Towards Foundry Pdks on Free CAD Tools
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amateur Radio Software Distributed with (X)Ubuntu LTS Serge Stroobandt, ON4AA
Amateur Radio Software Distributed with (X)Ubuntu LTS Serge Stroobandt, ON4AA Copyright 2014–2018, licensed under Creative Commons BY-NC-SA Introduction Amateur radio (also called “ham radio”), is a technical hobby Many ham radio stations are highly integrated with computers. Radios are interfaced with com- puters to aid with contact logging, propagation prediction, station spotting, antenna steering, signal (de)modulation and filtering. For many years, amateur radio software has been a bastion of Windows™ ap- plications developed by However, with the advent of the Rasperry Pi, amateur radio hobbyists are slowly but surely discovering GNU/Linux. Most of the software for GNU/Linux is available through package repositories. Such package repositories come by default with the GNU/Linux distribution of your choice. Package management systems offer many benefits in the form of security (you know what you are getting from whom) and ease-of-use (packages are upgraded automatically). No longer does one need to wander the back corners of the internet to find wne or updated software, exposing oneself to the risk of catching a computer virus. A number of GNU/Linux distributions offer freely installable ham-related packages under the “Amateur Radio” section of their main repository. The largest collection of ham radio packages is offeredy b OpenSuse and De- bian-derived distributions like Xubuntu LTS and Linux Mint, to name but a few. Arch Linux may also have whole bunch of ham related software in the Arch User Repository (AUR). 1 Synaptic One way to find and tallins ham radio packages on Debian-derived distros is by using the Synaptic graphical package manager (see Figure 1). -
DC/DC CONTROLLER Selection Guide
DC/DC CONTROLLER Selection Guide Visit analog.com 2 DC/DC Controller Contents ADI provides complete power solutions with a full lineup of power management products. This brochure shows an overview of our high performance DC/DC switching regulator controllers for applications including industrial, datacom, telecom, automotive, computing infrastructure, and consumer electronics. We make power design easier with our LTpowerCAD® and LTspice® simulation programs and our industry-leading field application engineering support. A broad selection of demonstration boards are available which includes layout and bill of material files, application notes and comprehensive technical documentation. LTpowerCAD . 3 LED Drivers . 15. LTpowerCAD Power Supply Design Tool Bidirectional . 16 LTspice . .4 . Benefits of Using LTspice SEPIC . 18 . LTspice Demo Circuits Inverter . 19 Single Output Buck . 5 Switching Surge Stoppers . 20 . VIN Up to 22 V, Down to 2.2 V. 5 VIN Up to 38 V . 6 Isolated Forward, Half-Bridge, Full-Bridge, and Push-Pull . .21 . VIN Up to 60 V . 7 VIN Up to 150 V. .8 Flyback . 22. Hybrid . 9 Multiple Topology . 23 Multiphase Single Output Buck . 10. DDR/QDR Memory Termination . 24. Multiple Output Buck . 11 . MOSFET Drivers . 25 Boost. .12 . Digital . Power System Management . 26. Buck-Boost . 13. LTpowerPlay . 27. Buck/Buck/Boost—Ideal for Automotive Start-Stop Systems. .14 . Visit analog.com 3 LTpowerCAD LTpowerCAD is an easy-to-use power supply design tool with a user-friendly and load transient performances. Once a circuit design is completed, graphical user interface and power design features. It supports many power it can be easily exported to the LTspice simulation platform. -
Alexis Rodriguez Jr
Alexis Rodriguez Jr. 701 SW 62nd Blvd - Apt 104 - Gainesville - FL - 32604 Cell: 305-370-8334 Email: [email protected] Education: University of Florida Gainesville, FL Current M.S. Computer and Electrical Engineering University of Florida Gainesville, FL 2018 B.S. Electrical Engineering - Cum Laude Miami Dade College Miami, FL 2013 A.A. Engineering - Computer Projects: FPGA Networking Research Current Nallatech 385a Communication Research Current Glove Controlled Drone Design 2 Fall 2017 32-bit ARM Cortex (TI MSP432) used to interpret hand gestures via sensors for drone flight, transmit user intended controls to the drone via RF communication, and detect and display communication errors and react accordingly for safety 32-bit MIPS Emulated Processor Digital Design Spring 2017 Altera Cyclone-III FPGA used to emulate MIPS processor via VHDL Guitar Tuner Design 1 Spring 2017 Microchip PIC18F4620 microcontroller and discrete analog components used to determine correct input frequency via analog filtering and DSP techniques Employment: University of Florida - ARC Lab Gainesville, FL Current Research Assistant - FPGA ❖ Research systems integration of Nallatech 385a FPGA card and its components including the Intel Arria 10 FPGA, Intel’s Avalon bus, and PCIe communication via Linux ❖ Create partial reconfiguration region for Nallatech 385a for general use in research lab ❖ Research cloud and network implementations of FPGAs Intel San Jose, CA Summer 2019/2020 Programmable Solutions Group Intern ❖ Assisted with Agilex Linux driver development ❖ ITU G spec testing compliance and characterization for IEEE 1588 on Intel N3000 ❖ Developed automated tools for ITU network timestamp testing ❖ System validation of IEEE 1588 for Wireless 5G technology and communicated need and data across many teams ❖ Developed Arduino workshop for hobbyists Alexis Rodriguez Jr. -
Experiences in Using Open Source Software for Teaching Electronic Engineering CAD
Experiences in Using Open Source Software for Teaching Electronic Engineering CAD Dr Simon Busbridge1 & Dr Deshinder Singh Gill School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ [email protected] Abstract Embedded systems and simulation distinguish modern professional electronic engineering from that learnt at school. First year undergraduates typically have little appreciation of engineering software capabilities and file handling beyond elementary word processing. This year we expedited blended teaching through the experiential based learning process via open source engineering software. Students engaged with the entire electronic engineering product creation process from inception, performance simulation, printed circuit board design, manufacture and assembly, to cabinet design and complete finished product. Currently students learn software skills using a mixture of electronic and mechanical engineering software packages. Although these have professional capability they are not available off-campus and are sometimes surprisingly poor in simulating real world devices. In this paper we report use of LTspice, FreePCB and OpenSCAD for the learning and teaching of analogue electronics simulation and manufacture. Comparison of the software options, the type of tasks undertaken, examples of student assignments and outputs, and learning achieved are presented. Examples of assignment based learning, integration between the open source packages and difficulties encountered are discussed. Evaluation of student attitudes and responses to this method of learning and teaching are also discussed, and the educational advantages of using this approach compared to the use of commercial packages is highlighted. Introduction Most educational establishments use software for simulating or designing engineering. Most commercial packages come with an academic licence which restricts access to on-site computers. -
Elementary Filter Circuits
Modular Electronics Learning (ModEL) project * SPICE ckt v1 1 0 dc 12 v2 2 1 dc 15 r1 2 3 4700 r2 3 0 7100 .dc v1 12 12 1 .print dc v(2,3) .print dc i(v2) .end V = I R Elementary Filter Circuits c 2018-2021 by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License Last update = 13 September 2021 This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International Public License. A copy of this license is found in the last Appendix of this document. Alternatively, you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. ii Contents 1 Introduction 3 2 Case Tutorial 5 2.1 Example: RC filter design ................................. 6 3 Tutorial 9 3.1 Signal separation ...................................... 9 3.2 Reactive filtering ...................................... 10 3.3 Bode plots .......................................... 14 3.4 LC resonant filters ..................................... 15 3.5 Roll-off ........................................... 17 3.6 Mechanical-electrical filters ................................ 18 3.7 Summary .......................................... 20 4 Historical References 25 4.1 Wave screens ........................................ 26 5 Derivations and Technical References 29 5.1 Decibels ........................................... 30 6 Programming References 41 6.1 Programming in C++ ................................... 42 6.2 Programming in Python .................................. 46 6.3 Modeling low-pass filters using C++ ........................... 51 7 Questions 63 7.1 Conceptual reasoning ................................... -
Getting Started in High Performance Electronic Design
Getting started in high performance electronic design Wojtek Skulski Department of Physics and Astronomy University of Rochester Rochester, NY 14627-0171 skulski _at_ pas.rochester.edu First presented May/23/2002 Updated for the web July/03/2004 Wojtek Skulski May/2002 Department of Physics and Astronomy, University of Rochester Getting started with High performance electronic design • 3-hour class • Designing high performance surface mount and multilayer boards. • What tools and resources are available? • How to get my design manufactured and assembled? • Board design with OrCAD Capture and Layout. • When and where: • Thursday, May/23/2002, 9-12am, Bausch&Lomb room 106 (1st floor). • Slides updated for the web July/03/2004. • Reserve your handout. • Send e-mail to [email protected] if you plan to attend. • Walk-ins are invited, but there may be no handouts if you do not register. • See you there! Wojtek Skulski May/2002 Department of Physics and Astronomy, University of Rochester The goal and outline of this class • Goal: • Describe the tools available to us for designing high performance electronic instruments. • Outline • Why do we need surface mount and multilayer boards? • What tools and resources are available? • How to get my PCB manufactured? • How to get my board assembled? • Designing with OrCAD Capture and OrCAD Layout. • The audience • You know the basics of electronics. • … and you need to get going quickly with your design. Wojtek Skulski May/2002 Department of Physics and Astronomy, University of Rochester Disclaimer • I am describing tools and methods which work for me. • I do not claim that this information is complete. -
Nanoelectronic Mixed-Signal System Design
Nanoelectronic Mixed-Signal System Design Saraju P. Mohanty Saraju P. Mohanty University of North Texas, Denton. e-mail: [email protected] 1 Contents Nanoelectronic Mixed-Signal System Design ............................................... 1 Saraju P. Mohanty 1 Opportunities and Challenges of Nanoscale Technology and Systems ........................ 1 1 Introduction ..................................................................... 1 2 Mixed-Signal Circuits and Systems . .............................................. 3 2.1 Different Processors: Electrical to Mechanical ................................ 3 2.2 Analog Versus Digital Processors . .......................................... 4 2.3 Analog, Digital, Mixed-Signal Circuits and Systems . ........................ 4 2.4 Two Types of Mixed-Signal Systems . ..................................... 4 3 Nanoscale CMOS Circuit Technology . .............................................. 6 3.1 Developmental Trend . ................................................... 6 3.2 Nanoscale CMOS Alternative Device Options ................................ 6 3.3 Advantage and Disadvantages of Technology Scaling . ........................ 9 3.4 Challenges in Nanoscale Design . .......................................... 9 4 Power Consumption and Leakage Dissipation Issues in AMS-SoCs . ................... 10 4.1 Power Consumption in Various Components in AMS-SoCs . ................... 10 4.2 Power and Leakage Trend in Nanoscale Technology . ........................ 10 4.3 The Impact of Power Consumption -
LT Spice – Getting Started Very Quickly – Part II Single Supply AC
LT Spice – Getting Started Very Quickly – Part II Single Supply AC Coupled Inverting OpAmp Experimentation 1. Starting with the typical dc coupled inverting opamp circuit created earlier in Part I., we simply have to move the input voltage source to the left and insert a 1uF cap Between the voltage source a series input resistor. 2. Right click over the capacitor and type in a value of 1u for 1 micro-farad. Units relating to capacitors are p for pico, n for nano and u for micro. 3. Change the gain from -4 to -10 By increasing the feedBack resistor from 4000 ohms to 10K ohms. This gain will Be useful when we have to compute the 20*log of the voltage output later. 4. If you now run the dc sweep you will see there is no output because the input is being blocked (dc value) to the series input resistor. Instead of a dc sweep we now need to chance the simulation to AC Analysis. First use the Scissor icon and delete the .dc V3 1.25 2.05 0.1 LT Spice directive on the breadboard. Then go into Simulation > Edit Simulation Cmd and remove the spice directive at the Bottom of the DC Sweep taB. This removes the DC Sweep simulation which is no longer meaningful since we now have an AC coupled circuit. 5. Next select the AC Analysis tab. Select a linear sweep from 20 to 20K Hz By typing 20 in the Start Frequency: field & 20k in Stop Frequency: field. As in resistive input k = kilo and MEG = mega. -
Pcb-20050609 an Interactive Printed Circuit Board Layout System for X11
1 Pcb-20050609 an interactive printed circuit board layout system for X11 harry eaton i Table of Contents Copying ...................................... 1 History ....................................... 2 1 Overview .................................. 4 2 Introduction ............................... 5 2.1 Symbols .................................................... 5 2.2 Vias........................................................ 5 2.3 Elements ................................................... 5 2.4 Layers ...................................................... 7 2.5 Lines ....................................................... 8 2.6 Arcs........................................................ 9 2.7 Polygons ................................................... 9 2.8 Text ...................................................... 10 2.9 Nets....................................................... 10 3 Getting Started........................... 11 3.1 The Application Window ................................... 11 3.1.1 Menus ................................................ 11 3.1.2 The Status-line and Input-field ......................... 14 3.1.3 The Panner Control.................................... 14 3.1.4 The Layer Controls .................................... 15 3.1.5 The Tool Selectors ..................................... 16 3.1.6 Layout Area........................................... 18 3.2 Log Window ............................................... 18 3.3 Library Window ........................................... 18 3.4 Netlist Window -
Ngspice User Manual
Ngspice User’s Manual Version 35 plus (ngspice development version) Holger Vogt, Marcel Hendrix, Paolo Nenzi, Dietmar Warning September 27, 2021 2 Locations The project and download pages of ngspice may be found at Ngspice home page http://ngspice.sourceforge.net/ Project page at SourceForge http://sourceforge.net/projects/ngspice/ Download page at SourceForge https://sourceforge.net/projects/ngspice/files/ng-spice- rework/ Git source download https://sourceforge.net/p/ngspice/ngspice/ci/master/tree/ Status This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely needed. You are invited to report bugs, missing items, wrongly described items, bad English style, etc. How to use this Manual The manual is a “work in progress.” It may accompany a specific ngspice release, e.g. ngspice-35 as manual version 35. If its name contains ‘Version xxplus’, it describes the actual code status, found at the date of issue in the Git Source Code Management (SCM) tool. This manual is intended to provide a complete description of ngspice’s functionality, features, commands, and procedures. This manual is not a book about learning SPICE usage, however the novice user may find some hints how to start using ngspice. Chapter 21.1 gives a short introduction how to set up and simulate a small circuit. Chapter 32 is about compiling and installing ngspice from a tarball or the actual Git source code, which you may find on the ngspice web pages. If you are running a specific Linux distribution, you may check if it provides ngspice as part of the package. -
Printed Circuit Board Design
Printed Circuit Board Design ECE 3400 [email protected] Agenda • What is a PCB? Should I use a PCB? • Design example • Component selection • Schematic design • Layout basics • Layout Considerations • Trace Width, Pours, Thermals • Grounding • Decoupling • High-Frequency considerations • 3D Modelling • Testing • Mistakes • Other • Eagle demo if time What is a PCB? • Interleaved layers of copper and insulator • Number of layers = number of copper layers Useful Terms TRACE Trace VIA Copper path (equivalent of wire) Via Hole in board with connection between layers Useful Terms Pad Exposed copper for component placement Package SMD Package Pads Casing for a component with metal leads coming out. Usually black plastic. Thru-Hole Surface Mount (SMT/SMD) Components that can be soldered onto pads, not through-holes PCB Tradeoffs Pros Cons • Permanence/Reliability • Permanence • Space-Savings • Lead-Time • Simple to Manufacture • Isolation • Immune to movement • High-Frequency Effects • Better grounding • Testability • Thermal Management PCB Manufacturing • Etching – Primarily used in industry, best tolerances • Milling – Drill/Cut undesired copper • Printing – Specialized conductive nano-inks • Direct Plating • Direct Cutting Design Process 1) Specifications 2) Topology & Component Selection 3) Schematic 4) Simulation 5) Layout 6) Print 1:1 on paper and check 7) Export Gerbers and Order 8) Solder 9) Testing/Verification 10) Use Design Example – IR Hat 1) Specifications What should it do? How well? In what conditions? Given: Make a PCB which emits -
Water Aliasing
Water Aliasing Design Review TA: Luke Wendt ECE 445 March 10, 2017 Project Contributors: Atreyee Roy Siddharth Sharma 1 Table of Contents 1. Introduction .................................................................................................................... 3 1.1 Objective ........................................................................................................ 3 1.2 Background .................................................................................................... 3 1.3 High Level Requirements .............................................................................. 3 2. Design ............................................................................................................................. 4 2.1 Block Diagram ................................................................................................ 4 2.2 Physical Design ............................................................................................... 6 2.3 Block Design ................................................................................................... 7 2.3.1 Lighting Unit ....................................................................................... 7 2.3.2 User Interface ...................................................................................... 13 2.3.3 Water Unit ........................................................................................... 14 2.3 Risk Analysis ..................................................................................................