Seismic Hazard Analysis Application of Methodology, Results, and Sensitivity Studies

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Hazard Analysis Application of Methodology, Results, and Sensitivity Studies XA04NO052 NUREG/CR-1582, Vol. 4 UCRL-53030, Vol. 4 INIS-XA-N--035 Seismic Hazard Analysis Application of Methodology, Results, and Sensitivity Studies D. L. Bernreuter Prepared for U.S. Nuclear Regulatory Commission Lvmwve LK"7TIM NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. Available from GPO Sales Program Division of Technical Information and Document Control U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Printed copy price: $10.00 and National Technical Information Service Springfield, Virginia 22161 NUREG/CR-1582, Vol. 4 UCRL-53030, Vol. 4 Seismic Hazard Analysis Application of Methodology, Results, and Sensitivity Studies Manuscript Completed: August 1981 Date Published: October 1981 Prepared by D. L. Bernreuter Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 Prepared for Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN No. FIN. No. A0233 ABSTRACT As part of the Site Specific Spectra Project, this report seeks to identify the sources of and minimize uncertainty in estimates of seismic hazards in the Eastern United States. Findings are being used by the Nuclear Regulatory Commission to develop a synthesis among various methods that can be used in evaluating seismic hazard at the various plants in the Eastern United States. In this volume, one of a five-volume series, we discuss the application of the probabilistic approach using expert opinion. The seismic hazard is developed at nine sites in the Central and Northeastern United States, and both individual experts' and synthesis results are obtained. We also discuss and evaluate the ground motion models used to develop the seismic hazard at the various sites, analyzing extensive sensitivity studies to determine the important parameters and the significance of uncertainty in them. Comparisons are made between probabilistic and real spectra for a number of Eastern earthquakes. The uncertainty in the real spectra is examined as a function of the key earthquake source parameters. In our opinion, the single most important conclusion of this study is that the use of expert opinion to supplement the sparse data available on Eastern United States earthquakes is a viable approach for determining estimated seismic hazard in this region of the country. CONTENTS Nomenclature . ix 1.0 introduction . I 1.1 Background . 1 2.0 Review of hazard assessment methodology used . 3 3.0 Ground motion models . 5 3.1 Background . 5 3.2 Inferring EUS ground motion . 6 3.3 Modeling uncertainty . 7 3.4 Data sets used . 8 3.4.1 Intensity attenuation data base . a 3.4.2 Strong ground motion data base . .. 9 3.5. Site correction factors . 11 3.6 Development of ground motion models . 13 3.6.1 Distance-weighted model . 13 3.6.2 Magnitude-weighted models . 16 3.6.3 Theoretical model . 18 3.7 Evaluation of ground motion models . 19 3.7.1 Scaling for magnitude . 19 3.7.2 Correction for EUS attenuation . 22 3.7.3 Correction for Bite factors . 24 4.0 Spectra based on real records . 26 4.1 Introduction . 26 4.2 Factors influencing choice of records . 26 4.3 Relation between mb and mL . 27 4.4 Adequacy of sample . 29 4.5 Records used and spectra generated . 29 4.6 Magnitude effects . 32 4.7 Distance effects . 34 4.8 Conclusions . 36 v 5.0 Discussion of results . 37 5.1 Background . 37 5.2 Summary of Appendix A . 38 5.3 Summary of Appendix . 39 5.4 Summary of Appendix C . 40 5.5 Additional sensitivity studies . 41 5.6 Discussion and conclusions . 52 References . 57 Appendix A Excerpts from the August, 1979 Draft of Seismic Analysis: Site-Specific Response Spectra Results . A-1 Appendix B Copy of May, 1980 Site-Specific Response Spectra Sensitivity Results . -1 Appendix C Copy of February, 1981 Final Repo t Seismic Hazard Analysis: Results . C-1 Appendix D Assessment of Changes in the Ossippee Attenuation Model . D-1 Appendix E Listing of Set and Set 2 . E-1 vi LIST OF TABLES 3-1. Summary of earthquakes used in the intensity data base. 9 3-2. Summary of regression analysis on site geology, using an unweighted and weighted data set. 12 3-3. Comparison of magnitude scaling in different ground motion models. 21 4-1. Values of local magnitude (M ) for L . (b)E arrived at by two different equation .. 29 4-2. Median and la peak accelerations and number of earthquakes for each set of real records . 32 5-1. No-background case for Palisades, using Experts 8 9 and 10. 43 5-2. No-background case for Big Rock Point, using Experts 8 9 and 10. 44 5-3. No-background case for Dresden, using Experts 8 9 and 10. 45 5-4. No-background case for LaCrosse, using Experts 8 9 and 10. 46 5-5. No-background case for Yankee Rowe, using Experts 8 9 and 10. 47 5-6. No-background case for Connecticut Yankee, using Experts 8 9 and 10. 48 5-7. No-background case for Millstone, using Experts 8 9 and 10. 49 5-8. No-background case for Oyster Creek, using experts 8 9 and 10. so 5-9. No-background case for Ginna, using Experts 8 9 and 10. 51 5-10. Comparison of two experts' peak ground acceleration results from Nuttli's theoretical model and synthesis. 52 Vii NOMENCLATURE Commonly used terms and abbreviations: CIT Used in referring to the data set of strong motion accelerograms and computed response spectra which the California Institute of Technology published between 1969 and 1974. CUS Central United States, roughly the area bounded in the west by the Rocky Mountains and on the east by the Appalachian Mountains, excluding both mountain systems themselves. EUS Sometimes used to denote the general geographical region east of the Rocky Mountains, and sometimes used to mean the specific region east of the Central United States (CUS). Intensity The intensity at which a specific earthquake is felt, as measured on the Modified Mercalli Scale. LLNL Lawrence Livermore National Laboratory, the overall project manager and director of this study. NRC Nuclear Regulatory Commission PGA Peak Ground Acceleration PGV Peak Ground Velocity PSA Pseudo-absolute acceleration spectrum. Also see definition of spectra below and Section of Appendix C. PSRV Pseudo Relative Velocity Spectrum. Also see definition of spectra below and Section of Appendix C. Return period Inverse of the annual risk of exceedance. SEP Systematic Evaluation Program, which includes this study. Also see Volume . Spectra used generically to refer to all the different spectra, e.g., Fourier amplitude spectra of the ground motion acceleration, the relative velocity spectra at various damping levels, etc. Also used specifically in this report: the regression analysis on spectral ordinates were at % damping for the pseudo-absolute acceleration spectra (PSA) at nine frequencies 25, 20, 12.5, 10, 5, 33, 25,1, 0.5 Hz) These were converted to PSRV by the usual relations. ix SSSP Site Specific Spectra Project TERA The corporation which served as LLNL's primary subcontractor in the development and application of the methodology presented in Volumes 2 and 3. WUS The regions in the Western United States where we have strong ground motion data recorded and analyzed. Comonly used symbols- C Coefficients of different parameters in the equations. The coefficients are determined by regression analysis. GM Ground motion parameter, used in discussing a variety oil measurements, e.g., peak acceleration (a), peak velocity M, etc. Is Local site intensity, as measured on the Modified Mercalli Scale. I0 Epicentral intensity, as measured on the Modified Mercalli Scale. M Used generically for any of the many magnitude scales but generally mb' mb (Lg), or ML. ML Local magnitude (Richter magnitude scale). mb True body wave magnitude scale, assumed to be equivalent to mb (Lg) (see Chung and Bernreuter, 1980). mb(Lg) Nuttili's magnitude scale for the Central United States. MS Surface wave magnitude Q Seismic quality factor, which is inversely proportional to the anelastic damping factor. R Distance metric, generally either the epicentral distance from a recording site to the earthquake or the closest distance between the recording site and the ruptured fault for a particular earthquake. S Site factor used in the regression analysis = for soil and = for rock sites. x 1.0 INTRODUCTION 1.1 BACKGROUND The Site Specific Spectra Project (SSSP) was conceived as a multi-method approach for determining site-specific spectra (Bernreuter, 1979a) It encompasses probabilistic approaches for predicting peak acceleration, peak velocities, and uniform hazard spectra for different return periods and also an empirical approach which includes calculation of 50th and 84th percentile spectra from ensembles of real data at different magnitudes, site conditions, and distance ranges. The probabilistic approach is basically that suggested by Cornell 1968), modified to formally incorporate 'expert" judgments. This approach is explained in detail in Volume 2. This project represented both research into the use of expert judgment in seismic hazard analysis and an effort to carry out a licensing action of the Systematic Evaluation Program (SEP). This led to conflicts between the need to obtain results that were timely for licensing requirements and the need to understand intermediate results and sensitivities before releasing the final product.
Recommended publications
  • Processing of Strong-Motion Accelerograms: Needs, Options and Consequences
    Soil Dynamics and Earthquake Engineering 25 (2005) 93–115 www.elsevier.com/locate/soildyn Processing of strong-motion accelerograms: needs, options and consequences David M. Boorea, Julian J. Bommerb,* aUS Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA bCivil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK Accepted 25 October 2004 Abstract Recordings from strong-motion accelerographs are of fundamental importance in earthquake engineering, forming the basis for all characterizations of ground shaking employed for seismic design. The recordings, particularly those from analog instruments, invariably contain noise that can mask and distort the ground-motion signal at both high and low frequencies. For any application of recorded accelerograms in engineering seismology or earthquake engineering, it is important to identify the presence of this noise in the digitized time- history and its influence on the parameters that are to be derived from the records. If the parameters of interest are affected by noise then appropriate processing needs to be applied to the records, although it must be accepted from the outset that it is generally not possible to recover the actual ground motion over a wide range of frequencies. There are many schemes available for processing strong-motion data and it is important to be aware of the merits and pitfalls associated with each option. Equally important is to appreciate the effects of the procedures on the records in order to avoid errors in the interpretation and use of the results. Options for processing strong-motion accelerograms are presented, discussed and evaluated from the perspective of engineering application.
    [Show full text]
  • 2021 Oregon Seismic Hazard Database: Purpose and Methods
    State of Oregon Oregon Department of Geology and Mineral Industries Brad Avy, State Geologist DIGITAL DATA SERIES 2021 OREGON SEISMIC HAZARD DATABASE: PURPOSE AND METHODS By Ian P. Madin1, Jon J. Francyzk1, John M. Bauer2, and Carlie J.M. Azzopardi1 2021 1Oregon Department of Geology and Mineral Industries, 800 NE Oregon Street, Suite 965, Portland, OR 97232 2Principal, Bauer GIS Solutions, Portland, OR 97229 2021 Oregon Seismic Hazard Database: Purpose and Methods DISCLAIMER This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. This publication cannot substitute for site-specific investigations by qualified practitioners. Site-specific data may give results that differ from the results shown in the publication. WHAT’S IN THIS PUBLICATION? The Oregon Seismic Hazard Database, release 1 (OSHD-1.0), is the first comprehensive collection of seismic hazard data for Oregon. This publication consists of a geodatabase containing coseismic geohazard maps and quantitative ground shaking and ground deformation maps; a report describing the methods used to prepare the geodatabase, and map plates showing 1) the highest level of shaking (peak ground velocity) expected to occur with a 2% chance in the next 50 years, equivalent to the most severe shaking likely to occur once in 2,475 years; 2) median shaking levels expected from a suite of 30 magnitude 9 Cascadia subduction zone earthquake simulations; and 3) the probability of experiencing shaking of Modified Mercalli Intensity VII, which is the nominal threshold for structural damage to buildings.
    [Show full text]
  • Bray 2011 Pseudostatic Slope Stability Procedure Paper
    Paper No. Theme Lecture 1 PSEUDOSTATIC SLOPE STABILITY PROCEDURE Jonathan D. BRAY 1 and Thaleia TRAVASAROU2 ABSTRACT Pseudostatic slope stability procedures can be employed in a straightforward manner, and thus, their use in engineering practice is appealing. The magnitude of the seismic coefficient that is applied to the potential sliding mass to represent the destabilizing effect of the earthquake shaking is a critical component of the procedure. It is often selected based on precedence, regulatory design guidance, and engineering judgment. However, the selection of the design value of the seismic coefficient employed in pseudostatic slope stability analysis should be based on the seismic hazard and the amount of seismic displacement that constitutes satisfactory performance for the project. The seismic coefficient should have a rational basis that depends on the seismic hazard and the allowable amount of calculated seismically induced permanent displacement. The recommended pseudostatic slope stability procedure requires that the engineer develops the project-specific allowable level of seismic displacement. The site- dependent seismic demand is characterized by the 5% damped elastic design spectral acceleration at the degraded period of the potential sliding mass as well as other key parameters. The level of uncertainty in the estimates of the seismic demand and displacement can be handled through the use of different percentile estimates of these values. Thus, the engineer can properly incorporate the amount of seismic displacement judged to be allowable and the seismic hazard at the site in the selection of the seismic coefficient. Keywords: Dam; Earthquake; Permanent Displacements; Reliability; Seismic Slope Stability INTRODUCTION Pseudostatic slope stability procedures are often used in engineering practice to evaluate the seismic performance of earth structures and natural slopes.
    [Show full text]
  • Living on Shaky Ground: How to Survive Earthquakes and Tsunamis
    HOW TO SURVIVE EARTHQUAKES AND TSUNAMIS IN OREGON DAMAGE IN doWNTOWN KLAMATH FALLS FRom A MAGNITUde 6.0 EARTHQUAke IN 1993 TSUNAMI DAMAGE IN SEASIde FRom THE 1964GR EAT ALASKAN EARTHQUAke 1 Oregon Emergency Management Copyright 2009, Humboldt Earthquake Education Center at Humboldt State University. Adapted and reproduced with permission by Oregon Emergency You Can Prepare for the Management with help from the Oregon Department of Geology and Mineral Industries. Reproduction by permission only. Next Quake or Tsunami Disclaimer This document is intended to promote earthquake and tsunami readiness. It is based on the best SOME PEOplE THINK it is not worth preparing for an earthquake or a tsunami currently available scientific, engineering, and sociological because whether you survive or not is up to chance. NOT SO! Most Oregon research. Following its suggestions, however, does not guarantee the safety of an individual or of a structure. buildings will survive even a large earthquake, and so will you, especially if you follow the simple guidelines in this handbook and start preparing today. Prepared by the Humboldt Earthquake Education Center and the Redwood Coast Tsunami Work Group (RCTWG), If you know how to recognize the warning signs of a tsunami and understand in cooperation with the California Earthquake Authority what to do, you will survive that too—but you need to know what to do ahead (CEA), California Emergency Management Agency (Cal EMA), Federal Emergency Management Agency (FEMA), of time! California Geological Survey (CGS), Department of This handbook will help you prepare for earthquakes and tsunamis in Oregon. Interior United States Geological Survey (USGS), the National Oceanographic and Atmospheric Administration It explains how you can prepare for, survive, and recover from them.
    [Show full text]
  • Beyond the Angle of Repose: a Review and Synthesis of Landslide Processes in Response to Rapid Uplift, Eel River, Northern Eel River, Northern California
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 2-23-2015 Beyond the Angle of Repose: A Review and Synthesis of Landslide Processes in Response to Rapid Uplift, Eel River, Northern Eel River, Northern California Joshua J. Roering University of Oregon Benjamin H. Mackey University of Canterbury Alexander L. Handwerger University of Oregon Adam M. Booth Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac David A. Schmidt Univ Persityart of of the W Geologyashington Commons , Geomorphology Commons, and the Geophysics and Seismology Commons Let us know how access to this document benefits ou.y See next page for additional authors Citation Details Roering, Joshua J., Mackey, Benjamin H., Handwerger, Alexander L., Booth, Adam M., Schmidt, David A., Bennett, Georgina L., Cerovski-Darriau, Corina, Beyond the angle of repose: A review and synthesis of landslide pro-cesses in response to rapid uplift, Eel River, Northern California, Geomorphology (2015), doi: 10.1016/j.geomorph.2015.02.013 This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Joshua J. Roering, Benjamin H. Mackey, Alexander L. Handwerger, Adam M. Booth, David A. Schmidt, Georgina L. Bennett, and Corina Cerovski-Darriau This post-print is available at PDXScholar: https://pdxscholar.library.pdx.edu/geology_fac/75 ACCEPTED MANUSCRIPT Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California Joshua J.
    [Show full text]
  • Department D'analyse De Surete
    COMMISSARIAT A LENERGIE ATOMIQUE XA04NO298 INSTITUT DE PROTECTION ET DE SURETE NUCLEAIRE DEPARTMENT D'ANALYSE DE SURETE INIS-XA-N--027 RAPPORT DAS/733 MAIN FACTORS AECTING STRONG GROUND MOTION CALCULATIONS CRITICAL REVIEW AND ASESSMENT. MOHAMMADIOUN B. PECKER A. RAPPORT DAS/733 MAIN FACTORS AECTING STRONG GROUND MOTION CALCULATIONS CRITICAL REVIEW AND ASSESSMENT. MOHAMMADIOUN B. , PECKER A. 1990 * DAS/SASC ** Soci6t6 G6odynamique et Structure I I MAIN FACTORS AFFECTING STRONG GROUND MOTION CALCULATIONS: CRITICAL REVIEW AND ASSESSMENT BAGHER MOHAMMADIOUN * AND ALUN PECKER" 1. 1. INTRODUCTION in the interests of guarding lives and property against the effects of earthquakes, building codes are frequently enforced when recting conventional structures, usually calling for simple, static calculations. Where more vulnerable facilities are involved, the failure of which, or of parts of which, could subject the environment to harmful substances, more sophisticated methods are used to compute or verify their design, often accompanied by safety margins intended to compen- sate for uncertainties encountered at various stages of the analysis that begins with input seismic data and culminates with an effective anti-seismic dsign. The forthcoming discussion will deal with what is known of the characteristics of strong ground motion, highly variable according to contM without entering into the problems raised by scismotectonic studies, which actually constitute the first aspect that must be addressed when performing such an analysis. Our conclusion will be devoted to cogent R & D work in this area. 1.2. STRONG MOTION DATA The earliest record obtained with a strong motion accelerograph dates back to 1933 and was triggered by the Long Beach, California earthquake.
    [Show full text]
  • Earthquake/Landslide Death Scene Investigation Supplement
    Death Scene Investigation Supplement EARTHQUAKE/LANDSLIDE 1 DECEDENT PERSONAL DETAILS Last Name: First Name: Sex: Law Enforcement Case Number (if available): Male Female ME/C Case Number (if available): Law Enforcement Agency (if applicable): Date of Birth: Date of Death: Estimated Found Known MM DD YYYY MM DD YYYY Location of Injury (physical address, including ZIP code): 2 LOCATION OF THE DECEDENT Was the decedent found INDOORS? Yes No Complete 2A: OUTDOORS In what part of residence or building was the decedent found? Did the incident destroy the location? Yes No Unknown Did the incident collapse the walls or ceiling of the location? Yes No Unknown 2A OUTDOORS Was the decedent found OUTDOORS? Yes No Go to Section 3: Information about Circumstances of Death Any evidence the person was previously in a... Structure? Yes No Unknown Vehicle? Yes No Unknown 3 INFORMATION ABOUT CIRCUMSTANCES OF DEATH Does the cause of death appear to be due to any of the following? Select all potential causes of death. Complete all corresponding sections, THEN go to Section 7. Injury – Struck by (e.g., falling object)/Blunt force/Burns Complete Section 4: Injury Questions Motor Vehicle Crash Complete Section 5: Motor Vehicle Crash Questions Other (e.g., exacerbation of chronic diseases) Complete Section 6: Other Non-Injury Causes Questions 1 4 INJURY QUESTIONS How did the injury occur? Check all that apply: Hit by or struck against (Describe) Crushed (Describe) Asphyxia (Describe) Cut/laceration/impaled (Describe) Electric current or burn (Describe) Burn and/or
    [Show full text]
  • Distribution Pattern of Landslides Triggered by the 2014
    International Journal of Geo-Information Article Distribution Pattern of Landslides Triggered by the 2014 Ludian Earthquake of China: Implications for Regional Threshold Topography and the Seismogenic Fault Identification Suhua Zhou 1,2, Guangqi Chen 1 and Ligang Fang 2,* 1 Department of Civil and Structural Engineering, Kyushu University, Fukuoka 819-0395, Japan; [email protected] (S.Z.); [email protected] (G.C.) 2 Department of Geotechnical Engineering, Central South University, Changsha 410075, China * Correspondance: [email protected]; Tel.: +86-731-8253-9756 Academic Editor: Wolfgang Kainz Received: 16 February 2016; Accepted: 11 March 2016; Published: 30 March 2016 Abstract: The 3 August 2014 Ludian earthquake with a moment magnitude scale (Mw) of 6.1 induced widespread landslides in the Ludian County and its vicinity. This paper presents a preliminary analysis of the distribution patterns and characteristics of these co-seismic landslides. In total, 1826 landslides with a total area of 19.12 km2 triggered by the 3 August 2014 Ludian earthquake were visually interpreted using high-resolution aerial photos and Landsat-8 images. The sizes of the landslides were, in general, much smaller than those triggered by the 2008 Wenchuan earthquake. The main types of landslides were rock falls and shallow, disrupted landslides from steep slopes. These landslides were unevenly distributed within the study area and concentrated within an elliptical area with a 25-km NW–SE striking long axis and a 15-km NW–SE striking short axis. Three indexes including landslides number (LN), landslide area ratio (LAR), and landslide density (LD) were employed to analyze the relation between the landslide distribution and several factors, including lithology, elevation, slope, aspect, distance to epicenter and distance to the active fault.
    [Show full text]
  • Risk Analysis of Soil Liquefaction in Earthquake Disasters
    E3S Web of Conferences 118, 03037 (2019) https://doi.org/10.1051/e3sconf/201911803037 ICAEER 2019 Risk analysis of soil liquefaction in earthquake disasters Yubin Zhang1,* 1National Earthquake Response Support Service, Beijing 100049, P. R. China Abstract. China is an earthquake-prone country. With the development of urbanization in China, the effect of population aggregation becomes more and more obvious, and the Casualty Risk of earthquake disasters also increases. Combining with the characteristics of earthquake liquefaction, this paper analyses the disaster situation of soil liquefaction caused by earthquake in Indonesia. The internal influencing factors of soil liquefaction and the external dynamic factors caused by earthquake are summarized, and then the evaluation factors of seismic liquefaction are summarized. The earthquake liquefaction risk is indexed to facilitate trend analysis. The index of earthquake liquefaction risk is more conducive to the disaster trend analysis of soil liquefaction risk areas, which is of great significance for earthquake disaster rescue. 1 Risk analysis of earthquake an earthquake of M7.5 occurred in the Palu region of liquefaction Indonesia. The liquefaction caused by the earthquake is evident in its severity and spatial range. According to the Earthquake disasters often cause serious damage to us report of Indonesia's National Disaster Response Agency because they are unpredictable. Search the US Geological (BNPB), more than 3,000 people were missing in Petobo Survey (USGS) website for the number of earthquakes and Balaroa, two of Palu's worst-hit areas. These with magnitude 6 and above in the last 50 years, about situations were compared with remote sensing images 7,000times.Earthquake liquefaction has existed since before and after the disaster.
    [Show full text]
  • Landslide Triggering Mechanisms
    kChapter 4 GERALD F. WIECZOREK LANDSLIDE TRIGGERING MECHANISMS 1. INTRODUCTION 2.INTENSE RAINFALL andslides can have several causes, including Storms that produce intense rainfall for periods as L geological, morphological, physical, and hu- short as several hours or have a more moderate in- man (Alexander 1992; Cruden and Vames, Chap. tensity lasting several days have triggered abun- 3 in this report, p. 70), but only one trigger (Varnes dant landslides in many regions, for example, 1978, 26). By definition a trigger is an external California (Figures 4-1, 4-2, and 4-3). Well- stimulus such as intense rainfall, earthquake shak- documented studies that have revealed a close ing, volcanic eruption, storm waves, or rapid stream relationship between rainfall intensity and acti- erosion that causes a near-immediate response in vation of landslides include those from California the form of a landslide by rapidly increasing the (Campbell 1975; Ellen et al. 1988), North stresses or by reducing the strength of slope mate- Carolina (Gryta and Bartholomew 1983; Neary rials. In some cases landslides may occur without an and Swift 1987), Virginia (Kochel 1987; Gryta apparent attributable trigger because of a variety or and Bartholomew 1989; Jacobson et al. 1989), combination of causes, such as chemical or physi- Puerto Rico (Jibson 1989; Simon et al. 1990; cal weathering of materials, that gradually bring the Larsen and Torres Sanchez 1992)., and Hawaii slope to failure. The requisite short time frame of (Wilson et al. 1992; Ellen et al. 1993). cause and effect is the critical element in the iden- These studies show that shallow landslides in tification of a landslide trigger.
    [Show full text]
  • Case Study on Slope Stability Changes Caused by Earthquakes—Focusing on Gyeongju 5.8 ML EQ
    sustainability Article Case Study on Slope Stability Changes Caused by Earthquakes—Focusing on Gyeongju 5.8 ML EQ Sangki Park , Wooseok Kim *, Jonghyun Lee and Yong Baek Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea; [email protected] (S.P.); [email protected] (J.L.); [email protected] (Y.B.) * Correspondence: [email protected]; Tel.: +82-31-910-0519 Received: 16 July 2018; Accepted: 16 September 2018; Published: 27 September 2018 Abstract: Slope failure is a natural hazard occurring around the world and can lead to severe damage of properties and loss of lives. Even in stabilized slopes, changes in external loads, such as those from earthquakes, may cause slope failure and collapse, generating social impacts and, eventually causing loss of lives. In this research, the slope stability changes caused by the Gyeongju earthquake, which occurred on 12 September 2016, are numerically analyzed in a slope located in the Gyeongju area, South Korea. Slope property data, collected through an on-site survey, was used in the analysis. Additionally, slope stability changes with and without the earthquake were analyzed and compared. The analysis was performed within a peak ground acceleration (PGA) range of 0.0 (g)–2.0 (g) to identify the correlation between the slope safety factor and peak ground acceleration. The correlation between the slope safety factor and peak ground acceleration could be used as a reference for performing on-site slope stability evaluations. It also provides a reference for design and earthquake stability improvements in the slopes of road and tunnel construction projects, thus supporting the attainment of slope stability in South Korea.
    [Show full text]
  • Selection of Method for Seismic Slope Stability Analysis
    Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances 1991 - Second International Conference on in Geotechnical Earthquake Engineering and Recent Advances in Geotechnical Earthquake Soil Dynamics Engineering & Soil Dynamics 14 Mar 1991, 2:00 pm - 3:30 pm Selection of Method for Seismic Slope Stability Analysis Neven Matasovic University of California, Los Angeles, CA Follow this and additional works at: https://scholarsmine.mst.edu/icrageesd Part of the Geotechnical Engineering Commons Recommended Citation Matasovic, Neven, "Selection of Method for Seismic Slope Stability Analysis" (1991). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 25. https://scholarsmine.mst.edu/icrageesd/02icrageesd/session07/25 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. /\ Proceedings: Second International Conference on Recent Advances In Geotechnical Earthquake Engineering and Soil Dynamics, ~ March 11-15, 1991, St. Louis, Missouri, Paper No. 7.20 5election of Method for Seismic Slope Stability Analysis "even Matasovic' 3raduate Student, University of California, Los Angeles, .:alifornla SYNOPSIS: The seismic stability of natural slopes in clayey materials is a subject about which much uncertainty still exists. Therefore, selection of the method for the seismic slope stability analysis is an important part of solving the problem.
    [Show full text]