Processing of Strong-Motion Accelerograms: Needs, Options and Consequences

Total Page:16

File Type:pdf, Size:1020Kb

Processing of Strong-Motion Accelerograms: Needs, Options and Consequences Soil Dynamics and Earthquake Engineering 25 (2005) 93–115 www.elsevier.com/locate/soildyn Processing of strong-motion accelerograms: needs, options and consequences David M. Boorea, Julian J. Bommerb,* aUS Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA bCivil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK Accepted 25 October 2004 Abstract Recordings from strong-motion accelerographs are of fundamental importance in earthquake engineering, forming the basis for all characterizations of ground shaking employed for seismic design. The recordings, particularly those from analog instruments, invariably contain noise that can mask and distort the ground-motion signal at both high and low frequencies. For any application of recorded accelerograms in engineering seismology or earthquake engineering, it is important to identify the presence of this noise in the digitized time- history and its influence on the parameters that are to be derived from the records. If the parameters of interest are affected by noise then appropriate processing needs to be applied to the records, although it must be accepted from the outset that it is generally not possible to recover the actual ground motion over a wide range of frequencies. There are many schemes available for processing strong-motion data and it is important to be aware of the merits and pitfalls associated with each option. Equally important is to appreciate the effects of the procedures on the records in order to avoid errors in the interpretation and use of the results. Options for processing strong-motion accelerograms are presented, discussed and evaluated from the perspective of engineering application. q 2004 Elsevier Ltd. All rights reserved. Keywords: Strong-motion accelerograms; Signal-to-noise ratios; Instrument corrections; Baseline adjustments; Filters 1. Introduction 1933, has been of primordial importance to the development of earthquake engineering. Seismic design is primarily concerned with the balance Although strong-motion accelerograms have provided between the potential of ground shaking to cause damage seismologists and engineers with valuable insight into the (demand) and the ability of structures to resist damage nature of earthquake ground shaking close to the earthquake (capacity). The seismic capacity of engineered structures source—where damage can be expected—the information can be assessed from experimentation, analytical modeling that can be retrieved from the recordings is limited: it can and field observations following earthquakes, and indeed never be claimed that a complete and accurate description of from the interaction of these three channels of investigation. the ground shaking can be obtained from accelerograms. The characterization of seismic demand, on the other hand, For engineering uses of strong-motion data it is important to has been developed primarily from recordings obtained be able to estimate the level of noise present in each from strong-motion accelerographs. The global databank of accelerogram and the degree to which this may affect strong-motion accelerographs that has been accumulated different parameters that are derived from the records. The since the first records were obtained in Long Beach, CA, in main parameters of interest for engineering application are the ordinates of response spectra, both of acceleration and displacement. The peak ground acceleration (PGA), although of limited significance from both geophysical * Corresponding author. Tel.: C44 20 7594 5984; fax: C44 20 7225 and engineering perspectives, is also a widely used 2716. parameter in engineering. The peaks of velocity (PGV) E-mail address: [email protected] (J.J. Bommer). and displacement (PGD), measured from the time-histories 0267-7261/$ - see front matter q 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.soildyn.2004.10.007 94 D.M. Boore, J.J. Bommer / Soil Dynamics and Earthquake Engineering 25 (2005) 93–115 obtained by integration of the acceleration, are also important long-period cut-off—are then presented, followed important parameters. The focus of this paper is on the by a discussion of the implications of these parameters for effects of noise in accelerograms, and the effects of the usable period range of response spectral ordinates. The ‘correction’ procedures, on the peak ground-motion ampli- question of whether the same filter parameters should be tudes and on the ordinates of acceleration and displacement applied to the three components of triaxial accelerograms is response spectra. then briefly addressed. The section closes with a discussion The objective of the paper is to provide engineering of the combined use of filters and baseline adjustments. seismologists and earthquake engineers who are not specialized in strong motion with an overview of reasons for which record processing is performed, the options 2. Noise characteristics of strong-motion data available for carrying out this processing, and the consequences of applying each of the available approaches. The purpose of recording strong earthquake shaking is to The paper also aims to highlight the fact that there is no obtain detailed information regarding the ground motion of panacea that can be prescribed for record processing and engineering interest, which can be referred to as the signal. that a degree of subjectivity is involved. Generally it is not For a variety of reasons, explained below, digitized possible to identify the ‘best’ processing for an individual accelerograms also contain extraneous ‘motions’ that are record: assumptions always need to be made and the optimal referred to as noise. From the outset it is important for users procedure for a given record will depend on the application. of strong-motion data to appreciate that digitized accel- The limitations of the data and the processing routines need erograms are never pure and complete reproductions of the to be appreciated by the end users. seismic signal. The purpose of processing accelerograms, Following this introduction, the paper begins with an which is the topic of this paper, is to optimize the balance overview of the sources and nature of noise in accelero- between acceptable signal-to-noise ratios and the infor- grams, making the important distinction between analog and mation required for a particular application, both of which digital recordings, whilst highlighting the fact that digital depend on period or frequency. recordings are by no means entirely free of noise. The distinction is also made between the standard types of noise, 2.1. Analog and digital accelerographs for which the routine processing techniques discussed in the main body of the paper are appropriate, and non-standard The first accelerographs were developed in the US in errors that should be removed prior to the application of any 1932, almost four decades after the first seismographs were general processing. Section 3 of the paper deals with high- installed, the delay being due to the difficulty in producing frequency noise and distortion due to the dynamic instruments sufficiently sensitive to produce detailed characteristics of the instrument, discussing procedures recordings of the ground motion whilst being robust enough that can be applied to compensate for these effects. to remain operational when subjected to strong shaking. The Throughout the paper, the procedures are qualified by the first strong-motion accelerograms were obtained in the adjective ‘adjustment’ rather than ‘correction’, since the Long Beach (California) earthquake of March 1933. Over boundary conditions are nearly always unknown and hence the 70 years since the Long Beach earthquake, thousands of users should be aware that the true ground motion, across accelerographs have been installed around the world and the the full range of periods that may be of engineering interest, global databank of strong-motion records—which already cannot be unambiguously determined. The fourth section of numbers tens of thousands—continues to grow at an ever the paper discusses baseline adjustments, both for the effects increasing rate. of reference baseline shifts (introduced at the recording or The first accelerographs were optical-mechanical digitizing stages) and as a technique to remove long-period devices, generally referred to as analog recorders. These noise. This section closes with a discussion of the special instruments produced traces of the ground acceleration group of baseline fitting procedures that do not impose the against time on film or paper; the most widely used and best condition of zero displacement at the end of the motion. known analog accelerograph was the Kinemetrics SMA-1. Section 5 of the paper deals with the use of filters as a tool Analog accelerographs present three important disadvan- for the reduction of long-period noise in the accelerograms, tages, the first being that in order not to waste vast quantities probably the most important issue for engineering appli- of the recording medium, they operate on standby, triggered cations of strong-motion data as well as the area in which by a specified threshold of acceleration, which means that there is the greatest confusion. This section begins with the the first motions are often not recorded. The second issue of choosing a filtering technique, the key issues being disadvantage is related to their dynamic characteristics: whether the filter is causal or acausal. This is followed by a for the displacement response of a simple pendulum to be discussion of
Recommended publications
  • Department D'analyse De Surete
    COMMISSARIAT A LENERGIE ATOMIQUE XA04NO298 INSTITUT DE PROTECTION ET DE SURETE NUCLEAIRE DEPARTMENT D'ANALYSE DE SURETE INIS-XA-N--027 RAPPORT DAS/733 MAIN FACTORS AECTING STRONG GROUND MOTION CALCULATIONS CRITICAL REVIEW AND ASESSMENT. MOHAMMADIOUN B. PECKER A. RAPPORT DAS/733 MAIN FACTORS AECTING STRONG GROUND MOTION CALCULATIONS CRITICAL REVIEW AND ASSESSMENT. MOHAMMADIOUN B. , PECKER A. 1990 * DAS/SASC ** Soci6t6 G6odynamique et Structure I I MAIN FACTORS AFFECTING STRONG GROUND MOTION CALCULATIONS: CRITICAL REVIEW AND ASSESSMENT BAGHER MOHAMMADIOUN * AND ALUN PECKER" 1. 1. INTRODUCTION in the interests of guarding lives and property against the effects of earthquakes, building codes are frequently enforced when recting conventional structures, usually calling for simple, static calculations. Where more vulnerable facilities are involved, the failure of which, or of parts of which, could subject the environment to harmful substances, more sophisticated methods are used to compute or verify their design, often accompanied by safety margins intended to compen- sate for uncertainties encountered at various stages of the analysis that begins with input seismic data and culminates with an effective anti-seismic dsign. The forthcoming discussion will deal with what is known of the characteristics of strong ground motion, highly variable according to contM without entering into the problems raised by scismotectonic studies, which actually constitute the first aspect that must be addressed when performing such an analysis. Our conclusion will be devoted to cogent R & D work in this area. 1.2. STRONG MOTION DATA The earliest record obtained with a strong motion accelerograph dates back to 1933 and was triggered by the Long Beach, California earthquake.
    [Show full text]
  • Behavior of Peak Values and Spectral Ordinates of Near-Source Strong Ground Motion Over the Smart 1 Array
    REPORT NO. UCBjEERC-90j 17 EARTHQUAKE ENGINEERING RESEARCH CENTER JUNE 1990 BEHAVIOR OF PEAK VALUES AND SPECTRAL ORDINATES OF NEAR-SOURCE STRONG GROUND MOTION OVER THE SMART 1 ARRAY by MANSOUR NIAZI PREFACE by BRUCE A. BOLT COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY For sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. DISCLAIMER Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation or the Earthquake Engineering Research Center, University of California at Berkeley. if} !50271 101 REPORT DOCUMENTATION 11. REPORT NO. :::E9~-114djj PAGE NSF/ENG-90009 I 4. Title lind Subtitle S. Report Date Behavior of Peak Values and Spectral Ordinates of Near-Source June 1990 I Strong Ground Motion Over the SMART 1 Array 7. Author(s) A. Performin2 Oraanization Rept.. No. Mansour Niazi UCB/EERC-90/17 9. Performing O'\i:anizetion Name end Addren 10. ProjectfTask/Worit Unit No. Earthquake Engineering Research Center University of California, Berkeley 11. Contract(C) or Grant(G) No. 1301 So. 46th Street (C) Richmond, Calif. 94804 (G)ISI-8619612 12. Sponsorin" Organiutlon Name end Add~. 13. Type of Report & Period Covered National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550 14. i ~--------------------------------------------------------~.-----------------------'15. Supplementary Note. I I 16. Abstract (Limit: 200 words) The array recordings are used to investigate several important properties of, the seismic ground motions themselves. The results reported here address the question of the variability of the peak vertical and horizontal accelerations, velocities and displacements.
    [Show full text]
  • THE MEASUREMENT of GROUND MOTION of DESTRUCTIVE EARTHQUAKES by D. E. HUDSON ABSTRACT Tile Need for a Greatly Expanded Network Of
    Bulletin of the Seismological Society of America. Vol. 53, No. 2, pp. 419-437. February, 1963 THE MEASUREMENT OF GROUND MOTION OF DESTRUCTIVE EARTHQUAKES BY D. E. HUDSON ABSTRACT Tile need for a greatly expanded network of strong-motion accelerographs throughout the seismic regions of the world is stressed. A summary of the characteristics of currently available strong-motion accelerographs is presented, and the design details are given for an instrument suitable for acquiring the basic data needed by structural engineers for earthquake resistant design. It is shown that for such an instrument, the natural period must be less than 0.1 sec- onds, and that the recording speed must be at least 1 cm/sec. The critical nature of the inertia starting device is discussed, and some information is given on the transient response of the standard pendulum starter used in the United States Coast and Geodetic Survey Strong-Motion Accelerograph. The use of simpler, non-time-recording instruments such as the U.S.C.G.S. Seismoscope to supplement the accelerograph network is described. INTRODUCTION The occurrence of a great earthquake is a powerful stimulus to engineering re- searches in earthquake-resistant design, and structural engineers should always be prepared to make use of the general interest aroused by destructive earthquakes to further their studies in this field. At such times it is wise to evaluate anew the ade- quacy of our past knowledge, and to initiate new programs to supply deficiencies in it. The Chilean earthquakes of May 1960, with a main shock of magnitude 8.5, form one of the largest series of destructive earthquakes of history.
    [Show full text]
  • Part I: Earthquake Hazard and Strong Motion Chapter 3 Observation, Characterization and Prediction of Strong Ground Motion X. G
    PART I: EARTHQUAKE HAZARD AND STRONG MOTION CHAPTER 3 OBSERVATION, CHARACTERIZATION AND PREDICTION OF STRONG GROUND MOTION X. Goula and T. Susagna Institut Cartogràfic de Catalunya. Barcelona, Spain 3.1. Introduction A seismic risk mitigation strategy has two main technical legs: to construct performing buildings and other structures using an aseismic design and to prepare emergency plans using realistic seismic scenarios. Both technical actions need a precise definition of the seismic action of potentially damaging earthquakes by means of measurable parameters related to shear stresses and strains affecting structures, which are ground motion acceleration and displacement. An important challenge for seismic risk mitigation is thus to develop methodologies for seismic hazard analysis, and to assess vulnerability of structures and cost functions in terms of ground motion parameters. In recent decades much progress was made in the study of strong ground motion produced by earthquakes and its application to earthquake engineering. New data and analysis have given us more and more accurate and reliable empirical estimations of strong ground motion for future earthquakes. In parallel, the development of theoretical methods led to the proposition of new explanatory models of the seismic strong ground motions. In this chapter, after remarking on new advances in instrumentation and its capacity to measure and disseminate strong ground motion data, we describe the main parameters and factors useful in characterizing ground motion. The main components of these more useful predictive methods of ground motion for future earthquakes are analysed. Finally, different formal aspects concerning the definition of seismic actions from the predicted strong ground motion are discussed.
    [Show full text]
  • British Columbia Smart Infrastructure Monitoring System (Bcsims)
    16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 Paper N° 1130 (Abstract ID) Registration Code: S-S1461908875 BRITISH COLUMBIA SMART INFRASTRUCTURE MONITORING SYSTEM (BCSIMS) Y. Kaya(1), C. Ventura(2) (1) Research Associate, The University of British Columbia, [email protected] (2) Professor, The University of British Columbia, [email protected] Abstract The British Columbia Ministry of Transportation and Infrastructure and the University of British Columbia, Canada, have recently embarked on a program to instrument key structures to provide confirmation of seismic capacity, assist in focusing retrofit efforts, detect damage from any cause and provide rapid damage assessment of those structures following a seismic event. The instrumentation system installed at each structure is capable of remote configuration and can automatically upload data to a central server via the Internet. As part of this collaboration effective damage detection algorithms that provide reliable intelligence close to real time have been developed and implemented. This technology is used to i) detect, analyze and localize damage to structures; ii) transmit the data regarding these structures in real time via the internet; iii) display in animated and static web pages the data as appropriate for use by the Ministry and UBC. The alert systems and public access web pages can display real time seismic data from the BC Strong Motion Network to provide input for assessments by the Ministry of non-instrumented bridges. These systems may also provide other agencies, emergency responders and engineers with situational awareness. This Project will help transform the current practice of inspecting and evaluating all structures after an earthquake to a more rational and effective one that makes effective use of sensing technology with fast and efficient techniques for data analysis and interpretation.
    [Show full text]
  • International Aspects of the History of Earthquake Engineering
    International Aspects Of the History of Earthquake Engineering Part I February 12, 2008 Draft Robert Reitherman Executive Director Consortium of Universities for Research in Earthquake Engineering This draft contains Part I: Acknowledgements Chapter 1: Introduction Chapter 2: Japan The planned contents of Part II are chapters 3 through 6 on China, India, Italy, and Turkey. Oakland, California 1 Table of Contents Acknowledgments .......................................................................................................................i Chapter 1 Introduction ................................................................................................................1 “Earthquake Engineering”.......................................................................................................1 “International” ........................................................................................................................3 Why Study the History of Earthquake Engineering?................................................................4 Earthquake Engineering History is Fascinating .......................................................................5 A Reminder of the Value of Thinking .....................................................................................6 Engineering Can Be Narrow, History is Broad ........................................................................6 Respect: Giving Credit Where Credit Is Due ..........................................................................7 The Importance
    [Show full text]
  • DOGAMI Open-File Report O-81-09, Seismic and Volcanic Hazard
    STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1005 State Office Building, Portland, Oregon 97201 OPEN-FILE REPORT 0-81-9 SEISMIC AND VOLCANIC HAZARD EVALUATION OF THE MOUNT ST. HELENS AREA, WASHINGTON RELATIVE TO THE TROJAN NUCLEAR SITE, OREGON John D. Beaulieu Deputy State Geologist Norman V. Peterson Geologist Conducted in conformance with ORS 516.030 Funded by Oregon Department of Energy GOVERNING BOARD STATE GEOLOGIST John L. Schwabe Portland Donald A. Hull C. Stanley Rasmussen Baker Allen P. Stinchfield North Bend September 1981 CONTENTS Page 1.0 INTRODUCTION ...•.•.. 1 2.0 REGIONAL GEOLOGIC SETTING 3 2.1 General ...•.... 3 2.2 Plate Tectonic Boundaries in the Northwest United States 4 2.3 Mount St. Helens Seismic Zone . • . • . 9 2.4 Tectonic Setting of Mount St. Helens Area . 14 2.5 Selected References ••.•• 15 3.0 SEISMIC EVALUATION OF MOUNT ST. HELENS SEISMIC ZONE RELATIVE TO THE TROJAN SITE . • • • • • • . • . • • • 19 3.1 Fault Interpretation 19 3.1.1 General 19 3.1.2 Measures of Earthquake Magnitude. 19 3.1.3 Earthquake Magnitude as a Function of Source Parameters . 22 3.1.4 Earthquake Magnitude Determined by Seismic Moment 24 3.1.5 Recurrence Frequency of Maximum Possible Earthquake . 30 3 .1.6 Summary 32 3.1.7 Selected References 36 3.2 Ground Motion at Trojan Site 40 3.2.1 General 40 3.2.2 Acceleration 40 3.2.3 Velocity, Displacement, and Period 45 3.2.4 Response Spectrum 50 3.3 Conclusions .••.. 50 3.4 Selected References . 52 4.0 VOLCANIC EVALUATION OF MOUNT ST.
    [Show full text]
  • Full Scale Measurements of Strong Earthquake Motions
    UNIVERSITY OF SOUTHERN CALIFORNIA DEPARTMENT OF CIVIL ENGINEERING RECORDING STRONG EARTHQUAKE MOTION – INSTRUMENTS, RECORDING STRATEGIES AND DATA PROCESSING M.D. Trifunac Report CE 07-03 September 2007 Los Angeles, California www.usc.edu/dept/civil_eng/Earthquake_eng/ ABSTRACT This report describes the advances in recording of strong-motion. It emphasizes the amplitude and spatial resolution of recording starting with the first accelerographs, which had an optical recording dynamic range of about 50 dB, and a useful life longer than 30 years. When digital accelerographs started to become available in the late 1970s, their dynamic range increased progressively, and at present it is near 135 dB. However, most models have had a useful life shorter than 5 to 10 years. One benefit from a high dynamic range is early trigger and anticipated ability to compute permanent displacements. Another benefit is higher sensitivity and the possibility of recording smaller-amplitude motions (aftershocks, smaller local earthquakes and distant large earthquakes). The present trend of upgrading existing stations and adding new stations with high-dynamic-range accelerographs has lead to deployment of a relatively small number of new stations (the new high-dynamic-range digital instruments are 2 to 3 times more expensive than the old analog instruments or new digital instruments with a dynamic range of 60 dB or less). Thus the spatial resolution of recording, both of ground motion and structural response, has increased only slowly during the past 20 years ⎯ by a factor of about two. Future increase in the spatial resolution of recording will require orders of magnitude more funding for instruments and maintenance and for data retrieval, processing, management, and dissemination.
    [Show full text]
  • PEAK ACCELERATION SCALING STUDIES the Seismogram Recorded by a Strong Motion Accelerograph Represents the Accumulative Effect Of
    Bulletin of the Seismological Society of America, Vol. 72, No.3, pp. 959-979, June 1982 PEAK ACCELERATION SCALING STUDIES BY DAVID M. HADLEY, DONALD v. HELMBERGER, AND JOHN A. ORCUTT ABSTRACT An acceleration time history can be decomposed into a series of operations that transfers energy from each point on the fault to the recording station ACC(t) = 5* R* E* Q where 5 is the source time function, R represents rupture over a finite fault, E is the elastic propagation through the earth, and Q is the path attenuation, assumed to be linear. If these operators were exactly known, a deterministic approach to predicting strong ground motions would be straightforward. For the current study, E was computed from a velocity model that incorporates a stiff sedimen­ tary layer over a southern California crust. A range of realistic rupture velocities have been obtained by other investigators and is incorporated into the simula­ tion. Assumptions of the path averaged attenuation, Q, can be tested by com­ paring with observational data, as a function of distance, the parameters peak acceleration, and computed ML. This provides a check on both the high fre­ quency(- 5Hz) and long-period (-1 sec) behavior of E* Q. An average crustal shear wave Qfi of 300 is found to be compatible with observational data (ML = 4.5 to 5.0). Assumptions of 5 can be avoided by using real sources derived from accelerograms recorded at small epicentral distances (epicentral distance/ source depth < 1 ). Using these operators, accelerograms have been simulated for strike-slip faulting for four magnitudes: 4.5; 5.5; 6.5; and 7.0.
    [Show full text]
  • 75Th Anniversary of Strong Motion Observation—A Historical Review
    ARTICLE IN PRESS Soil Dynamics and Earthquake Engineering 29 (2009) 591– 606 Contents lists available at ScienceDirect Soil Dynamics and Earthquake Engineering journal homepage: www.elsevier.com/locate/soildyn 75th anniversary of strong motion observation—A historical review Mihailo D. Trifunac Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089, USA article info abstract Article history: This review describes the experience accumulated in the field of recording earthquake motions up to the Received 22 January 2008 early 1900s, and then it discusses the key players who contributed to the first successful strong motion Received in revised form observation program in earthquake engineering in the 1930s. It begins by summarizing the 17 May 2008 accomplishments of the preceding seismological observations, which provided the stepping-stone Accepted 27 May 2008 ideas on how to construct the first strong motion accelerograph. Next, it describes the lack of optimism among the engineers in the early 1900s, who doubted that structural response could ever be calculated Keywords: for irregular earthquake ground motion—this was, of course, half a century before the appearance of First strong motion earthquake fast digital computers—but also their realization that something needed to be done to reduce the accelerographs hazards from earthquakes. The roles of the two pioneers Kyoji Suyehiro and John Freeman, whose vision, First strong motion record leadership, and perseverance launched the strong motion observation program in 1932, are then briefly Long Beach earthquake of 1933 Kyoji Suyehiro discussed. Finally, the mechanical characteristics of the first strong motion accelerograph are outlined. John Freeman The review is completed by illustrating the growth of the strong motion observation programs in selected seismic areas of the world and the fruits of these programs—the cumulative number of uniformly processed strong motion records in southern California.
    [Show full text]
  • Procedures for Estimating Earthquake Ground Motions
    Procedures for Estimating Earthquake Ground Motions PROCEDURES FOR ESTIMATING EARTHQUAKE GROUND MOTIONS High-altitude view of the San Francisco Bay region showing surface traces of the Hayward and Calaveras faults. The Hayward fault was the source of two large earthquakes in 1836 and 1868 that caused surface rupture along as much as 64 km of its trace. The Calaveras fault, with a length of approximately 160 km, is one of the largest in northern California. The San Andreas fault passes offshore near Mussel Rock (arrow at bottom of photograph). Fault systems such as these must be critically studied when evaluating the seismic hazards and risk in an urban area. Procedures for Estimating Earthquake Ground Motions By WALTER W. HAYS GEOLOGICAL SURVEY PROFESSIONAL PAPER 1114 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Hays, Walter W. Procedures for estimating earthquake ground motions. (Geological Survey professional paper ; 1114) Bibliography: p. 69-77. Supt.ofDocs.no.: 119.16:1114 1. Earthquakes-United States. 2. Seismology United States. 3. Earthquake resistant design. I. Title. II. Series: United States. Geological Survey. Professional paper ; 1114. QE539.H39 363.3'495 79-607183 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03276-7 CONTENTS Page Page Glossary ____________________________VII
    [Show full text]
  • Global Symposium for Hazard Risk Reduction
    APPLIED RESEARCH GRANTS FOR DISASTER RISK REDUCTION Global Symposium for Hazard Risk Reduction Lessons Learned from the Applied Research Grants for Disaster Risk Reduction Program 26–28 July 2004 Washington, DC WORKING PAPERS The World Bank To explore innovative ways to address human vulnerability to hazards(natural and human-made), the ProVention Consortium invited a special disaster management audience—the world’s youth. The Consortium launched a program of Applied Grants for Disaster Risk Reduction in 2002. Sixty-five grants were awarded and fifteen projects have now been selected for presentation at this Global Symposium. This outreach program was managed by the World Bank’s Hazard Management Unit (HMU) in collaboration with the Asian Disaster Preparedness Center (ADPC), Cranfield Disaster Management Centre (CDMC) and the University of Wisconsin–Disaster Management Center (UW-DMC). This collection of working papers presents current research on disaster management issues and practice. For additional regional information, please contact: Asian Disaster Preparedness Center (ADPC) P.O. Box 4, Klong Luang, Pathumthani 12120 THAILAND Website — http://www.adpc.net/ Cranfield Disaster Management Centre (CDMC) Cranfield University (RMCS), Shrivenham, Swindon SN6 8LA, UK Website — http://www.rmcs.cranfield.ac.uk/ddmsa/dmc/view University of Wisconsin–Disaster Management Center (UW–DMC) University of Wisconsin-Madison, 432 North Lake Street, Madison, WI 53706, USA Website — http://dmc.engr.wisc.edu/ COVER PHOTOS Aliou Mamadou Dia, Chipo Muvezwa, Gabriela Muñoz Rodriguez, Rose Berdin COVER DESIGN Susan Kummer, Artifax To explore innovative ways to address human vulnerability to hazards(natural and human-made), the ProVention Consortium invited a special disaster management audience—the world’s youth.
    [Show full text]