Modula-2 Concurrency

Total Page:16

File Type:pdf, Size:1020Kb

Modula-2 Concurrency University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1984 Modula-2 concurrency Philip E. Rosine The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Rosine, Philip E., "Modula-2 concurrency" (1984). Graduate Student Theses, Dissertations, & Professional Papers. 5540. https://scholarworks.umt.edu/etd/5540 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 Th i s is a n unpublished m a n u s c r i p t in w h i c h c o p y r i g h t s u b ­ s i s t s . An y f u r t h e r r e p r i n t i n g o f its c o n t e n t s m u s t b e a p p r o v e d BY THE AUTHOR. Ma n s f i e l d L i b r a r y Un i v e r s i t y o f Mo n t a n a Modula-2 Concurrency by Philip E. Rosine B.S., University of Idaho, 1969 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1984 oA)u i |, , i >i imim ~ ~ ................................ Chairman, Board of Examiners D Date UMI Number: EP41004 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI* - D is s ifta lto RaMstwig UMI EP41004 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Rosine, Philip E.r M.S., June 1984 Computer Science Modula-2 Concurrency (431+vii pp.) Advisor: Dr. John R. Barr Modula-2, a language developed by Niklaus Wirth, is par­ ticularly well suited for teaching computer programming. Since it allows use of low level machine facilities it can be used for experimentation in many areas of comput­ er science. One particular area of interest is that of concurrent programming, in which several parts of a pro­ gram are executed simultaneously. Several methods and programming constructs for concurrent programming have been suggested and are of interest to the student. This paper deals with the development of a system in Modula-2 which is primarily designed for classroom use in teach­ ing concurrent programming concepts and techniques. Since the available computer is a PDP-11/23, a single processor system, a time-sharing concurrency scheduler was developed to simulate concurrent execution of processes. Semaphores were implemented as control structures for concurrent programs. The scheduler pack­ age includes a trace feature which allows a programmer to follow the execution of a concurrent program. A >pre-processor to convert Modula-2 modules into monitors has been developed. This allows programming of con­ current programs using higher level constructs than are allowed by using the scheduler alone. ii TABLE OF CONTENTS. Abstract .......................................... ii 1 Project Formulation ................................... .1 1.1 Background ...................... 1 1.2 Overview of the Problem.......................... 4 1.3 Components of a Teaching Package .......... 5 1.4 Methodology .................... 6 1.4.1 Analysis ...................................... 7 1.4.2 Design ................... 8 1.4.3 Implementation ............................... 8 1.4.4 Analysis ......... 9 1.4.5 Documentation ............. 9 1.4.6 Project Review ............................... 9 1.5 Proposed Work Plan ....................... 10 1.6 Preliminary Analysis ............................. 12 2 Concurrency — an Overview ........................... 14 2.1 Problems Associated with Concurrency ............ 18 2.2 Proposed Solutions ............................. 19 2.3 Co-routines ........... 19 2.4 Semaphores ........... 20 2.5 Monitors ........... 21 2.6 Message Passing ................................... 22 2.7 Rendezvous ......................................... 22 2.8 Path Expressions ........... 23 2.9 Communicating Sequential Processes .......... 24 2.10 Eventcounts and Sequencers ............. 24 3 Phase One — the basic modules ...................... 26 3.1 Input/Output ...................................... 27 3.1.1 Module InOut ............. 28 iii 3.1.2 Module ReallnOut ........................ 29 3.1.3 Module IOControl ............................. 30 3.2 Concurrent Processes — • Module Preemp- tiveScheduler ..... 31 3.2.1 Requirements & Specifications .............. 32 3.2.2 Design & Implementation ......... 35 3.2.2.1 Module Data Structures ................. 37 3.2.2.2 Procedure start ...................... 40 3.2.2.4 Procedure Clock .......................... 42 3.2.2.5 Procedure HaltProcess .......... 44 3.2.2.6 Procedure HaltScheduler ................ 45 3.2.2.7 Function StatusOfScheduler ............. 46 3.2.2.8 Function ProcessID ........... 46 3.2.2.9 Operations on type SIGNAL ......... 46 3.2.2.10 Operations on type SEMAPHORE ......... 47 3.3 Compiler Bugs .......... 48 4 Phase Two — a Monitor Pre-Processor ........... 51 4.1 Analysis ............ 54 4.2 Design ......................... 57 4.2.1 Initial Design ........................ 57 4.2.2 Monitor Algorithm ............................ 61 4.2.3 Final Design .................................. 65 4.3 Implementation ........................ 68 4.3.1 Preliminaries ...... 68 4.3.2 Implementation and Test Plan ............... 69 4.3.3 Implementation ...... 72 5 Phase Three — Scheduler Trace ...................... 77 5.1 General Discussion ............................... 77 5.2 Design of the Trace Feature ..................... 78 5.3 Implementation of the Trace Feature ............ 80 5.4 Data Structures ........ .......................... 80 5.5 Procedure TraceOutput ........ 81 6 Project Discussion .............................. 82 6.1 Project Review ................ 82 6.1.1 Phase One ..................................... 83 6.1.2 Phase Two ................ 84 6.1.3 Phase Three ................................... 84 6.2 Project Development .............................. 85 6.2.1 Analysis ...................................... 85 6.2.2 Design .................. 87 6.2.2.1 Hueristic Design ........................ 87 6.2.2.2 Formal Design ............................ 88 6.2.3 Implementation and Testing ................. 89 6.2.4 Tools ................................. 90 6.2.4.1 Modula-2 System .................. 90 6.2.4.2 ISDOS Tools ............................. 91 6.2.4.3 Local Network ...... 93 iv 6.3 Conclusions and Lessons Learned ................ 93 Appendix A — Source Code .............................. 96 Module InOut Module ReallnOut Module IOControl Module PreemptiveScheduler Module PreemptiveScheduler with Trace Program MONITR — Monitor Pre-Processor Appendix B — User's Guides ................. 97 I/O User's Guide ...... 97 Scheduler User's Guide ............................... 112 Monitor Pre-Processor User's Guide 136 Appendix C — Test Programs ............................ 146 General Tests I/O Tests Scheduler Tests Monitor Pre-Processor Tests Scheduler Trace Tests Appendix D — Analysis and Design Documents ........... 152 Level 0 PSA Formatted Problem Statement Level-1 PSA Formatted Problem Statement Level-2 PSA Formatted Problem Statement Monitor Pre-Processor Design — pdsl document .. 156 REFERENCES .................... 157 v LIST OF TABLES Monitor Algorithm Table ................................. 61 vi LIST OF ILLUSTRATIONS Level 0 Data Flow Diagram .............................. 12 Level-1 Data Flow Diagram ....................... 52 Level-2 Data Flow Diagram ...................... 57 Monitor Pre-Processor Design ...................... 66 Monitor Pre-Processor Implementation ............ 75 Chapter 1 Project Formulation 1.JL. Background The primary rationale for this project is that multi­ tasking and multi-processing are becoming increasingly important to applications programming on computers. In the past these topics and their associated problems have been primarily the concern of specialists dealing with operating systems and computer design, and for systems analysts on larger mainframe computer systems. Two of the current trends in computer science, both in terms of research and in terms of application, are distributed processing systems and multi-tasking programming languages. In order to better prepare students for these challenges, a programming language which allows 1 2 easy implementation of concurrent processes[1] and the associated control/data structures is needed. One such language is Modula-2, a computer programming language developed by Niklaus Wirth. Modula-2 is descended from the languages Pascal [Jen- sen,1978] and Modula [Wirth,1977], which were also developed by Wirth. It is essentially an extension of Pascal to include the concepts of modules and multipro­ gramming. The module concept implies both the idea of separate compilation units for program parts, and the concept of information hiding. There
Recommended publications
  • Concurrent Programming Introduction
    v1.0 20130407 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module 2.1] CONCURRENT PROGRAMMING INTRODUCTION PAP LM - ISI - Cesena - UNIBO !1 SUMMARY • Concurrent programming – motivations: HW evolution – basic jargon • processes interaction, cooperation, competition, • mutual exclusion, synchronization • problems: deadlocks, starvation, livelocks • A little bit of history – Dijkstra, Hoare, Brinch-Hansen • Concurrent languages, mechanisms, abstractions – overview PAP LM - ISI - Cesena - UNIBO Introduction !2 CONCURRENCY AND CONCURRENT SYSTEMS • Concurrency as a main concept of many domains and systems – operating systems, multi-threaded and multi-process programs, distributed systems, control systems, real-time systems,... • General definitions – “In computer science, concurrency is a property of systems in which several computational processes are executing at the same time, and potentially interacting with each other.” [ROS-97] – “Concurrency is concerned with the fundamental aspects of systems of multiple, simultaneously active computing agents, that interact with one another” [CLE-96] • Common aspects – systems with multiple activities or processes whose execution overlaps in time – activities can have some kind of dependencies, therefore can interact PAP LM - ISI - Cesena - UNIBO Introduction !3 CONCURRENT PROGRAMMING • Concurrent programming – building programs in which multiple computational activities overlap in time and typically interact in some way • Concurrent program – finite set of sequential programs that can be executed in parallel, i.e. overlapped in time • a sequential program specifies sequential execution of a list of statements • the execution of a sequential program is called process • a concurrent program specifies two or more sequential programs that may be executed concurrently as parallel processes – the execution of a concurrent program is called concurrent computation or elaboration PAP LM - ISI - Cesena - UNIBO Introduction !4 CONCURRENT PROGRAMMING VS.
    [Show full text]
  • Language-Level Support for Exploratory Programming of Distributed Virtual Environments
    In Proc ACM UIST ‘96 (Symp. on User Interface Software and Technology), Seattle, WA, November 6–8, 1996, pp. 83–94. Language-Level Support for Exploratory Programming of Distributed Virtual Environments Blair MacIntyre and Steven Feiner Department of Computer Science, Columbia University, New York, NY, 10027 {bm,feiner}@cs.columbia.edu http://www.cs.columbia.edu/~{bm,feiner} Abstract resulted in an unmanageable welter of client-server relation- ships, with each of a dozen or more processes needing to We describe COTERIE, a toolkit that provides language- create and maintain explicit connections to each other and to level support for building distributed virtual environments. handle inevitable crashes. COTERIE is based on the distributed data-object paradigm for distributed shared memory. Any data object in COTE- We spent a sufficiently large portion of our time reengineer- RIE can be declared to be a Shared Object that is replicated ing client-server code that it became clear to us that our fully in any process that is interested in it. These Shared implementation of the client-server model was unsuitable Objects support asynchronous data propagation with atomic for exploratory programming of distributed research proto- serializable updates, and asynchronous notification of types. The heart of the problem, as we saw it, was a lack of updates. COTERIE is built in Modula-3 and uses existing support for data sharing that was both efficient and easy for Modula-3 packages that support an integrated interpreted programmers to use in the face of frequent and unantici- language, multithreading, and 3D animation. Unlike other pated changes.
    [Show full text]
  • The Zonnon Project: a .NET Language and Compiler Experiment
    The Zonnon Project: A .NET Language and Compiler Experiment Jürg Gutknecht Vladimir Romanov Eugene Zueff Swiss Fed Inst of Technology Moscow State University Swiss Fed Inst of Technology (ETH) Computer Science Department (ETH) Zürich, Switzerland Moscow, Russia Zürich, Switzerland [email protected] [email protected] [email protected] ABSTRACT Zonnon is a new programming language that combines the style and the virtues of the Pascal family with a number of novel programming concepts and constructs. It covers a wide range of programming models from algorithms and data structures to interoperating active objects in a distributed system. In contrast to popular object-oriented languages, Zonnon propagates a symmetric compositional inheritance model. In this paper, we first give a brief overview of the language and then focus on the implementation of the compiler and builder on top of .NET, with a particular emphasis on the use of the MS Common Compiler Infrastructure (CCI). The Zonnon compiler is an interesting showcase for the .NET interoperability platform because it implements a non-trivial but still “natural” mapping from the language’s intrinsic object model to the underlying CLR. Keywords Oberon, Zonnon, Compiler, Common Compiler Infrastructure (CCI), Integration. 1. INTRODUCTION: THE BRIEF CCI and b) to experiment with evolutionary language HISTORY OF THE PROJECT concepts. The notion of active object was taken from the Active Oberon language [Gut01]. In addition, two This is a technical paper presenting and describing new concurrency mechanisms have been added: an the current state of the Zonnon project. Zonnon is an accompanying communication mechanism based on evolution of the Pascal, Modula, Oberon language syntax-oriented protocols , borrowed from the Active line [Wir88].
    [Show full text]
  • MODULA a Language for Modular Multiprogramming, Wirth, 1976
    Research Collection Report MODULA a language for modular multiprogramming Author(s): Wirth, Niklaus Publication Date: 1976 Permanent Link: https://doi.org/10.3929/ethz-a-000199440 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ~ idgenöss · ische ·Institut T echnisc ~he für. Hochschule Informatik Zürich MODULA: A language formodular multiprogramming ~~8rz 1976 18 ~ ., ' , „· Eidgenössische Institut Technische für Hochschule Informatik Zürich Niklaus Wirth MODULA: A language formodular multiprogramming - 1 - N .Wirth Abstract This paper defines a language called Modula, which is intended primarily for programming dedicated computer systems, including process control systems on smaller machines. The language is largely based on Pascal, but in addition to conventional block ) structure it introduces a so - called module structure . A module is a set of procedures, data types, and variables, where the programmer has precise control over the names that are imported from and exported to the environment. Modula includes general multiprocessing facilities, namely processes , interfacp, modules, and Signals . It also allows the specification of facilities that represent a computer ' s specific peripheral devices . Those given in this paper pertain to the PDP - 11. Author ' s address: Institut für Informatik , ETH , CH-8092 Zürich - 2 - Coaten ts 1. Introduction 3 2. 0 verview 5 3. Notation for syotactic description 10 4. Language vocabulary and representation 10 5. Facilities for sequential programmiog 12 1. Constant declarations 12 2. Type declarations 12 1 • Basic types 13 2. E n um e ratio n s 13 3.
    [Show full text]
  • The Programming Language Concurrent Pascal
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-I, No.2, JUNE 1975 199 The Programming Language Concurrent Pascal PER BRINCH HANSEN Abstract-The paper describes a new programming language Disk buffer for structured programming of computer operating systems. It e.lt­ tends the sequential programming language Pascal with concurx:~t programming tools called processes and monitors. Section I eltplains these concepts informally by means of pictures illustrating a hier­ archical design of a simple spooling system. Section II uses the same enmple to introduce the language notation. The main contribu~on of Concurrent Pascal is to extend the monitor concept with an .ex­ Producer process Consumer process plicit hierarchy Of access' rights to shared data structures that can Fig. 1. Process communication. be stated in the program text and checked by a compiler. Index Terms-Abstract data types, access rights, classes, con­ current processes, concurrent programming languages, hierarchical operating systems, monitors, scheduling, structured multiprogram­ ming. Access rights Private data Sequential 1. THE PURPOSE OF CONCURRENT PASCAL program A. Background Fig. 2. Process. INCE 1972 I have been working on a new programming .. language for structured programming of computer S The next picture shows a process component in more operating systems. This language is called Concurrent detail (Fig. 2). Pascal. It extends the sequential programming language A process consists of a private data structure and a Pascal with concurrent programming tools called processes sequential program that can operate on the data. One and monitors [1J-[3]' process cannot operate on the private data of another This is an informal description of Concurrent Pascal.
    [Show full text]
  • Javascript and OOP Once Upon a Time
    11/14/18 JavaScript and OOP Once upon a time . Jerry Cain CS 106AJ November 12, 2018 slides courtesy of Eric Roberts Object-Oriented Programming The most prestigious prize in computer science, the ACM Turing Award, was given in 2002 to two Norwegian computing pioneers, who jointly developed SIMULA in 1967, which was the first language to use the object-oriented paradigm. JavaScript and OOP In addition to his work in computer Kristen Nygaard science, Kristen Nygaard also took Ole Johan Dahl an active role in making sure that computers served the interests of workers, not just their employers. In 1990, Nygaard’s social activism was recognized in the form of the Norbert Wiener Award for Social and Professional Responsibility. Review: Clients and Interfaces David Parnas on Modular Development • Libraries—along with programming abstractions at many • David Parnas is Professor of Computer other levels—can be viewed from two perspectives. Code Science at Limerick University in Ireland, that uses a library is called a client. The code for the library where he directs the Software Quality itself is called the implementation. Research LaBoratory, and has also taught at universities in Germany, Canada, and the • The point at which the client and the implementation meet is United States. called the interface, which serves as both a barrier and a communication channel: • Parnas's most influential contriBution to software engineering is his groundBreaking 1972 paper "On the criteria to be used in decomposing systems into modules," which client implementation laid the foundation for modern structured programming. This paper appears in many anthologies and is available on the web at interface http://portal.acm.org/citation.cfm?id=361623 1 11/14/18 Information Hiding Thinking About Objects Our module structure is based on the decomposition criteria known as information hiding.
    [Show full text]
  • Extensibility in the Oberon System
    Nordic Journal of Computing 1(1994), 77{93. EXTENSIBILITY IN THE OBERON SYSTEM HANSPETER MOSSENB¨ OCK¨ ∗ Institute for Computer Systems ETH Zurich¨ CH{8092 Zurich¨ Switzerland Abstract. We show how an object-oriented system-and in particular the Oberon System-can be used to write software that is extensible by end users even while the software is running. Extensibility instead of completeness may be a way out of the unpleasant situation in software industry where applications still tend to become bigger every year. Oberon is both an object-oriented programming language and an operating system with new concepts such as commands and dynamic loading. The language and the system make up an environment that is similar to Smalltalk in its flexibility but offers static type-checking and is much more efficient. CR Classification: D.2.2, D.1.5 1. Introduction Ambitious software systems with large functionality and thousands of users can hardly be designed in a form that meets all future needs from the be- ginning. It is impossible to foresee all the ways in which such systems will be used so that requests for extensions will arise naturally. Current software industry tries to cope with this problem by including as many features as possible into a software system. This leads to huge monolithic software that offers amazing functionality but still leaves some users disappointed because it typically lacks just their favorite feature. The opposite approach is to design a system only as a minimal kernel and to provide means to extend it. This allows vendors and even users to add more functionality later without bothering other users which do not need it.
    [Show full text]
  • Chapter 4: PHP Fundamentals Objectives: After Reading This Chapter You Should Be Entertained and Learned: 1
    Chapter 4: PHP Fundamentals Objectives: After reading this chapter you should be entertained and learned: 1. What is PHP? 2. The Life-cycle of the PHP. 3. Why PHP? 4. Getting Started with PHP. 5. A Bit About Variables. 6. HTML Forms. 7. Building A Simple Application. 8. Programming Languages Statements Classification. 9. Program Development Life-Cycle. 10. Structured Programming. 11. Object Oriented Programming Language. 4.1 What is PHP? PHP is what is known as a Server-Side Scripting Language - which means that it is interpreted on the web server before the webpage is sent to a web browser to be displayed. This can be seen in the expanded PHP recursive acronym PHP-Hypertext Pre-processor (Created by Rasmus Lerdorf in 1995). This diagram outlines the process of how PHP interacts with a MySQL database. Originally, it is a set of Perl scripts known as the “Personal Home Page” tools. PHP 4.0 is released in June 1998 with some OO capability. The core was rewritten in 1998 for improved performance of complex applications. The core is rewritten in 1998 by Zeev and Andi and dubbed the “Zend Engine”. The engine is introduced in mid 1999 and is released with version 4.0 in May of 2000. Version 5.0 will include version 2.0 of the Zend Engine (New object model is more powerful and intuitive, Objects will no longer be passed by value; they now will be passed by reference, and Increases performance and makes OOP more attractive). Figure 4.1 The Relationship between the PHP, the Web Browser, and the MySQL DBMS 4.2 The Life-cycle of the PHP: A person using their web browser asks for a dynamic PHP webpage, the webserver has been configured to recognise the .php extension and passes the file to the PHP interpreter which in turn passes an SQL query to the MySQL server returning results for PHP to display.
    [Show full text]
  • Warum Unix-Ports Pascal Bis Oberon in Der Bremer Informatik
    Warum Unix-Ports Pascal bis Oberon in der Bremer Informatik Günter Feldmann Universität Bremen [email protected] 1970th, Dept. of Electrical Engineering ● 1974/75: first university computer CII-Honeywell Bull, IRIS-80 ● first Pascal port from a university in Paris. ● learned Pascal by reading the compiler sources ● engineers needed 64-bit REALS, compiler got modified accordingly ● compiling and linking the compiler took 2 days ● N. Wirth: Systematisches Programmieren Since 1981, Dept. of Mathematics and Computer Science ● first personal computers: DEC PDT 11 ● PDP11 instruction set, but some instructions were missing, these had to be emulated in software as the interpreters and compilers used them. ● UCSD Pascal and some times a Modula (not Modula-2) compiler under RT11. ● Small local area network via V24 connections Computer Science ● A series of different computers ● DEC PDP11/44, BSD Unix ● DEC VAX 750 with 8 VT100 terminals, BSD Unix ● 30 Atari 520 ST (M6800) ● 20 Sun3 Workstations (M6820) ● all machines were equipped with Pascal and/or Modula-2 compilers ● Some machines (Pascal Microengine, PERQ) were microprogrammed for Pascal (p-code, Q- code) Computer Science ● workstation pool for students ● 30 machines (1986), 100 machines today ● in the beginning of 1990th we acquired Sun4 workstations (SPARC). No Modula-2 compiler! ● ETHZ released the SPARC Oberon system hosted by SunOS. This system was used in the course “Software Projekt” until 1996. Then “Java” came … ● programming courses got replaced by courses in “internet programming” Keeping Oberon alive on our hardware ● OS change: SunOS (BSD) to Solaris (SYSVR4) ● despite binary compatibility SPARC Oberon failed. Oberon compiler used registers reserved for usage by the system.
    [Show full text]
  • Data Abstraction and Encapsulation ADT Example
    Data Abstraction and Encapsulation Definition: Data Encapsulation or Information Hiding is the concealing of the implementation details of a data object Data Abstraction from the outside world. Definition: Data Abstraction is the separation between and the specification of a data object and its implementation. Definition: A data type is a collection of objects and a set Encapsulation of operations that act on those objects. Definition: An abstract data type (ADT) is a data type that is organized in such a way that the specification of the objects and the specification of the operations on the objects is separated from the representation of the objects and the implementation of the operations. 1 2 Advantages of Data Abstraction and Data Encapsulation ADT Example ADT NaturalNumber is Simplification of software development objects: An ordered sub-range of the integers starting at zero and ending at the maximum integer (MAXINT) on the computer. Testing and Debugging functions: for all x, y belong to NaturalNumber; TRUE, FALSE belong to Boolean and where +, -, <, ==, and = are the usual integer operations Reusability Zero(): NaturalNumber ::= 0 Modifications to the representation of a data IsZero(x): Boolean ::= if (x == 0) IsZero = TRUE else IsZero = FALSE type Add(x, y): NaturalNumber ::= if (x+y <= MAXINT) Add = x + y else Add = MAXINT Equal(x, y): Boolean ::= if (x == y) Equal = TRUE else Equal = FALSE Successor(x): NaturalNumber ::= if (x == MAXINT) Successor = x else Successor = x +1 Substract(x, y): NaturalNumber ::= if (x <
    [Show full text]
  • Concurrent Pascal
    LIBP.ARY CLEARANCE 1. (a) I give my permission for my thesis, entitled .....~D.~~ r.r-.m1 .... P.C?.~~.: .. .) Q?y).~-tJ.\.1Ati~0.. A,:&. U~oJe- .................................................................... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. to be made available to readers in the Library under the conditions determined by the Librarian. (b) I agree to my thesis, if asked for by another institution, being sent away on temporary loan under conditions determined by the Librarian. (e) I also agree that oy thesis may be copied for Library use. 2. I do not wish m . .. .. .. .. .. .. ......................................... ...................~--- ~-........................ .. .. .. .. .. .. ~ ................... ~- ...................... •. '" -, to be made available to re~~,or to be sent ~ll.er ins-ti-tut.ions without my written consent withiri'--the next two years~ Signed .. 1?~~-............... Date ... ?!.? I 9./.$~.................. Strike out the se»tence or phrase which does not apply. The Library Massey University Palmerston North, N.Z. The copyright of this thesis belongs to the author. Readers must ~ign their name in the space below to show that they recognise this. They are asked to add their permanent address. Name and Address Date ................................................................................. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ••••••••••••••o•••••••••••• .. •••••••••••••••••••••••••••••••••••••••••••••••••••• ................................................................................
    [Show full text]
  • Towards Mathix / Math-X, a Computer Algebra Language That Can Create Its Own Operating System, and That Is Amazingly User- Friendly and Secure
    Towards Mathix / Math-x, a computer algebra language that can create its own operating system, and that is amazingly user- friendly and secure Thomas Colignatus, August 19 2009, some clarifications August 23 2009 http://www.dataweb.nl/~cool Summary Given the current supply and demand for computer languages and systems, there is a clear window of opportunity for the software community to collaborate and create Mathix and Math-x. The base would be Oberon, which itself derives from Algol / Pascal / Modula and which is better designed than Unix / Linux, and which now has the system Bluebottle / A2 at http://bluebottle.ethz.ch. Mathix is defined as Oberon/A2 extended with a suitable computer algebra language (say, CAL). Math-x is defined as Minix ported to Oberon/A2 (via Cyclone) and extended with that CAL. Mathix and Math-x thus can create their own OS. Mathix and Math-x are flexible in that they contain both a strongly typed dialect relevant for OS creation (current Oberon) and a more flexible dialect relevant for the human user (CAL, to be created). The dialects have much syntax in common but the CAL allows more flexibility. The CAL is internally translated into Oberon/A2 which allows compilation as well. 2 2009-08-23-Math-x.nb Note This paper is best understood in the context of my book Elegance with Substance on mathematics education - see http://www.dataweb.nl/~cool/Papers/Math/Index.html. My book advises that each national parliament investigates the stagnation in doing mathematics on the computer in school. This paper suggests how the software community might anticipate on common sense conclusions and start working on improvement.
    [Show full text]