Safety Evaluation of Certain Food Additives

Total Page:16

File Type:pdf, Size:1020Kb

Safety Evaluation of Certain Food Additives WHO FOOD ADDITIVES SERIES: 73 Prepared by the eighty-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Safety evaluation of certain food additives WHO FOOD ADDITIVES SERIES: 73 Prepared by the eighty-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Safety evaluation of certain food additives World Health Organization, Geneva, 2017 Safety evaluation of certain food additives: prepared by the Eighty-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva: World Health Organization; 2017 (WHO Food Additives Series, No. 73). Cataloguing-in-Publication data are available at http://apps.who.int/iris. ISBN 978-92-4-166073-0 ISBN (PDF) 978-92-4-069646-4 ISSN 0300-0923 © WHO and FAO, 2017 All rights reserved. The World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) encourage the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, provided that appropriate acknowledgement of WHO and FAO as the source and copyright holder is given and that WHO and FAO’s endorsement of users’ views, products or services is not implied in any way. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO website (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WHO or of FAO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that the are or have been endorsed or recommended by WHO or FAO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by WHO and FAO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO and FAO be liable for damages arising from its use. The views expressed herein are those of the authors and do not necessarily represent those of WHO or FAO. Design: Rania Spatha (www.raniaspatha.com) Printed in Malta CONTENTS Preface v Safety evaluations of specific food additives (other than flavouring agents) 1 Allura Red AC (addendum) 3 Carob bean gum (addendum)1 47 Pectin (addendum)1 73 Quinoline Yellow (addendum) 87 Rosemary extract 123 Steviol glycosides (addendum) 181 Tartrazine (addendum) 219 Xanthan gum 1 269 Safety evaluations of groups of related flavouring agents 327 Introduction 329 Alicyclic, alicyclic-fused and aromatic-fused ring lactones (addendum) 333 Aliphatic and aromatic amines and amides (addendum) 343 Aliphatic secondary alcohols, ketones and related esters (addendum) 383 Cinnamyl alcohol and related substances (addendum) 403 Tetrahydrofuran and furanone derivatives (addendum) 437 Annex 1 Reports and other documents resulting from previous meetings of the Joint FAO/WHO Expert Committee on Food Additives 467 Annex 2 Abbreviations used in the monographs 479 Annex 3 Participants in the eighty-second meeting of the Joint FAO/WHO Expert Committee on Food Additives 483 Annex 4 Toxicological and dietary exposure information and information on specifications 487 1 For use in infant formula and formula for special medical purposes intended for infants. iii PREFacE The monographs contained in this volume were prepared at the eighty-second meeting of the Joint Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) Expert Committee on Food Additives (JECFA), which met at WHO headquarters in Geneva, Switzerland, on 7–16 June 2016. These monographs summarize the data on selected food additives, including flavouring agents, reviewed by the Committee. The eighty-second report of JECFA has been published by WHO as WHO Technical Report No. 1000. Reports and other documents resulting from previous meetings of JECFA are listed in Annex 1. The participants in the meeting are listed in Annex 3 of the present publication. A summary of the conclusions of the Committee with respect to the food additives discussed at the meeting is given in Annex 4. JECFA serves as a scientific advisory body to FAO, WHO, their Member States and the Codex Alimentarius Commission, primarily through the Codex Committee on Food Additives, the Codex Committee on Contaminants in Food and the Codex Committee on Residues of Veterinary Drugs in Foods, regarding the safety of food additives, residues of veterinary drugs, naturally occurring toxicants and contaminants in food. Committees accomplish this task by preparing reports of their meetings and publishing specifications or residue monographs and dietary exposure and toxicological monographs, such as those contained in this volume, on substances that they have considered. The monographs contained in this volume are based on working papers that were prepared by WHO experts. A special acknowledgement is given at the beginning of each monograph to those who prepared these working papers. The monographs were edited by J. Odrowaz, Toronto, Canada. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the organizations participating in WHO concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the organizations in preference to others of a similar nature that are not mentioned. Any comments or new information on the biological or toxicological properties of or dietary exposure to the compounds evaluated in this publication should be addressed to: WHO Joint Secretary of the Joint FAO/WHO Expert Committee on Food Additives, Department of Food Safety and Zoonoses, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland. v SAFETY EVALUATIONS OF SPECIFIC FOOD ADDITIVES (OTHER THAN FLAVOURING AGENTS) 1 Allura Red AC (addendum) First draft prepared by Xudong Jia,1 Janis Baines,2 Julie N. Barrows,3 Michael DiNovi,4 Josef Schlatter5 and Harriet C. Wallin6 1 China National Centre for Food Safety Risk Assessment, Beijing, China 2 Food Standards Australia New Zealand, Barton, Australian Capital Territory, Australia 3 Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America (USA) 4 Division of Biotechnology and GRAS Notice Review, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA 5 Zurich, Switzerland 6 Helsinki, Finland 1. Explanation 4 1.1 Chemical and technical considerations 4 2. Biological data 5 2.1 Biochemical aspects 5 2.1.1 Absorption, distribution and excretion 5 2.1.2 Biotransformation 5 2.1.3 Effects on enzymes 6 2.2 Toxicological studies 7 2.2.1 Acute toxicity 7 2.2.2 Short-term studies of toxicity 7 2.2.3 Long-term studies of toxicity and carcinogenicity 8 2.2.4 Genotoxicity 11 2.2.5 Reproductive and developmental toxicity 15 2.2.6 Special studies 18 2.3. Observations in humans 20 2.3.1 Epidemiological studies 20 2.3.2 Hypersensitivity studies 21 2.3.3 Skin sensitization studies 21 3. Dietary exposure 22 3.1 Food uses 22 3.2 Assessment of dietary exposure 27 3.2.1 Estimates of dietary exposure 27 3.2.2 National estimates of dietary exposure 28 3.2.3 General conclusions 36 4. Comments 37 4.1 Biochemical aspects 37 4.2 Toxicological studies 37 4.3 Observations in humans 39 4.4 Assessment of dietary exposure 40 5. Evaluation 41 6. References 41 3 Safety evaluation of certain food additives Eighty-second JECFA 1. Explanation Allura Red AC (International Numbering System for Food Additives [INS] No. 129) is a monoazo dye that is widely used as a synthetic food colour in many countries around the world. The Committee previously evaluated Allura Red AC at its eighteenth, twenty-third, twenty-fourth and twenty-fifth meetings (Annex 1, references 35, 50, 53 and 56). At its twenty-fourth meeting, the Committee established a temporary acceptable daily intake (ADI) of 0–7 mg/kg body weight (bw) based on long-term rat studies. At its twenty-fifth meeting, the Committee established a full ADI of 0–7 mg/kg bw. At the present meeting, the Committee re-evaluated this colour at the request of the Forty-seventh Session of the Codex Committee on Food Additives (FAO/WHO, 2015). In response to the Committee’s request for further data, new studies on biochemical effects, genotoxicity, reproductive and developmental toxicity, neurobehavioural effects and studies in humans (International Association of Colour Manufacturers, 2015) were submitted. The Committee also considered other related information available in the literature. The search of the scientific literature was conducted in March 2016 using the PubMed database of the United States National Library of Medicine.
Recommended publications
  • Download Product Catalog
    Premium Vermouth 17% vol. This vermouth contains more than 20 natural extracts. Herbs, roots, flowers, spices and fruits have been macerated with the wine which instils the aroma and characteristic bitterness with a distinctive elegance. Reserve White Vermouth 17% vol. Macerated with more than 20 natural extracts, on a reserve white wine based with oxidative aging, grape must and wine alcohol. This vermouth surprises with its finesse and character. It is complex, long, but at the same time easy to drink. Golden yellow bright with sweet notes and a subtly bitter ending. Premium Sangria 8,5% vol. Made with red wine, grape must, the juice of natural citrus fruits, raw cinammon and vanilla pods. The only sugars and acids come from the fruit itself. Gold medal at Convino 2018 Handcrafted Premium Gin 42,5% vol. Bronce medal at IWSC 2019 Cabecita Loca Essential Gin is produced in limited quantities out in the ‘Somontano de Barbastro’ (in the foothills of the Pyrenees) using select grape distillate enhanced with botanic extracts – predominantly juniper berries (‘chinebro’ in Aragonese). Some 5% of the sales of this gin are used to maintain the rich environment of our lands. This is realised through the preservation of the juniper, part of the flora found in the foothills of the Pyrenees, working primarily on the unique flora requiring recovery, classification and tagging. Vintage 2017 100% Cabernet Sauvignon No added sulphites Suitable for vegans (V-Label Certified) Aged in oak foudre Production 1.800 kg/ha. Hand harvested Unclarified and unfiltered Production 3.789 bottles 16% alc. Vintage 2019 100% Cabernet Sauvignon Selection of grapes from dry-farmed estates near Barbastro (Huesca) with yields of less than 2,000 kgs/ha Aged in oak foudre Unclarified and unfiltered Production 3.235 bottles 16% vol.
    [Show full text]
  • Formaldehyde Induces Bone Marrow Toxicity in Mice by Inhibiting Peroxiredoxin 2 Expression
    MOLECULAR MEDICINE REPORTS 10: 1915-1920, 2014 Formaldehyde induces bone marrow toxicity in mice by inhibiting peroxiredoxin 2 expression GUANGYAN YU1, QIANG CHEN1, XIAOMEI LIU1, CAIXIA GUO2, HAIYING DU1 and ZHIWEI SUN1,2 1Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021; 2 Department of Hygenic Toxicology, School of Public Health, Capital Medical University, Beijing 100069, P.R. China Received November 4, 2013; Accepted June 5, 2014 DOI: 10.3892/mmr.2014.2473 Abstract. Peroxiredoxin 2 (Prx2), a member of the perox- Introduction iredoxin family, regulates numerous cellular processes through intracellular oxidative signal transduction pathways. Formaldehyde (FA) is an environmental agent commonly Formaldehyde (FA)-induced toxic damage involves reactive found in numerous products, including paint, cloth and oxygen species (ROS) that trigger subsequent toxic effects and exhaust gas, as well as other medicinal and industrial products. inflammatory responses. The present study aimed to inves- FA exposure has raised significant concerns due to mounting tigate the role of Prx2 in the development of bone marrow evidence suggesting its carcinogenic potential and severe toxicity caused by FA and the mechanism underlying FA effects on human health (1). Epidemiological and experi- toxicity. According to the results of the preliminary inves- mental data have demonstrated that FA may cause leukemia, tigations, the mice were divided into four groups (n=6 per particularly myeloid leukemia; however, the mechanism group). One group was exposed to ambient air and the other underlying this effect remains unclear (2-4). In the process three groups were exposed to different concentrations of FA of tumor formation, DNA damage may be the initiating (20, 40, 80 mg/m3) for 15 days in the respective inhalation factor (5), while myeloperoxidase (MPO) activity is associ- chambers, for 2 h a day.
    [Show full text]
  • Minimal Oral Sedation: the Art of Anxiolysis in the Dental Office
    Minimal Oral Sedation: The Art of Anxiolysis in the Dental Office by Jason H. Goodchild, DMD & Mark Donaldson, BSP, ACPR, PHARMD, FASHP, FACHE Copyright © 2013 by Jason H. Goodchild, DMD & Mark Donaldson, BSP, ACPR, PHARMD, FASHP, FACHE All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means includ- ing photocopying, recording, or information storage and retrieval without permission in writing from the authors. Day 1: What is Minimal Oral Sedation All About? Introduction to Minimal Sedation Pharmacology 101 Patient Assessment Pharmacology of Sedatives & Reversal Agents Minimal Oral Sedation – Protocols Parts 1 & 2 Day 2: How Can I Keep My Patients and This Practice Safe? Physiologic Monitoring Drug Interactions Bleeding Disorders, Anticoagulants & Antiplatelets Herbal Concerns in Dentistry Beyond Sedation (Update on Local Anesthesia) What’s in Your Emergency Kit – and Why 3 Our Clinicians Jason H. Goodchild, DMD is a graduate of Dickinson College in Carlisle, Pennsylvania. He re- ceived his dental training at the University of Pennsylvania School of Dental Medicine where he still holds a faculty position as a Clinical Associate in the Department of Oral Medicine. As part of his training and service in the Department of Oral Medicine he was educated in en- teral sedation and completed numerous cases at the dental school and the Hospital of the University of the University of Pennsylvania. As a part of his faculty duties he treats patients with complex medical histories, and oversees students and residents. He is also Clinical Assistant Professor in the Division of Oral Diagnosis, Department of Diag- nostic Sciences at the New Jersey Dental School.
    [Show full text]
  • Molecular Analysis on the Possible Mechanism of Β-Naphthoflavone-Induced Hepatocarcinogenesis in Rats
    J Toxicol Pathol 2007; 20: 29–37 Original Molecular Analysis on the Possible Mechanism of β-Naphthoflavone-Induced Hepatocarcinogenesis in Rats Yusuke Yokouchi1, Masako Muguruma1, Mitsuyoshi Moto1, Miwa Takahashi1, Meilan Jin1, Yusuke Kenmochi1, Taichi Kohno1, Yasuaki Dewa1, and Kunitoshi Mitsumori1 1Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan Abstract: It has been speculated that oxidative stress is involved in the liver tumor-promoting effect of β- naphthoflavone (BNF; 5,6-benzoflavone) in rats, because of its strong induction of cytochrome P450 (CYP) 1A enzymes. In order to clarify the mechanism of liver tumor promoting effects of BNF, male F344 rats were initiated with a single intraperitoneal injection of 200 mg/kg diethylnitrosamine (DEN), and fed diet containing 2% of BNF for 6 weeks staring 2 weeks after injection. Two/third partial hepatectomy was perfomed at Week 3 after the treatment of BNF. Low-density Rat Toxicology & Drug Resistance Microarray and quantitative analyses of mRNA expressions of the selected genes using real-time reverse transcription (RT) -PCR were carried out on total RNAs extracted from the livers of F344 rats. Collected liver tissues were subjected to light microscopic examinations (hematoxylin and eosin staining), immunohistochemistries of proliferating cell nuclear antigen (PCNA), glutathione S-transferase placental form (GST-P) and CYP1A1, and Schmorl staining to identify lipofuscin. Gene expression analysis showed that 7 genes (CYP1A1, CYP1A2, CYP1B1, Gstm2 (GST mu2), Gstm3, glutathione peroxidase (Gpx)2 and NAD(P)H dehydrogenase, quinone 1(Nqo1)) were up-regulated (> 1.5 fold), and 4 genes (8-oxoguanine DNA glycosylase (Ogg1), Gpx1, peroxiredoxin (Prdx) 1 and P450 oxidoreductase (Por)) were down-regulated (< 0.67 fold) in the DEN + BNF group rats as compared with the DEN alone group.
    [Show full text]
  • Application A603 Supporting Document 3 FOOD TECHNOLOGY
    Application A603 Supporting Document 3 FOOD TECHNOLOGY REPORT Summary The Applicant, Golding Handcrafts, claims that there is a technical need to extend the use of the red food colouring erythrosine in Australia and New Zealand from preserved cherries to food colouring preparations used to colour icing and other cake decorations for the technological purpose of achieving colour enhancement. This has been substantiated with claims that food colourings preparations containing erythrosine possess superior colouring characteristics to alternative red food colourings including colour strength, longevity, lack of bleeding and quality of the finished product. Consequently this allow for a greater range of colouring effects to be achieved including wider ranges of pinks, lavenders, violets, royal blue and true black. The Applicant notes that commercial products are currently available for this purpose in the United States of America (USA) and seeks to import and sell these colourings preparations for cake icing and related products for use in Australia and New Zealand. The merit of using erythrosine is strongly supported by some companies, in particular, AmericolorTM Corporation and CK Products, two of the largest companies who use erythrosine in products for cake decorating purposes. They have advised the Applicant that the purpose of adding erythrosine to food is to achieve a precise visual effect and unique shades which are unattainable by using any other food colours. The colour hue and intensity is directly affected by the amounts of erythrosine added and the proposed amounts are consistent in achieving the intended result – to colour the food. Colour combinations are individually weighed and added to the mix for each single recipe so that a consistent final effect is obtained.
    [Show full text]
  • Unit: 01 Wines-I
    Food & Beverage Service Management –II BHM-602BT UNIT: 01 WINES-I Structure 1.1 Introduction 1.2 Objectives 1.3 Wine 1.4 Classification of Wines 1.4.1 By Colour 1.4.2 By Nature 1.4.3 By Taste 1.4.4 By Year of Production 1.4.5 By Body 1.4.6 Unspecified Wines 1.5 Production of Wines 1.6 Principle wine regions 1.6.1 France 1.6.2 Germany 1.6.3 Italy 1.6.4 Spain 1.7 Summary 1.8 Glossary 1.9 References/Bibliography 1.10 Suggested Readings 1.11 Terminal Questions 1.1 INTRODUCTION Legally defined in most countries, Wine is an alcoholic beverage made from the partial or complete fermentation of grape juice. Now talking about wines, the Wine and sprit association of the Great Britain has sponsored the following definition of Wine ―Wine is an alcoholic beverage obtained from the fermentation of the juice of freshly gathered grapes. Fermentation is conducted in the district of origin according to local customs and traditions. To bear the name Wine, the product must come only from grapes. If made from other fruits; the fruit name must be put before the tern Wine eg. Blackberry Wine, Apricot Wine, Fig Wine. Only a small part of the world is Wine producing. This is because the grape will only provide juice of the quality required for conversion into consumable Wine where two climatic conditions prevail. 1. Sufficient sun-shine to ripen the grape 2. Winters that are moderate yet sufficiently cool to give the Wine a chance to rest and restore its strength for the growing and fruiting season.
    [Show full text]
  • University of Groningen Drug Metabolism in Human and Rat
    University of Groningen Drug metabolism in human and rat intestine van de Kerkhof, Esther Gesina IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van de Kerkhof, E. G. (2007). Drug metabolism in human and rat intestine: an 'in vitro' approach. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Chapter 5 Induction of drug metabolism along the rat intestinal tract EG van de Kerkhof IAM de Graaf MH de Jager GMM Groothuis In preparation Chapter 5 Abstract Induction of drug metabolizing enzymes in the intestine can result in a marked variation in the bioavailability of drugs and cause an imbalance between local toxification and detoxification.
    [Show full text]
  • Artificial Food Colours and Children Why We Want to Limit and Label Foods Containing the ‘Southampton Six’ Food Colours on the UK Market Post-Brexit
    Artificial food colours and children Why we want to limit and label foods containing the ‘Southampton Six’ food colours on the UK market post-Brexit November 2020 FIRST STEPS NUTRITIONArtificial food coloursTRUST and children: page Artificial food colours and children: Why we want to limit and label foods containing the‘Southampton Six’ food colours on the UK market post-Brexit November 2020 Published by First Steps Nutrition Trust. A PDF of this resource is available on the First Steps Nutrition Trust website. www.firststepsnutrition.org The text of this resource, can be reproduced in other materials provided that the materials promote public health and make no profit, and an acknowledgement is made to First Steps Nutrition Trust. This resource is provided for information only and individual advice on diet and health should always be sought from appropriate health professionals. First Steps Nutrition Trust Studio 3.04 The Food Exchange New Covent Garden Market London SW8 5EL Registered charity number: 1146408 First Steps Nutrition Trust is a charity which provides evidence-based and independent information and support for good nutrition from pre-conception to five years of age. For more information, see our website: www.firststepsnutrition.org Acknowledgements This report was written by Rachael Wall and Dr Helen Crawley. We would like to thank Annie Seeley, Sarah Weston, Erik Millstone and Anna Rosier for their help and support with this report. Artificial food colours and children: page 1 Contents Page Executive summary 3 Recommendations
    [Show full text]
  • Time-Dependent Inhibition by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin of Skin Tumorigenesis with Polycyclic Hydrocarbons1
    [CANCER RESEARCH 40. 1580-1587, May 1980] 0008-5472/80/0040-OOOOS02.00 Time-dependent Inhibition by 2,3,7,8-Tetrachlorodibenzo-p-dioxin of Skin Tumorigenesis with Polycyclic Hydrocarbons1 J. DiGiovanni,2 D. L. Berry, G. L. Gleason, G. S. Kishore, and T. J. Slaga McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706 ¡J. D.. G. S K.J. and Biology Division, Oak Ridge National Laboratory. Oak Ridge. Tennessee 37830 ¡D.L B . G L G.. T. J. S.J ABSTRACT reactive intermediates that are capable of interacting covalently with cellular macromolecules (20). The interaction with DNA, a The effects of treating female mice with single topical doses target for activated PAH intermediates, has received consid of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at various times erable attention in recent years and is presently considered a before and after 7,12-dimethylbenz(a)anthracene (DMBA), critical event in the initiation of chemical carcinogenesip. Cur benzo(a)pyrene, 3-methylcholanthrene (MCA), and (±)-trans- rent evidence suggests that bay-region diol-epoxides may be 7/S,8«-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo(a)- ultimate carcinogenic forms for some PAH (24). This is sup pyrene were studied. TCDD, at doses of 1 /ig/mouse, was ported by recent data concerning BaP and DMBA epoxides applied topically 3 days prior to, 5 min prior to, or 1 day after that produce a DMA-binding product similar to that isolated in the initiator. The application of TCDD 5 min prior to or 1 day vivo after treatment with the parent hydrocarbon (2, 11, 17, after initiation with DMBA, benzo(a)pyrene, or MCA had little 22, 33, 42, 48, 49).
    [Show full text]
  • Global Regulations of Food Colors Each Region Has Its Own Definitions of What Constitutes a Color Additive, with Related Use Requirements and Restrictions
    Global Regulations of Food Colors Each region has its own definitions of what constitutes a color additive, with related use requirements and restrictions. Sue Ann McAvoy Sensient Colors LLC t is said, we eat with our eyes . Since antiq - food colors was soon recognized as a threat Iuity, humans have used the color of a to public health. Of concern was that some food to discern its quality. Color provides of the substances were known to be poi - a way to judge ripeness, perceive flavor and sonous and were often incorporated to hide assess quality of food. poor quality, add bulk to foods and to pass Ancient civilizations introduced color off imitation foods as real. into their foods. The ancient Egyptians col - On February 1, 1899, the executive com - ored their food yellow with saffron, and the mittee of the National Confectioners’ Asso - ancient Mayans used annatto to color their ciation published an official circular which Sue Ann McAvoy is food orange-red. Wealthy Romans ate bread was “to throw light upon the vexed question global regulatory scien - that had been whitened by adding alum to of what colors may be safely used in confec - tist for Sensient Food the flour. Color could be used to enhance tionery” as “there may at times be a doubt in Colors LLC. She has worked at Sensient the mind of the honest confectioner as to the physical appearance of the product. since 1979. However, if it made the food appear to be which colors, flavors, or ingredients he may of better quality than it was, that was con - safely use and which he may reject.” This list sidered a deceitful practice.
    [Show full text]
  • Regulatory Information Sheet
    Regulatory Information Sheet Approved Drug Colourants Listed by the European Union Colour Index Colour E Number Alternate Names Number Allura Red AC (a) E129 16035 FD&C Red #40 Aluminum*** E173 77000 -- Amaranth*** (a) E123 16185 Delisted FD&C Red #2 Annatto*** E160b 75120 Bixin, norbixin Anthocyanins (a) E163 -- -- Beetroot Red E162 -- Betanin Beta APO-8´-Carotenal E160e 40820 -- Brilliant Black BN (a) E151 28440 Black BN Brilliant Blue FCF (a) E133 42090 FD&C Blue #1 Brown HT (a) E155 20285 -- Calcium Carbonate E170 77220 -- Canthaxanthin* E161g 40850 -- Caramel,-Plain E150a -- -- Caramel,-Caustic Sulphite E150b -- -- Caramel,-Ammonia E150c -- -- Caramel, Sulphite Ammonia E150d -- -- Carmine (a) E120 75470 Carminic Acid, Cochineal Carmoisine (a) E122 14720 Azorubine Carotenes E160a 40800 / 75130 -- Chlorophylls/Chlorophyllins E140 75810 / 75815 -- Copper Complexes of E141 75815 -- Chlorophylls/Chlorophyllins(a) Curcumin (a) E100 75300 Turmeric Erythrosine*** (a) E127 45430 FD&C Red #3 Gold*** E175 77480 -- Green S (a) E142 44090 Acid Brilliant Green BS Indigotine (a) E132 73015 FD&C Blue #2, Indigo Carmine 77491 / 77492 / Iron Oxides & Hydroxides E172 Iron Oxide Red, Yellow, Black 77499 Litholrubine BK*** (a) E180 -- -- Lutein E161b -- -- Lycopene*** E160d 75125 -- Paprika Extract E160c -- Capsanthin, Capsorubin Patent Blue V (a) E131 42051 Acid Blue 3 Ponceau 4R (a) E124 16255 Cochineal Red A Page 1 of 2 Document Reference No.: GLO-10107, revision 2 Effective Date: September 2014 Reviewed Date: November 2017 This document is valid at the time of distribution. Distributed 24-Sep-2021 (UTC) E Colour Index Colour Alternate Names Number Number Quinoline Yellow** (a) E104 47005 China Yellow Riboflavins (a) E101 -- -- Silver*** E174 -- -- Sunset Yellow FCF (a) E110 15985 FD&C Yellow #6, Orange Yellow S Tartrazine (a) E102 19140 FD&C Yellow #5 Titanium Dioxide E171 77891 -- Vegetable Carbon E153 77268:1 Carbo Medicinalis Vegetalis The above list is derived from Part B, List of All Additives, from Annex II to Regulation (EC) No 1333/2008 on food additives.
    [Show full text]
  • Role of Microorganisms in Biodegradation of Food Additive Azo Dyes: a Review
    Vol. 19(11), pp.799-805, November, 2020 DOI: 10.5897/AJB2020.17250 Article Number: F63AA1865367 ISSN: 1684-5315 Copyright ©2020 Author(s) retain the copyright of this article African Journal of Biotechnology http://www.academicjournals.org/AJB Review Role of microorganisms in biodegradation of food additive Azo dyes: A review Fatimah Alshehrei Department of Biology, Jamum College University, Umm AlQura University, Makkah24382, Saudi Arabia. Received 22 September, 2020; Accepted 27 October, 2020 Food additives Azo dyes are synthetic compounds added to foods to impart color and improve their properties. Some azo dyes have been banned as food additives due to toxic, mutagenic, and carcinogenic side effects. Long exposure to foods containing azo dye leads to chronic toxicity. Some microorganisms are capable to degrade these dyes and convert them to aromatic amines. In human body, microbiota can play a vital role in biodegradation of azo dyes by producing azo reductase. Aromatic amines are toxic, water-soluble and well absorbed via human intestine. In the current study, the role of microorganisms in biodegradation of six dyes related to azo group was discussed. These dyes are: Tartrazine E102, Sunset Yellow E110, Ponceau E124, Azorubine E122, Amaranth E123, and Allura Red E129 which are classified as the most harmful food additive dyes. Key word: Food additive, azo dyes, microorganisms, azo reductase, aromatic amines. INTRODUCTION Food additives are synthetic compounds added to food In the USA and European countries, some azo dyes have for many proposes such as maintaining the product from been banned as food additives due to toxic, mutagenic, deterioration or improving its safety, freshness, taste, and carcinogenic side effects (Chung, 2000).
    [Show full text]