Meeting 9-16

Total Page:16

File Type:pdf, Size:1020Kb

Meeting 9-16 Docklands History Group meeting Wednesday 5 October 2016 Barge Carrier Systems By David Hilling David said that his background was that of an academic geographer with a particular interest in shipping and port development, but who had not gone to sea. In retirement he had done lecturing and research and advised at the Greenwich Maritime Institute. He was involved in promotion of waterborne freight and over recent years the growth in Thames river freight movement. David explained the Americans had originally looked at such systems on their waterways and elsewhere where push tows were in use, such as the Rhine and the Danube. Where barges were going to and from sea going ships it was proposed that to save time loading and unloading them, logic dictated the barges themselves be placed on the ship. In the 1960s such ships were called LASH (lighters aboard ships). It avoided cargo handling at deep water quays in developing countries. In West Africa this could solve a serious port congestion problem where up to 400 ships might be waiting outside Lagos to get into port. The LASH ship had a large gantry crane on the stern which lifted the barge up and moved it along and put it in position. The lighter could carry up to 400 tons of cargo. It was similar to a container ship but the containers floated to and from their destinations. A tug would tow the LASH lighters. The first LASH ships were built for the timber trade. The ship could anchor away from main port areas as it did not need a deep water berth. Sheerness was the first UK LASH port in 1969, where the wartime battleship moorings in the river were used. The barges were towed to Strood and other smaller port facilities on the Medway and Thames. The LASH ships were followed by a catamaran type ship (BACAT) designed by a Dane to handle smaller barges in mainland Europe. The larger barges were lashed between the two hulls of the catamaran and smaller barges were placed on deck. The smaller barges could go to places such as York and Nottingham using the British waterways system. On the Humber Hull dockers objected to their by-passing the port. They won a legal case and the Catamaran ships operators pulled out of the UK. The ships were used in Bombay to by-pass the congestion. Smaller feeder ships were known as FLASH. In some areas smaller towed feeder LASH (FLASH) ships were used and like BACAT were semi-submersible, as were self-propelled (SPLASH) ships which could also carry containers. The barges could be floated on to the ship and then the ship would de-ballast and sail. At Gravesend the Lykes Lines (SEABEES) ships which were very large and had barges of about 800 tonnes used to anchor in the river off the town. They carried barges on three decks rather than in holds, the barges being lifted by six-motor stern elevators when the ship was semi-submerged. (The LASH ship with only a one-motor stern gantry crane was more vulnerable to break down.) One lift transported nearly 2,000 tons of cargo at one go. Containers were placed forward of the bridge. The military possibilities were seen. On top of barges could be put containers. The next system was FOFO, float on float off. The Russians developed a carrying system using even bigger barges. In 1982 they brought out a nuclear powered barge carrier but these were not accepted by many ports and spent time idle in ports such as Murmansk. Barge container (BACO) ships were introduced on the Europe-West Africa trades with barges taken on board through bow doors with the ship semi-submerged and some containers handled on to the deck by gantry crane. Three were built and the last was scrapped four years ago, disappearing like many BCVs after a useful life. A CODock was a floating container dock with a ramp at the end for RoRo as well as FoFo. Semi-submersible ships were used for all kinds of things. The deck could drop to 30 feet below water level. A sunk British warship was brought home as piggybank cargo, this way. Only 2.4 per cent of the barges transported came from inland and went to inland to be discharged as envisaged. Lack of subsidisation and the expense of running such ships meant the UK never invested in these systems. As the ships replaced port facilities the ship owner had to spend money on the ship rather than the port spending on its infrastructure. Further, container system standardisation caught on and LASH ships were not replaced. Barges were good for 400-800 tons, small bulk only and what were needed were multi purpose ships, not specialised ones. In the semi-submersible ship the BCV provided a design now favoured for delivering yachts and a variety of project cargo especially for off-shore engineering. The pure BCV had a short life but left its mark. © Sally Mashiter/David Hilling 20 October 2016.
Recommended publications
  • Container Ship Size and Port Relocation Discussion Paper 169 Roundtable
    CPB Corporate Partnership Board Container Ship Size and Port Relocation Discussion Paper 169 Roundtable Olaf Merk International Transport Forum CPB Corporate Partnership Board Container Ship Size and Port Relocation Discussion Paper 169 Roundtable Olaf Merk International Transport Forum The International Transport Forum The International Transport Forum is an intergovernmental organisation with 59 member countries. It acts as a think tank for transport policy and organises the Annual Summit of transport ministers. ITF is the only global body that covers all transport modes. The ITF is politically autonomous and administratively integrated with the OECD. The ITF works for transport policies that improve peoples’ lives. Our mission is to foster a deeper understanding of the role of transport in economic growth, environmental sustainability and social inclusion and to raise the public profile of transport policy. The ITF organises global dialogue for better transport. We act as a platform for discussion and pre- negotiation of policy issues across all transport modes. We analyse trends, share knowledge and promote exchange among transport decision-makers and civil society. The ITF’s Annual Summit is the world’s largest gathering of transport ministers and the leading global platform for dialogue on transport policy. The Members of the Forum are: Albania, Armenia, Argentina, Australia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Canada, Chile, China (People’s Republic of), Croatia, Czech Republic, Denmark, Estonia, Finland, France, Former Yugoslav Republic of Macedonia, Georgia, Germany, Greece, Hungary, Iceland, India, Ireland, Israel, Italy, Japan, Kazakhstan, Korea, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Mexico, Republic of Moldova, Montenegro, Morocco, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, the United Arab Emirates, the United Kingdom and the United States.
    [Show full text]
  • Dredging and Disposal Plan
    DREDGING AND DISPOSAL PLAN PORT OF OLYMPIA MARINE BERTHS 2 & 3 INTERIM ACTION DREDGING Contract No.: 2008-0011 Project No. MT0601 Submitted To: Port of Olympia Attn: Rick Anderson 915 Washington Street NE Olympia, WA TABLE OF CONTENTS Introduction ................................................................................................................ 1 Dredging ..................................................................................................................... 1 Trans-loading ............................................................................................................. 1 Material Barge ............................................................................................................ 2 Dredge Bucket ............................................................................................................ 3 Dredge Sediment Disposal ........................................................................................ 3 Working Hours .......................................................................................................... 3 Position & Progress Surveys .................................................................................... 3 Dredge Navigation ...................................................................................................... 4 Survey Boat ................................................................................................................ 4 Water Quality BMP’s ................................................................................................
    [Show full text]
  • Downloaded, Is Consistently the Same and Their Facilities Are Accessible Only to the Types of Goods in Which They Manage (Roa Et Al, 2013)
    Running head: THE IMPACT OF VESSEL BUNCHING 1 The Impact of Vessel Bunching: Managing Roll-on-Roll-off Terminal Operations Jonathan E. Gurr California State University Maritime Academy THE IMPACT OF VESSEL BUNCHING 2 Abstract The operations at port terminals are under consent examination, consistently investigating the various operational challenges effecting efficiency and performance. In a study to identify the consequences of vessel bunching, vessels that arrive within a short amount of time between each vessel, this paper presents an approach to forecast Ro-Ro terminal capacity while referencing the various input factors: vessel arrival schedule, inbound cargo volume, and rail or truck out-gate volume. Using a quantitative analysis derived using actual historical data from a Ro-Ro terminal at the Port of Long Beach, California, the proposed approach applied an additional probability factor that vessel bunching would occur. The analysis highlights the effectiveness of using actual historical data when examining a Ro-Ro terminal’s capacity and how the resulting information could be communicated inclusively with all stakeholders involved in port operations as means of performance improvement. Keywords: vessel bunching, ro-ro, terminal, forecast, capacity, risk assessment THE IMPACT OF VESSEL BUNCHING 3 The Impact of Vessel Bunching Seaports remain the most common way to transfer goods from one form of transportation to another. Global ports are responsible for handling over 80 per cent of global merchandise trade in volume and more than two thirds of its value (UNCTAD, 2017). As key nodes in the supply chain, ports are under continual pressure to implement efficiency improvements and cost saving measures.
    [Show full text]
  • The Need for Speed
    DEO VOLENTE Deo Volente The Need for Speed BUILDERS Hartman Marine B.V. OWNERS Hartman Seatrade B.V. DEO VOLENTE YARD NUMBER 001 IMO NUMBER 9391658 12 | ShipBuilding Industry | Volume 1 | No. 2 Deo Volente.indd 12 07-06-2007 11:42:59 COMO Hartman Seatrade is a modern shipping company specializing in the carriage of all kind of dry cargoes with special emphasis on voluminous project cargoes and heavy lift transports. With a vast experience in deep Deo Volente sea shipping for more than two centuries the Urk based company recently inaugurated its new ‘mini’ heavy lift vessel – Deo Volente. The new build vessel is a surpass of the previous Deo Volente with an accent on operating terms as speed and heavy lift capabilities. Photo courtesy of Flying Focus ight from the beginning the two Hartman brothers MARIN and Wolfards. Construction of the hull was Rhad a pretty good idea of how their new vessel ordered from CIG group who built her on her Polish should look like and be able to. They designed a novel location, and was transferred to the Netherlands for concept for a small and fast heavy lift vessel which outfitting under management of Hartman Marine BV. would fall just in the 3000 gross tonnage and 3000 kW installed power category. These criteria are of High Service Speed significant effect on the operating costs with regard to The Deo Volente is proof of nowadays need for the required number of crew and manning speed. She is the fastest heavy lift cargo ship in the certification.
    [Show full text]
  • Structural Design of a Container Ship Approximately 3100 TEU According to the Concept of General Ship Design B-178
    Structural design of a container ship approximately 3100 TEU according to the concept of general ship design B-178 Wafaa Souadji Master Thesis presented in partial fulfillment of the requirements for the double degree: “Advanced Master in Naval Architecture” conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion” conferred by Ecole Centrale de Nantes developed at West Pomeranian University of Technology, Szczecin in the framework of the “EMSHIP” Erasmus Mundus Master Course in “Integrated Advanced Ship Design” Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC Supervisor: Dr. Zbigniew Sekulski, West Pomeranian University of Technology, Szczecin Reviewer: Prof. Robert Bronsart, University of Rostock Szczecin, February 2012 Structural design of a container ship approximately 3100 TEU 3 according to the concept of general ship design B-178 ABSTRACT Structural design of a container ship approximately 3100 TEU according to the concept of general ship design B-178 By Wafaa Souadji The initial design stage is crucial for the ship design, including the ship structural design, as the decisions are here taken fundamental to reach design objectives by establishing basic ship characteristics. Consequently, errors which may appear have the largest impact on the final design. Two main aspects related to the design of structures are typically addressed in the initial design: analysis of strength and cost estimation. The design developed in the dissertation is based on the conceptual design of general containership B-178 built in the Stocznia Szczecińska Nowa, providing its main particulars, hull form as well as the general arrangement. The general objective of the thesis is to carry out the hull structural design based on the functional requirements of the containership.
    [Show full text]
  • Lighter Barges: an Alternative to Servicing Post- Panamax Vessels at the Port of Wilmington, NC
    Lighter Barges: An Alternative to Servicing Post- Panamax Vessels at the Port of Wilmington, NC Jonathan E. Bingham1, Kathryn R. Cyr1, Lawrence B. Cahoon2 1- Marine and Coastal Ocean Policy Program* UNC Wilmington, Wilmington, NC 28403 2- Dept. of Biology and Marine Biology UNC Wilmington, Wilmington, NC 28403; [email protected] 1 INTRODUCTION The North Carolina State Ports Authority recently proposed a costly plan to deepen and widen the Port of Wilmington’s navigation channel in order to accommodate large post- Panamax vessels. This paper proposes that there is another, potentially more appealing and affordable alternative: shallow-draft lighter barges. Ports in areas like Hong Kong and the lower Mississippi River use variations of lighter barges to bring cargo to and from ships and ports. Wilmington’s unique location and navigational challenges make lighter barges a viable option that deserves consideration. American port facilities and channels have grown to accommodate Panamax sized vessels over the last century. The existing Panama Canal channels feature a depth of about 40 ft. The channel depth and the dimensions of the first two lock systems (106 ft. width) turned out to be the limiting factors for the Panamax vessel design and size. However, in June of 2016, the situation will change for U.S. harbors when the newly constructed Panama Canal expansion is completed. The project creates a new lane for ship traffic with larger locks than the original channels, allowing for wider ships with deeper drafts (Fig. 1). New construction is expected to double the canal’s current capacity of 300 million tons per year (Dervarics 2015).
    [Show full text]
  • NCITEC National Center for Intermodal Transportation for Economic Competitiveness
    National Center for Intermodal Transportation for Economic Competitiveness Final Report 525 The Impact of Modifying the Jones Act on US Coastal Shipping by Asaf Ashar James R. Amdal UNO Department of Planning and Urban Studies NCITEC National Center for Intermodal Transportation for Economic Competitiveness Supported by: 4101 Gourrier Avenue | Baton Rouge, Louisiana 70808 | (225) 767-9131 | www.ltrc.lsu.edu TECHNICAL REPORT STANDARD PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/LA.525 4. Title and Subtitle 5. Report Date The Impact of Modifying the Jones Act on US Coastal June 2014 Shipping 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Asaf Ashar, Professor Research, UNOTI LTRC Project Number: 13-8SS James R. Amdal, Sr. Research Associate, UNOTI State Project Number: 30000766 9. Performing Organization Name and Address 10. Work Unit No. University of New Orleans Department of Planning and Urban Studies 11. Contract or Grant No. 368 Milneburg Hall, 2000 Lakeshore Dr. New Orleans, LA 70148 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Louisiana Department of Transportation and Final Report Development July 2012 – December 2013 P.O. Box 94245 Baton Rouge, LA 70804-9245 14. Sponsoring Agency Code 15. Supplementary Notes Conducted in Cooperation with the U.S. Department of Transportation, Research and Innovative Technology Administration (RITA), Federal Highway Administration 16. Abstract The study assesses exempt coastal shipping defined as exempted from the US-built stipulation of the Jones Act, operating with functional crews and exempted from Harbor Maintenance Tax (HMT). The study focuses on two research questions: (a) the impact of the US-built exemption on the cost of coastal shipping; and (b) the competitiveness of exempt services.
    [Show full text]
  • SHORT SEA SHIPPING INITIATIVES and the IMPACTS on October 2007 the TEXAS TRANSPORTATION SYSTEM: TECHNICAL Published: December 2007 REPORT 6
    Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-08/0-5695-1 4. Title and Subtitle 5. Report Date SHORT SEA SHIPPING INITIATIVES AND THE IMPACTS ON October 2007 THE TEXAS TRANSPORTATION SYSTEM: TECHNICAL Published: December 2007 REPORT 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. C. James Kruse, Juan Carlos Villa, David H. Bierling, Manuel Solari Report 0-5695-1 Terra, Nathan Hutson 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas Transportation Institute The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 Project 0-5695 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office September 2006-August 2007 P.O. Box 5080 14. Sponsoring Agency Code Austin, Texas 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Short Sea Shipping Initiatives and the Impacts on the Texas Transportation System URL: http://tti.tamu.edu/documents/0-5695-1.pdf 16. Abstract This report examines the potential effects of short sea shipping (SSS) development on the Texas transportation system. The project region includes Texas, Mexico, and Central America. In the international arena, the most likely prospects are for containerized shipments using small container ships. In the domestic arena, the most likely prospects are for coastwise shipments using modified offshore service vessels or articulated tug/barges. Only three Texas ports handle containers consistently (Houston accounts for 95% of the total), and three more handle containers sporadically.
    [Show full text]
  • Exploring the Economics of Using Barges on the Mississippi River to Transport Agricultural Commodities
    Exploring the Economics of Using Barges on the Mississippi River to Transport Agricultural Commodities Margaret Budde, Louisiana Tanna Nicely, Tennessee A bit of history: The voyages of Columbus excited Europe, and explorers began searching for routes that would help them reach the riches of Asia without having to sail around the lands of the Americas. Without sea access across Central or South America, explorers began searching for a water route through North America. As governor of Cuba, Hernando DeSoto is credited with discovering the Mississippi River in May 1541 on his travels through the southeastern part of North America what is now the states of Florida, Georgia, South Carolina, North Carolina, Tennessee, Alabama, Mississippi, Arkansas and Louisiana. When he died of a fever, his men weighted down his body and sunk it in the river. LaSalle claimed all land drained by the Mississippi River for France and named it Louisiana. Over 140 years after DeSoto, the next important explorer was LaSalle, a Frenchman who traveled down the Mississippi River from Canada. Reaching the mouth in 1682, he claimed all of the land drained by the great river for France, naming it Louisiana in honor of King Louis XIV. He left for France with the great news and promised to return soon. Tonti of the Iron Hand, an Italian adventurer, friend of LaSalle and historian for the trek down the Mississippi River, left Canada for a second trip hoping to meet LaSalle along the way. Unfortunately, LaSalle misjudged the location of the mouth of the river from the Gulf of Mexico.
    [Show full text]
  • Barge Canal” Is No Longer an Accurate Description of the New York State Canals Marine Activity on New York’S Canals
    The Story of the Afterword Today, the name “Barge Canal” is no longer an accurate description of the New York State Canals marine activity on New York’s canals. Trains and trucks have taken over the transport of most cargo that once moved on barges along the canals, but the canals remain a viable waterway for navigation. Now, pleasure boats, tour Historical and Commercial Information boats, cruise ships, canoes and kayaks comprise the majority of vessels that ply the waters of the legendary Erie and the Champlain, Oswego and Cayuga- Seneca canals, which now constitute the 524-mile New York State Canal ROY G. FINCH System. State Engineer and Surveyor While the barges now are few, this network of inland waterways is a popular tourism destination each year for thousands of pleasure boaters as well as visitors by land, who follow the historic trade route that made New York the “Empire State.” Across the canal corridor, dozens of historic sites, museums and community festivals in charming port towns and bustling cities invite visitors to step back in time and re-live the early canal days when “hoggees” guided mule-drawn packet boats along the narrow towpaths. Today, many of the towpaths have been transformed into Canalway Trail segments, extending over 220 miles for the enjoyment of outdoor enthusiasts from near and far who walk, bike and hike through scenic and historic canal areas. In 1992, legislation was enacted in New York State which changed the name of the Barge Canal to the “New York State Canal System” and transferred responsibility for operation and maintenance of the Canal System from the New York State Department of Transportation to the New York State Canal Corporation, a newly created subsidiary of the New York State Thruway Authority.
    [Show full text]
  • Container-‐On-‐Barge for Illinois Fueled by Biodiesel an Operating
    Container-on-Barge for Illinois Fueled by Biodiesel An Operating Plan and Business Plan August 27, 2011 Table of Contents 1.0 Introduction and Overview ------------------------------------------------------------------- 4 2.0 Research/Investigation/Reports -------------------------------------------------------------------- 6 3.0 Lessons to Consider -------------------------------------------------------------------- 8 4.0 Inland Rivers Operations -------------------------------------------------------------------- 9 4.1 Ownership -------------------------------------------------------------------- 9 4.2 Towboats/Barges -------------------------------------------------------------------- 9 4.3 River Operations Modes -------------------------------------------------------------------- 10 4.4 The “Power Split” -------------------------------------------------------------------- 12 4.5 River Freight Pricing -------------------------------------------------------------------- 13 5.0 Designing Illinois COB -------------------------------------------------------------------- 15 5.1 Design Alternatives -------------------------------------------------------------------- 15 5.1.1 Purchased -------------------------------------------------------------------- 15 5.1.2 Leased -------------------------------------------------------------------- 18 5.1.3 Unit Tow -------------------------------------------------------------------- 19 6.0 Gulf COB – Cargo Flexibility -------------------------------------------------------------------- 21 7.0 COB Program
    [Show full text]
  • Panama Canal Expansion Impacts on Fleet Patterns and Challenges in Terminal Design Presented by Michael Horton, C
    Panama Canal Expansion Impacts on Fleet Patterns and Challenges in Terminal Design Presented by Michael Horton, C. Eng, P.E. Agenda • Panama Canal Expansion, the Coming Fleet – Fleet Vessel size – Container Vessel Size • Design Criteria , Present & Future – Terminal Requirements for the Future – Options for Berth Construction • Challenges, Moving Forward – Time – Money • Conclusions The New Generation Source: ACP Ready or Not? In 1995 the Regina Maersk was big at 6,500 TEU – 5,800 trucks – 25 barges – 550 cargo planes Regina Maersk (1995) Now We Have the Emma Maersk at 11,000 or 13,000TEUs Emma Maersk (2006) But Still Not The Biggest Vessel On The Water Typical Maritime Transport Costs Source: Delft University, “Containerization International Charter Market Report”, Drewry Container Market Review 2006-2007. Container Ship Dimensions by Capacity (averages) Capacity Draft LOA Beam (TEUs) (m) (m) (m) 2,000-2,999 11.6 239 31.5 3,000-3,999 12.1 259 32.4 4,000-4,999 13.0 284 33.2 5,000-5,999 13.7 281 39.0 6,000-6,999 13.9 302 40.6 7,000-7,999 14.6 343 42.6 8,000-8,999 14.3 329 42.8 9,000-9,999 14.7 344 44.0 >10,000 15.5 398 56.4 Immediate Demand (ECSA carrier) • (2010) - 6,300 TEUS: – Length: 300 Meters – Beam: 40 Meters – Draft: 14.5 Meters – DWT: 76,000 • (2014) - 8,800 TEUS: – Length: 338 Meters – Beam: 46 Meters – Draft: 15.5 Meters – DWT: 116,000 Vessel Size: Conclusion • Panama Canal sets the new top end? • Vessel size will be a factor of route, market potential and facilities availability • With or without the Canal expansion, terminal
    [Show full text]