing is crucial for improved understanding, control, and treatment of COVID-19 pathogenesis. Herein, we describe and apply a rapid, sensitive, and accurate virus neutralization assay for SARS-CoV-2 antibodies. The assay is based on an HIV-1 lentiviral vector that contains a secreted intron Gaussia luciferase (Gluc) or secreted nano-luciferase reporter cassette, pseudotyped with the SARS-CoV-2 spike (S) glycoprotein, and is validated with a plaque-reduction assay using an authentic, infectious SARS-CoV-2 strain. The assay was used to evaluate SARS-CoV-2 antibodies in serum from individuals with a broad range of COVID-19 symptoms; patients included those in the intensive care unit (ICU), health care workers (HCWs), and convalescent plasma donors.
    [Show full text]
  • SARS-Cov-2 RBD Antibodies That Maximize Breadth and Resistance to Escape W ­ 1,15 2,15 3,15 4 Tyler N
    https://doi.org/10.1038/s41586-021-03807-6 Accelerated Article Preview SARS-CoV-2 RBD antibodies that maximize W breadth and resistance to escape E VI Received: 29 March 2021 Tyler N. Starr, N ad in e Czudnochowski, Zhuoming Liu, Fabrizia Zatta, Young-Jun Park, Amin Addetia, Dora Pinto, Martina Beltramello, Patrick Hernandez, AllisonE J. Greaney, Accepted: 6 July 2021 Roberta Marzi, William G. Glass, Ivy Zhang, Adam S. Dingens, John E. B ow en­­, Accelerated Article Preview Published M . Alejandra Tortorici, Alexandra C. W al ls , J as on A. Wojcechowskyj,R Anna De Marco, online 14 July 2021 Laura E. Rosen, Jiayi Zhou, Martin Montiel-Ruiz, Hannah Kaiser, Josh Dillen, Heather Tucker, Jessica Bassi, Chiara Silacci-Fregni, Michael P. Housley,P Julia di Iulio, Gloria Lombardo, Cite this article as: Starr, T. N. et al. Maria Agostini, Nicole Sprugasci, Katja Culap, Stefano Jaconi, Marcel Meury, SARS-CoV-2 RBD antibodies that maximize Exequiel Dellota, Rana Abdelnabi, Shi-Yan Caroline Foo, Elisabetta Cameroni, breadth and resistance to escape. Nature Spencer Stumpf, Tristan I. Croll, Jay C. Nix, ColinE Havenar-Daughton, Luca Piccoli, https://doi.org/10.1038/s41586-021-03807-6 Fabio Benigni, Johan Neyts, Amalio Telenti, Florian A. Lempp, Matteo S. Pizzuto, (2021). John D. Chodera, Christy M. Hebner, HerbertL W. Virgin, Sean P. J. Whelan, David Veesler, Davide Corti, Jesse D. Bloom & Gyorgy Snell I C This is a PDF fle of a peer-reviewed paper that has been accepted for publication. Although unedited, the Tcontent has been subjected to preliminary formatting. Nature is providing this earlyR version of the typeset paper as a service to our authors and readers.
    [Show full text]
  • Spread of a SARS-Cov-2 Variant Through Europe in the Summer of 2020
    Article Spread of a SARS-CoV-2 variant through Europe in the summer of 2020 https://doi.org/10.1038/s41586-021-03677-y Emma B. Hodcroft1,2,3 ✉, Moira Zuber1, Sarah Nadeau2,4, Timothy G. Vaughan2,4, Katharine H. D. Crawford5,6,7, Christian L. Althaus3, Martina L. Reichmuth3, John E. Bowen8, Received: 25 November 2020 Alexandra C. Walls8, Davide Corti9, Jesse D. Bloom5,6,10, David Veesler8, David Mateo11, Accepted: 28 May 2021 Alberto Hernando11, Iñaki Comas12,13, Fernando González-Candelas13,14, SeqCOVID-SPAIN consortium*, Tanja Stadler2,4,92 & Richard A. Neher1,2,92 ✉ Published online: 7 June 2021 Check for updates Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identifed in Spain in early summer 2020 and subsequently spread across Europe. We fnd no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of efective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local eforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings.
    [Show full text]
  • Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-Cov-2 Spike Protein for Neutralization Assays
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051219; this version posted April 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 of 15 Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 Spike protein for neutralization assays Katharine H.D. Crawford 1,2,3, Rachel Eguia 1, Adam S. Dingens 1, Andrea N. Loes 1, Keara D. Malone 1, Caitlin R. Wolf 4, Helen Y. Chu 4, M. Alejandra Tortorici 5,6, David Veesler 5, Michael Murphy 7, Deleah Pettie 7, Neil P. King 5,7, Alejandro B. Balazs 8, and Jesse D. Bloom 1,2,9,* 1 Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; [email protected] (K.D.C.), [email protected] (R.E.), [email protected] (A.S.D.), [email protected] (K.M.), [email protected] (A.N.L.) 2 Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA 3 Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA 4 Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA; [email protected] (C.R.W.), [email protected] (H.Y.C.) 5 Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; [email protected] (M.A.T.), [email protected] (D.V.), [email protected] (M.M.), [email protected] (D.P.), [email protected] (N.P.K.) 6 Institute
    [Show full text]
  • Enhanced Pseudotyping Efficiency of HIV-1 Lentiviral Vectors by A
    Gene Therapy (2012) 19, 761–774 & 2012 Macmillan Publishers Limited All rights reserved 0969-7128/12 www.nature.com/gt ORIGINAL ARTICLE Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein DCJ Carpentier, K Vevis1, A Trabalza, C Georgiadis, SM Ellison, RI Asfahani2 and ND Mazarakis Rabies virus glycoprotein (RVG) can pseudotype lentiviral vectors, although at a lower efficiency to that of vesicular stomatitis virus glycoprotein (VSVG). Transduction with VSVG-pseudotyped vectors of rodent central nervous system (CNS) leads to local neurotropic gene transfer, whereas with RVG-pseudotyped vectors additional disperse transduction of neurons located at distal efferent sites occurs via axonal retrograde transport. Attempts to produce high-titre RVG-pseudotyped lentiviral vectors for preclinical and clinical trials has to date been problematic. We have constructed several chimeric RVG/VSVG glycoproteins and found that a construct bearing the external/transmembrane domain of RVG and the cytoplasmic domain of VSVG shows increased incorporation onto HIV-1 lentiviral particles and has increased infectivity in vitro in 293T cells and in differentiated neuronal cell lines of human, rat and murine origin. Stereotactic application of vector pseudotyped with this RVG/VSVG chimera in the rat striatum resulted in efficient gene transfer at the site of injection showing both neuronal and glial tropism. Distal neuronal transduction in the substantia nigra, thalamus and olfactory bulb via retrograde axonal transport also occurs after intrastriatal administration of chimera-pseudotyped vectors at similar levels to that observed with a RVG-pseudotyped vector. This is the first report of distal transduction in the olfactory bulb.
    [Show full text]
  • Biosafety Manual
    Office of Environment, Health & Safety Biosafety Manual Table of Contents Introduction 2 Institutional Review of Biological Research 3 Introduction to CLEB 3 Prerequisites to Initiation of Work 3 Completion and Submission of the BUA Application 4 Committee Review and Approval of Applications 7 Amending the BUA 9 Risk Assessment 10 Classification of Agents by Risk Group 10 Recombinant DNA 11 Risk Factors of the Agents 13 Exposure Sources 13 Containment of Biological Agents 15 Biosafety Levels 15 Practices and Procedures 16 Engineering Controls 19 Waste Disposal 23 Emergency Plans and Reporting 25 Spill Cleanup Procedures 25 Exposure Response Protocols 28 Reporting 28 Appendix 1: Working with Viral Vectors 29 Adenovirus 32 Adeno-associated Virus 34 Lentivirus 35 Moloney Murine Leukemia Virus (MoMuLV or MMLV) 37 Rabies virus 38 Sendai virus 41 References 42 Appendix 2: Important Contact Information 43 Appendix 3: Bloodborne Pathogen Considerations 44 Appendix 4: Useful Resources 45 1 Section I. Introduction UC Berkeley is committed to maintaining a healthy and safe workplace for all laboratory workers, students and visitors. This manual is an overview of the administrative steps necessary to obtain and maintain approval for the use of biological materials in laboratories, as well as a reference for good work prac- tices and safe handling of other potentially infectious materials (OPIM). A variety of procedures are conducted on campus which use many different agents. This manual addresses the biological hazards frequently encountered in labora- tories. Biological hazards include infectious or toxic microorganisms (including viral vectors), potentially infectious human substances, and research animals and their tissues, in cases from which transmission of infectious agents or tox- ins is reasonably anticipated.
    [Show full text]
  • Broad Sarbecovirus Neutralization by a Human Monoclonal Antibody
    Article Broad sarbecovirus neutralization by a human monoclonal antibody https://doi.org/10.1038/s41586-021-03817-4 M. Alejandra Tortorici1,2,9, Nadine Czudnochowski3,9, Tyler N. Starr4,9, Roberta Marzi5,9, Alexandra C. Walls1, Fabrizia Zatta5, John E. Bowen1, Stefano Jaconi5, Julia Di Iulio3, Received: 29 March 2021 Zhaoqian Wang1, Anna De Marco5, Samantha K. Zepeda1, Dora Pinto5, Zhuoming Liu6, Accepted: 9 July 2021 Martina Beltramello5, Istvan Bartha5, Michael P. Housley3, Florian A. Lempp3, Laura E. Rosen3, Exequiel Dellota Jr3, Hannah Kaiser3, Martin Montiel-Ruiz3, Jiayi Zhou3, Amin Addetia4, Published online: 19 July 2021 Barbara Guarino3, Katja Culap5, Nicole Sprugasci5, Christian Saliba5, Eneida Vetti5, Check for updates Isabella Giacchetto-Sasselli5, Chiara Silacci Fregni5, Rana Abdelnabi7, Shi-Yan Caroline Foo7, Colin Havenar-Daughton3, Michael A. Schmid5, Fabio Benigni5, Elisabetta Cameroni5, Johan Neyts7, Amalio Telenti3, Herbert W. Virgin3, Sean P. J. Whelan6, Gyorgy Snell3, Jesse D. Bloom4,8, Davide Corti5 ✉, David Veesler1 ✉ & Matteo Samuele Pizzuto5 ✉ The recent emergence of SARS-CoV-2 variants of concern1–10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not afected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain.
    [Show full text]
  • Viral Vectors 101 a Desktop Resource
    Viral Vectors 101 A Desktop Resource Created and Compiled by Addgene www.addgene.org August 2018 (1st Edition) Viral Vectors 101: A Desktop Resource (1st Edition) Viral Vectors 101: A desktop resource This page intentionally left blank. 2 Chapter 1 - What Are Fluorescent Proteins? ViralViral Vectors Vector 101: A Desktop Resource (1st Edition) ViralTHE VectorsHISTORY 101: OFIntroduction FLUORESCENT to this desktop PROTEINS resource (CONT’D)By Tyler J. Ford | July 16, 2018 Dear Reader, If you’ve worked with mammalian cells, it’s likely that you’ve worked with viral vectors. Viral vectors are engineered forms of mammalian viruses that make use of natural viral gene delivery machineries and that are optimized for safety and delivery. These incredibly useful tools enable you to easily deliver genes to mammalian cells and to control gene expression in a variety of ways. Addgene has been distributing viral vectors since nearly its inception in 2004. Since then, our viral Cummulative ready-to-use virus distribution through June 2018. vector collection has grown to include retroviral vectors, lentiviral vectors, adenoviral vectors, and adeno-associated viral vectors. To further enable researchers, we started our viral service in 2017. Through this service, we distribute ready-to- use, quality-controlled AAV and lentivirus for direct use in experiments. As you can see in the chart to the left, this service is already very popular and its use has grown exponentially. With this Viral Vectors 101 eBook, we are proud to further expand our viral vector offerings. Within it, you’ll find nearly all of our viral vector educational content in a single downloadable resource.
    [Show full text]
  • Pseudotyping of VSV with Ebola Virus Glycoprotein Is Superior to HIV-1 For
    www.nature.com/scientificreports OPEN Pseudotyping of VSV with Ebola virus glycoprotein is superior to HIV‑1 for the assessment of neutralising antibodies Kimberley Steeds1, Yper Hall1, Gillian S. Slack1, Stephanie Longet1, Thomas Strecker2, Sarah Katharina Fehling2, Edward Wright3, Joseph Akoi Bore4, Fara Raymond Koundouno5, Mandy Kader Konde6, Roger Hewson1, Julian A. Hiscox7, Georgios Pollakis7 & Miles W. Carroll1* Ebola virus (EBOV) is an enveloped, single-stranded RNA virus that can cause Ebola virus disease (EVD). It is thought that EVD survivors are protected against subsequent infection with EBOV and that neutralising antibodies to the viral surface glycoprotein (GP) are potential correlates of protection. Serological studies are vital to assess neutralising antibodies targeted to EBOV GP; however, handling of EBOV is limited to containment level 4 laboratories. Pseudotyped viruses can be used as alternatives to live viruses, which require high levels of bio‑containment, in serological and viral entry assays. However, neutralisation capacity can difer among pseudotyped virus platforms. We evaluated the suitability of EBOV GP pseudotyped human immunodefciency virus type 1 (HIV‑1) and vesicular stomatitis virus (VSV) to measure the neutralising ability of plasma from EVD survivors, when compared to results from a live EBOV neutralisation assay. The sensitivity, specifcity and correlation with live EBOV neutralisation were greater for the VSV‑based pseudotyped virus system, which is particularly important when evaluating EBOV vaccine responses and immuno‑therapeutics. Therefore, the EBOV GP pseudotyped VSV neutralisation assay reported here could be used to provide a better understanding of the putative correlates of protection against EBOV. Ebola virus (EBOV), a member of the family Filoviridae, is an enveloped, single-stranded RNA virus that can cause Ebola virus disease (EVD), a highly lethal illness with up to 90% mortality 1.
    [Show full text]
  • Vesiculovirus G Protein-Based Stable Cell Lines for Continuous Lentiviral Vector Production
    Vesiculovirus G protein-based stable cell lines for continuous lentiviral vector production Maha Tijani Thesis submitted for the degree of Doctor of Philosophy Infection and Immunity University College London 2018 Declaration I, Maha Tijani, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Lentiviral vectors (LV) are often pseudotyped with the envelope G protein from vesicular stomatitis virus Indiana strain (VSVind.G). However, VSVind.G based continuous LV producer cell lines have not been reported; it has been assumed that VSVind.G is fusogenic and cytotoxic. To find alternative G proteins for LV production, we investigated other vesiculovirus G proteins (VesG) from VSV New Jersey strain (VSVnj), Cocal virus (COCV), Piry virus (PIRYV), VSV Alagoas virus (VSVala), and Maraba virus (MARAV). All these VesG envelopes were used in transient transfection to produce infectious particles that were robust during concentration and freeze-thawing. We then found, surprisingly, that VSVind.G and all the other VesG proteins could be constitutively expressed in 293T cells, and showed no cytotoxicity when compared to a retroviral Env protein. These VesG expressing cells could support LV production when other components were transiently supplied. However, we showed that VesG expressing cells do not show receptor interference hence LV can superinfect their producer cells, resulting in vector genome accumulation and possible toxicity. We attempted to knock-out the low- density lipoprotein receptor (LDLR) gene on producer cells, which was reported to be the primary cell entry receptor for VSVind.G.
    [Show full text]
  • Endoplasmic Reticulum Chaperone Gp96 Is Essential for Infection with Vesicular Stomatitis Virus
    Endoplasmic reticulum chaperone gp96 is essential for infection with vesicular stomatitis virus Stuart Bloora, Jonathan Maelfaitb,c, Rebekka Krumbacha, Rudi Beyaertb,c, and Felix Randowa,1 aDivision of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge CB0 2QH, United Kingdom; bUnit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium; and cDepartment of Molecular Biology, Ghent University, B-9052 Ghent, Belgium Edited* by Douglas T. Fearon, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom, and approved March 11, 2010 (received for review July 30, 2009) The envelope glycoprotein of vesicular stomatitis virus (VSV-G) MyD88, causes severe immunodeficiency (11). The export of enables viral entry into hosts as distant as insects and vertebrates. TLRs from the endoplasmic reticulum to their final destination Because of its ability to support infection of most, if not all, human is tightly regulated; MD-2 (12), Unc93B1 (13), and Prat4A (14) cell types VSV-G is used in viral vectors for gene therapy. However, control the export of limited TLR subsets, whereas gp96 (also neither the receptor nor any specific host factor for VSV-G has been known as grp94) is required for the functionality of multiple identified. Here we demonstrate that infection with VSV and innate TLRs (15). gp96, a member of the hsp90 family of chaperones, is immunity via Toll-like receptors (TLRs) require a shared component, one of the most abundant ER resident proteins. However, the endoplasmic reticulum chaperone gp96. Cells without gp96 or despite its ubiquitous and high level expression, gp96 chaperones with catalytically inactive gp96 do not bind VSV-G.
    [Show full text]
  • Lentiviral Vectors Pseudotyped with Glycoproteins from Ross River and Vesicular Stomatitis Viruses: Variable Transduction Related to Cell Type and Culture Conditions
    ARTICLE doi:10.1016/j.ymthe.2004.08.032 Lentiviral Vectors Pseudotyped with Glycoproteins from Ross River and Vesicular Stomatitis Viruses: Variable Transduction Related to Cell Type and Culture Conditions Christoph A. Kahl,1 Karen Pollok,2 Laura S. Haneline,2,3 and Kenneth Cornetta1,3,4,* 1Department of Medical and Molecular Genetics, 2Department of Pediatrics, 3Department of Microbiology and Immunology, and 4Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA *To whom correspondence and reprint requests should be addressed at the Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA. Fax: +1 (317) 278-2262. E-mail: [email protected]. HIV-1-derived lentiviral vectors have been pseudotyped with various envelope glycoproteins to alter their host range. Previously, we found that envelope glycoproteins derived from the alphavirus Ross River virus (RRV) can pseudotype lentiviral vectors and mediate efficient transduction of a variety of epithelial and fibroblast-derived cell lines. In this study, we have investigated transduction of hematopoietic cells using RRV-pseudotyped vectors encoding the enhanced green fluorescent protein (EGFP). RRV-mediated transduction of human CD34+ cord blood cells and progenitors was very inefficient, even at multiplicities of infection of 100 (0.4% EGFP-positive progenitor colonies). Inefficient transduction was also observed in a variety of hematopoietic cell lines. However, two erythroleukemia-derived cell lines and monocytic cells that were driven to macrophage-like differentiation were moderately transduced. Transduction of hematopoietic cells with a control VSV-G-pseudotyped lentiviral vector was generally efficient, but unexpectedly decreased up to threefold upon stimulation of lymphocytic cell lines or primary murine bone marrow cells.
    [Show full text]