Natural Experiments and Instrumental Variables Analyses in Social Epidemiology

Total Page:16

File Type:pdf, Size:1020Kb

Natural Experiments and Instrumental Variables Analyses in Social Epidemiology k Trim Size: 7in x 9.25in Oakes c19.tex V1 - 01/11/2017 7:26 P.M. Page 493 CHAPTER NINETEEN NATURAL EXPERIMENTS AND INSTRUMENTAL VARIABLES ANALYSES IN SOCIAL EPIDEMIOLOGY M. Maria Glymour, Stefan Walter, and Eric J. Tchetgen Tchetgen “Alternatives to the experiment will always be needed, and a key issue is to identify which kinds of observational studies are most likely to generate unbiased results.” k k COOK, SHADISH, ET AL. (2008) ocial epidemiology is of little use if it cannot guide us in how to improve Spopulation health. Such guidance depends on understanding the causal structures that harm the health of people exposed to social disadvantage. Although evaluating the effects of social conditions on health is a central task in social epidemiology, the core analytic tools of our discipline are often insuf- ficient; we may not be able to conclusively estimate the magnitude ofhealth effects or even to determine whether important social exposures have any health effects at all. Social epidemiology largely inherited the methodological techniques of the parent discipline of epidemiology, and the usual approach to estimating treatment effects from observational data involves assessing the observed association between the exposure and outcome of interest, adjusting or stratifying to account for likely confounders. Instrumental variables (IV) analyses provide an alternative to this approach when data from either researcher-randomized experiments or natu- ral experiments are available. IV analyses depend strongly on the assumption that the data were generated by a valid experiment, that is, that subjects were 493 k k Trim Size: 7in x 9.25in Oakes c19.tex V1 - 01/11/2017 7:26 P.M. Page 494 494 Methods in Social Epidemiology effectively randomized, even if the randomization process was not initiated by the researcher and adherence to random assignment was low. For many of the exposures of interest in social epidemiology, opportunities to intentionally randomize are few and far between, but natural experiments may be more common. Social determinants of health, such as schooling, poverty, employ- ment, and even marriage, fertility, and social connections, are influenced by administrative policies, state and local laws, and other forces external to the individual (Currie 1995; Angrist and Krueger 2001). These policies sometimes create natural or quasi-experiments in which an individual’s probability of exposure to a particular social condition is influenced by a policy that is uncorrelated with the individual’s personal characteristics or other factors that would affect the outcome of interest. Such natural experiments—in which a random process influences the probability of exposure but this random event is not instigated by researchers—provide a powerful approach to test causal claims. We have organized this chapter to give a broad intuition first and provide greater detail in subsequent sections. The first section discusses the motivations for IV analyses. We then provide a brief introduction to the assumptions required to interpret IV estimates as causal parameters, and k describe approaches to implementing IV analyses. The next section frames k natural experiments and IV estimates in terms of the general problem of causal inference, and walks through a simple numerical example comparing the IV estimate to other parameters. We briefly introduce applications with binary and survival outcomes. We then discuss a few examples of specific instruments that seem especially clever or potentially relevant to social epidemiology. The concluding sections address common points of confusion regarding IV analyses and reiterate the limitations of IV. Much of the descrip- tion below is informal, focusing on intuition. More formal introductions to IV are available in several excellent articles published elsewhere (Angrist et al. 1996; Greenland 2000; Angrist and Krueger 2001; Pearl 2009). IV is also discussed in standard econometrics textbooks (Kennedy 2008; Greene 2000; Wooldridge 2016). Motivations for Using Instrumental Variables in Social Epidemiology Research We recognize three related motivations for using IV approaches in social epidemiology. The first is to estimate the causal effect of treatment, rather than the intent to treat (ITT) effect (defined below). A second major k k Trim Size: 7in x 9.25in Oakes c19.tex V1 - 01/11/2017 7:26 P.M. Page 495 Natural Experiments and Instrumental Variables Analyses in Social Epidemiology 495 motivation for IV analyses is to circumvent the problem of unmeasured confounders when it seems unlikely, or at least uncertain, that all of the confounding bias between the exposure and outcome can be addressed using regression adjustment or related methods. A third motivation for using IV analyses in social epidemiology is that the IV effect estimate may correspond to a parameter of substantive interest that cannot be directly estimated in conventional models, such as the effect of treatment differences induced by changes in the IV. IV analyses, although often used in natural or quasi-experimental settings, are also relevant in researcher randomized trials, such as the Moving To Opportunity (MTO) experiment (Ludwig et al. 2011). Estimating the Effect of Being Treated Instead of the Effect of Being Randomized Randomized trials are considered to provide the most convincing evidence for causal effects (Byar et al. 1976; Abel and Koch 1999; DeMets 2002). ITT analyses—in which the outcomes of those assigned to a treatment group are contrasted with the outcomes of those assigned to a comparison group—are the standard analytical method for data from randomized trials. Because of k non-compliance, the ITT estimates do not estimate the effect of receiving the k treatment (versus the comparison) on the outcome. Instead, ITT analysis estimates the effect of being assigned to receive the treatment on the subjects’ health. If the ITT effect estimate in a valid RCT is significantly positive (benefi- cial), this indicates that the treatment improves outcomes for at least some individuals in the population, but it does not reveal the magnitude of that relationship. It is often critical to learn whether the treatment effect is large or small. For example, the MTO trial randomized families residing in public housing developments to either receive a housing voucher to subsidize rental of a private market apartment or to receive no such voucher (and remain in public housing). Of those offered a voucher, only about half took advantage of the offer and moved to a private market rental. At 4–7 years after random- ization, girls aged 12–17 in families who were randomized to receive a voucher were 12 percentage points less likely to meet criterion for psychological distress (measured with the Kessler 6 inventory). Accounting for non-adherence with an IV estimate indicated the impact of moving to a private market apartment for girls was a 23 percentage point reduction in the probability of psychological distress (Osypuk et al. 2012). Several alternatives to the ITT effect estimate rely on defining the exposure variable in the analysis to be the treatment each participant received k k Trim Size: 7in x 9.25in Oakes c19.tex V1 - 01/11/2017 7:26 P.M. Page 496 496 Methods in Social Epidemiology (regardless of their randomly assigned treatment). These approaches reintroduce confounding if there are common causes of treatment take-up and the outcome. For example, directly comparing the treated to the untreated (sometimes called as-treated analysis) or comparing compliers in the treatment arm to compliers in the control arm (per-protocol analysis) are well-known and long-rejected options (Hennekens and Buring 1987; Weiss 1998). IV analyses, however, can, under certain assumptions, provide an unconfounded estimate of the effect of treatment even if the association between treatment taken and the outcome is subject to unmeasured con- founding. IV analyses do not directly compare treated to untreated people. IV analyses therefore avoid conditioning on post-randomization information to define the exposure variable. A caveat, explained in more detail below,is that if the effect of treatment is not the same for everyone in the population, IV analyses may not provide the average treatment effect for the whole population. Avoiding Bias Due to Confounding in Observational Data Analyses In the absence of randomized trial data, epidemiologists typically attempt k to draw causal inferences from observational data by adjusting for common k causes (confounders) of the exposure and the outcome. Such adjustment may take the form of regression adjustment (i.e., conditioning on the con- founder in a regression model), standardization, stratification, restriction, or propensity score matching. These approaches have a common goal: identify an observed set of covariates such that, within strata of the covariates, the statistical association between treatment and outcome can be entirely attributed to the causal effect of the former on the latter (Greenland et al. 1999). The principal limitation of this approach is that such a set of covariates is rarely fully observed. Even if all common causes of the exposure and the outcome are known at a conceptual level, have they been well measured? Is the regression model incorporating such confounders correctly specified? If not, residual confounding could remain a threat to validity. Although recent meta-analyses suggest observational designs evaluating clinical interventions are not systematically biased compared to RCTs (Anglemyer et al. 2014), findings from observational studies often differ substantially from whatis achieved with RCTs (McCarrey and Resnick 2015), and the problem may be especially acute in social epidemiology (Berkman 2009). With a valid instrument, IV analyses can sometimes be used to estimate the effect of the treatment even if important confounders of the treatment-outcome relation are not accounted for. k k Trim Size: 7in x 9.25in Oakes c19.tex V1 - 01/11/2017 7:26 P.M. Page 497 Natural Experiments and Instrumental Variables Analyses in Social Epidemiology 497 Estimating Complier-Specific Treatment Effects The health effects of most exposures vary across individuals.
Recommended publications
  • Introduction to Biostatistics
    Introduction to Biostatistics Jie Yang, Ph.D. Associate Professor Department of Family, Population and Preventive Medicine Director Biostatistical Consulting Core Director Biostatistics and Bioinformatics Shared Resource, Stony Brook Cancer Center In collaboration with Clinical Translational Science Center (CTSC) and the Biostatistics and Bioinformatics Shared Resource (BB-SR), Stony Brook Cancer Center (SBCC). OUTLINE What is Biostatistics What does a biostatistician do • Experiment design, clinical trial design • Descriptive and Inferential analysis • Result interpretation What you should bring while consulting with a biostatistician WHAT IS BIOSTATISTICS • The science of (bio)statistics encompasses the design of biological/clinical experiments the collection, summarization, and analysis of data from those experiments the interpretation of, and inference from, the results How to Lie with Statistics (1954) by Darrell Huff. http://www.youtube.com/watch?v=PbODigCZqL8 GOAL OF STATISTICS Sampling POPULATION Probability SAMPLE Theory Descriptive Descriptive Statistics Statistics Inference Population Sample Parameters: Inferential Statistics Statistics: 흁, 흈, 흅… 푿ഥ , 풔, 풑ෝ,… PROPERTIES OF A “GOOD” SAMPLE • Adequate sample size (statistical power) • Random selection (representative) Sampling Techniques: 1.Simple random sampling 2.Stratified sampling 3.Systematic sampling 4.Cluster sampling 5.Convenience sampling STUDY DESIGN EXPERIEMENT DESIGN Completely Randomized Design (CRD) - Randomly assign the experiment units to the treatments
    [Show full text]
  • Experimentation Science: a Process Approach for the Complete Design of an Experiment
    Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 1996 - 8th Annual Conference Proceedings EXPERIMENTATION SCIENCE: A PROCESS APPROACH FOR THE COMPLETE DESIGN OF AN EXPERIMENT D. D. Kratzer K. A. Ash Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Kratzer, D. D. and Ash, K. A. (1996). "EXPERIMENTATION SCIENCE: A PROCESS APPROACH FOR THE COMPLETE DESIGN OF AN EXPERIMENT," Conference on Applied Statistics in Agriculture. https://doi.org/ 10.4148/2475-7772.1322 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Conference on Applied Statistics in Agriculture Kansas State University Applied Statistics in Agriculture 109 EXPERIMENTATION SCIENCE: A PROCESS APPROACH FOR THE COMPLETE DESIGN OF AN EXPERIMENT. D. D. Kratzer Ph.D., Pharmacia and Upjohn Inc., Kalamazoo MI, and K. A. Ash D.V.M., Ph.D., Town and Country Animal Hospital, Charlotte MI ABSTRACT Experimentation Science is introduced as a process through which the necessary steps of experimental design are all sufficiently addressed. Experimentation Science is defined as a nearly linear process of objective formulation, selection of experimentation unit and decision variable(s), deciding treatment, design and error structure, defining the randomization, statistical analyses and decision procedures, outlining quality control procedures for data collection, and finally analysis, presentation and interpretation of results.
    [Show full text]
  • Natural Experiments
    Natural Experiments Jason Seawright [email protected] August 11, 2010 J. Seawright (PolSci) Essex 2010 August 11, 2010 1 / 31 Typology of Natural Experiments J. Seawright (PolSci) Essex 2010 August 11, 2010 2 / 31 Typology of Natural Experiments Classic Natural Experiment J. Seawright (PolSci) Essex 2010 August 11, 2010 2 / 31 Typology of Natural Experiments Classic Natural Experiment Instrumental Variables-Type Natural Experiment J. Seawright (PolSci) Essex 2010 August 11, 2010 2 / 31 Typology of Natural Experiments Classic Natural Experiment Instrumental Variables-Type Natural Experiment Regression-Discontinuity Design J. Seawright (PolSci) Essex 2010 August 11, 2010 2 / 31 Bolstering Understand assumptions. J. Seawright (PolSci) Essex 2010 August 11, 2010 3 / 31 Bolstering Understand assumptions. Explore role of qualitative evidence. J. Seawright (PolSci) Essex 2010 August 11, 2010 3 / 31 Classic Natural Experiment J. Seawright (PolSci) Essex 2010 August 11, 2010 4 / 31 Classic Natural Experiment 1 “Nature” randomizes the treatment. J. Seawright (PolSci) Essex 2010 August 11, 2010 4 / 31 Classic Natural Experiment 1 “Nature” randomizes the treatment. 2 All (observable and unobservable) confounding variables are balanced between treatment and control groups. J. Seawright (PolSci) Essex 2010 August 11, 2010 4 / 31 Classic Natural Experiment 1 “Nature” randomizes the treatment. 2 All (observable and unobservable) confounding variables are balanced between treatment and control groups. 3 No discretion is involved in assigning treatments, or the relevant information is unavailable or unused. J. Seawright (PolSci) Essex 2010 August 11, 2010 4 / 31 Classic Natural Experiment 1 “Nature” randomizes the treatment. 2 All (observable and unobservable) confounding variables are balanced between treatment and control groups.
    [Show full text]
  • Toward an Ethical Experiment
    TOWARD AN ETHICAL EXPERIMENT By Yusuke Narita April 2018 COWLES FOUNDATION DISCUSSION PAPER NO. 2127 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY Box 208281 New Haven, Connecticut 06520-8281 http://cowles.yale.edu/ ∗ Toward an Ethical Experiment y Yusuke Narita April 17, 2018 Abstract Randomized Controlled Trials (RCTs) enroll hundreds of millions of subjects and in- volve many human lives. To improve subjects' welfare, I propose an alternative design of RCTs that I call Experiment-as-Market (EXAM). EXAM Pareto optimally randomly assigns each treatment to subjects predicted to experience better treatment effects or to subjects with stronger preferences for the treatment. EXAM is also asymptotically incentive compatible for preference elicitation. Finally, EXAM unbiasedly estimates any causal effect estimable with standard RCTs. I quantify the welfare, incentive, and information properties by applying EXAM to a water cleaning experiment in Kenya (Kremer et al., 2011). Compared to standard RCTs, EXAM substantially improves subjects' predicted well-being while reaching similar treatment effect estimates with similar precision. Keywords: Research Ethics, Clinical Trial, Social Experiment, A/B Test, Market De- sign, Causal Inference, Development Economics, Spring Protection, Discrete Choice ∗I am grateful to Dean Karlan for a conversation that inspired this project; Joseph Moon for industrial and institutional input; Jason Abaluck, Josh Angrist, Tim Armstrong, Sylvain Chassang, Naoki Egami, Peter Hull, Costas Meghir, Bobby Pakzad-Hurson,
    [Show full text]
  • The Distribution of Information in Speculative Markets: a Natural Experiment∗
    The Distribution of Information in Speculative Markets: A Natural Experiment∗ Alasdair Brown† University of East Anglia June 9, 2014 ∗I would like to thank an associate editor, two anonymous referees, Fuyu Yang, and seminar participants at UEA for comments on this work. All remaining errors are my own. †School of Economics, University of East Anglia, Norwich, NR4 7TJ. Email: [email protected] 1 1 Introduction Abstract We use a unique natural experiment to shed light on the distribution of information in speculative markets. In June 2011, Betfair - a U.K. betting exchange - levied a tax of up to 60% on all future profits accrued by the top 0.1% of profitable traders. Such a move appears to have driven at least some of these traders off the exchange, taking their information with them. We investigate the effect of the new tax on the forecasting capacity of the exchange (our measure of the market’s incorporation of information into the price). We find that there was scant decline in the forecasting capacity of the exchange - relative to a control market - suggesting that the bulk of information had hitherto been held by the majority of traders, rather than the select few affected by the rule change. This result is robust to the choice of forecasting measure, the choice of forecasting interval, and the choice of race type. This provides evidence that more than a few traders are typically involved in the price discovery process in speculative markets. JEL Classification: G14, G19 Keywords: informed trading, natural experiment, betting markets, horse racing 1 Introduction There is a common perception that the benefits of trading in speculative assets are skewed towards those on the inside of corporations, or those that move in the same circles as the corporate elite.
    [Show full text]
  • Using Randomized Evaluations to Improve the Efficiency of US Healthcare Delivery
    Using Randomized Evaluations to Improve the Efficiency of US Healthcare Delivery Amy Finkelstein Sarah Taubman MIT, J-PAL North America, and NBER MIT, J-PAL North America February 2015 Abstract: Randomized evaluations of interventions that may improve the efficiency of US healthcare delivery are unfortunately rare. Across top journals in medicine, health services research, and economics, less than 20 percent of studies of interventions in US healthcare delivery are randomized. By contrast, about 80 percent of studies of medical interventions are randomized. The tide may be turning toward making randomized evaluations closer to the norm in healthcare delivery, as the relevant actors have an increasing need for rigorous evidence of what interventions work and why. At the same time, the increasing availability of administrative data that enables high-quality, low-cost RCTs and of new sources of funding that support RCTs in healthcare delivery make them easier to conduct. We suggest a number of design choices that can enhance the feasibility and impact of RCTs on US healthcare delivery including: greater reliance on existing administrative data; measuring a wide range of outcomes on healthcare costs, health, and broader economic measures; and designing experiments in a way that sheds light on underlying mechanisms. Finally, we discuss some of the more common concerns raised about the feasibility and desirability of healthcare RCTs and when and how these can be overcome. _____________________________ We are grateful to Innessa Colaiacovo, Lizi Chen, and Belinda Tang for outstanding research assistance, to Katherine Baicker, Mary Ann Bates, Kelly Bidwell, Joe Doyle, Mireille Jacobson, Larry Katz, Adam Sacarny, Jesse Shapiro, and Annetta Zhou for helpful comments, and to the Laura and John Arnold Foundation for financial support.
    [Show full text]
  • Double Blind Trials Workshop
    Double Blind Trials Workshop Introduction These activities demonstrate how double blind trials are run, explaining what a placebo is and how the placebo effect works, how bias is removed as far as possible and how participants and trial medicines are randomised. Curriculum Links KS3: Science SQA Access, Intermediate and KS4: Biology Higher: Biology Keywords Double-blind trials randomisation observer bias clinical trials placebo effect designing a fair trial placebo Contents Activities Materials Activity 1 Placebo Effect Activity Activity 2 Observer Bias Activity 3 Double Blind Trial Role Cards for the Double Blind Trial Activity Testing Layout Background Information Medicines undergo a number of trials before they are declared fit for use (see classroom activity on Clinical Research for details). In the trial in the second activity, pupils compare two potential new sunscreens. This type of trial is done with healthy volunteers to see if the there are any side effects and to provide data to suggest the dosage needed. If there were no current best treatment then this sort of trial would also be done with patients to test for the effectiveness of the new medicine. How do scientists make sure that medicines are tested fairly? One thing they need to do is to find out if their tests are free of bias. Are the medicines really working, or do they just appear to be working? One difficulty in designing fair tests for medicines is the placebo effect. When patients are prescribed a treatment, especially by a doctor or expert they trust, the patient’s own belief in the treatment can cause the patient to produce a response.
    [Show full text]
  • Observational Studies and Bias in Epidemiology
    The Young Epidemiology Scholars Program (YES) is supported by The Robert Wood Johnson Foundation and administered by the College Board. Observational Studies and Bias in Epidemiology Manuel Bayona Department of Epidemiology School of Public Health University of North Texas Fort Worth, Texas and Chris Olsen Mathematics Department George Washington High School Cedar Rapids, Iowa Observational Studies and Bias in Epidemiology Contents Lesson Plan . 3 The Logic of Inference in Science . 8 The Logic of Observational Studies and the Problem of Bias . 15 Characteristics of the Relative Risk When Random Sampling . and Not . 19 Types of Bias . 20 Selection Bias . 21 Information Bias . 23 Conclusion . 24 Take-Home, Open-Book Quiz (Student Version) . 25 Take-Home, Open-Book Quiz (Teacher’s Answer Key) . 27 In-Class Exercise (Student Version) . 30 In-Class Exercise (Teacher’s Answer Key) . 32 Bias in Epidemiologic Research (Examination) (Student Version) . 33 Bias in Epidemiologic Research (Examination with Answers) (Teacher’s Answer Key) . 35 Copyright © 2004 by College Entrance Examination Board. All rights reserved. College Board, SAT and the acorn logo are registered trademarks of the College Entrance Examination Board. Other products and services may be trademarks of their respective owners. Visit College Board on the Web: www.collegeboard.com. Copyright © 2004. All rights reserved. 2 Observational Studies and Bias in Epidemiology Lesson Plan TITLE: Observational Studies and Bias in Epidemiology SUBJECT AREA: Biology, mathematics, statistics, environmental and health sciences GOAL: To identify and appreciate the effects of bias in epidemiologic research OBJECTIVES: 1. Introduce students to the principles and methods for interpreting the results of epidemio- logic research and bias 2.
    [Show full text]
  • Social Psychology
    Social Psychology OUTLINE OF RESOURCES Introducing Social Psychology Lecture/Discussion Topic: Social Psychology’s Most Important Lessons (p. 853) Social Thinking The Fundamental Attribution Error Lecture/Discussion Topic: Attribution and Models of Helping (p. 856) Classroom Exercises: The Fundamental Attribution Error (p. 854) Students’ Perceptions of You (p. 855) Classroom Exercise/Critical Thinking Break: Biases in Explaining Events (p. 855) NEW Feature (Short) Film: The Lunch Date (p. 856) Worth Video Anthology: The Actor-Observer Difference in Attribution: Observe a Riot in Action* Attitudes and Actions Lecture/Discussion Topics: The Looking Glass Effect (p. 856) The Theory of Reasoned Action (p. 857) Actions Influence Attitudes (p. 857) The Justification of Effort (p. 858) Self-Persuasion (p. 859) Revisiting the Stanford Prison Experiment (p. 859) Abu Ghraib Prison and Social Psychology (p. 860) Classroom Exercise: Introducing Cognitive Dissonance Theory (p. 858) Worth Video Anthology: Zimbardo’s Stanford Prison Experiment* The Stanford Prison Experiment: The Power of the Situation* Social Influence Conformity: Complying With Social Pressures Lecture/Discussion Topics: Mimicry and Prosocial Behavior (p. 861) Social Exclusion and Mimicry (p. 861) The Seattle Windshield Pitting Epidemic (p. 862) Classroom Exercises: Suggestibility (p. 862) Social Influence (p. 863) Student Project: Violating a Social Norm (p. 863) Worth Video Anthology: Social Influence* NEW Liking and Imitation: The Sincerest Form of Flattery* Obedience: Following Orders Lecture/Discussion Topic: Obedience in Everyday Life (p. 865) Classroom Exercises: Obedience and Conformity (p. 864) Would You Obey? (p. 864) Wolves or Sheep? (p. 866) * Titles in the Worth Video Anthology are not described within the core resource unit.
    [Show full text]
  • Design of Experiments and Data Analysis,” 2012 Reliability and Maintainability Symposium, January, 2012
    Copyright © 2012 IEEE. Reprinted, with permission, from Huairui Guo and Adamantios Mettas, “Design of Experiments and Data Analysis,” 2012 Reliability and Maintainability Symposium, January, 2012. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of ReliaSoft Corporation's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. 2012 Annual RELIABILITY and MAINTAINABILITY Symposium Design of Experiments and Data Analysis Huairui Guo, Ph. D. & Adamantios Mettas Huairui Guo, Ph.D., CPR. Adamantios Mettas, CPR ReliaSoft Corporation ReliaSoft Corporation 1450 S. Eastside Loop 1450 S. Eastside Loop Tucson, AZ 85710 USA Tucson, AZ 85710 USA e-mail: [email protected] e-mail: [email protected] Tutorial Notes © 2012 AR&MS SUMMARY & PURPOSE Design of Experiments (DOE) is one of the most useful statistical tools in product design and testing. While many organizations benefit from designed experiments, others are getting data with little useful information and wasting resources because of experiments that have not been carefully designed. Design of Experiments can be applied in many areas including but not limited to: design comparisons, variable identification, design optimization, process control and product performance prediction. Different design types in DOE have been developed for different purposes.
    [Show full text]
  • A Randomized Control Trial Evaluating the Effects of Police Body-Worn
    A randomized control trial evaluating the effects of police body-worn cameras David Yokuma,b,1,2, Anita Ravishankara,c,d,1, and Alexander Coppocke,1 aThe Lab @ DC, Office of the City Administrator, Executive Office of the Mayor, Washington, DC 20004; bThe Policy Lab, Brown University, Providence, RI 02912; cExecutive Office of the Chief of Police, Metropolitan Police Department, Washington, DC 20024; dPublic Policy and Political Science Joint PhD Program, University of Michigan, Ann Arbor, MI 48109; and eDepartment of Political Science, Yale University, New Haven, CT 06511 Edited by Susan A. Murphy, Harvard University, Cambridge, MA, and approved March 21, 2019 (received for review August 28, 2018) Police body-worn cameras (BWCs) have been widely promoted as The existing evidence on whether BWCs have the anticipated a technological mechanism to improve policing and the perceived effects on policing outcomes remains relatively limited (17–19). legitimacy of police and legal institutions, yet evidence of their Several observational studies have evaluated BWCs by compar- effectiveness is limited. To estimate the effects of BWCs, we con- ing the behavior of officers before and after the introduction of ducted a randomized controlled trial involving 2,224 Metropolitan BWCs into the police department (20, 21). Other studies com- Police Department officers in Washington, DC. Here we show pared officers who happened to wear BWCs to those without (15, that BWCs have very small and statistically insignificant effects 22, 23). The causal inferences drawn in those studies depend on on police use of force and civilian complaints, as well as other strong assumptions about whether, after statistical adjustments policing activities and judicial outcomes.
    [Show full text]
  • Synthetic Control Method: Inference, Sensitivity Analysis and Confidence Sets∗
    Synthetic Control Method: Inference, Sensitivity Analysis and Confidence Sets∗ Sergio Firpo† Vitor Possebom‡ Insper Yale University September 1st, 2017 Abstract We extend the inference procedure for the synthetic control method in two ways. First, we impose a parametric form to the treatment assignment probabilities that includes, as a particular case, the uniform distribution that is assumed by Abadie et al.(2015). By changing the value of this parameter, we can analyze the sensitiveness of the test's decision to deviations from the usual uniform distribution assumption. Second, we modify the RMSPE statistic to test any sharp null hypothesis, including, as a specific case, the null hypothesis of no effect whatsoever analyzed by Abadie et al.(2015). Based on this last extension, we invert the test statistic to estimate confidence sets that quickly show the point-estimates' precision, and the test's significance and robustness. We also extend these two tools to other test statistics and to problems with multiple outcome variables or multiple treated units. Furthermore, in a Monte Carlo experiment, we find that the RMSPE statistic has good properties with respect to size, power and robustness. Finally, we illustrate the usefulness of our proposed tools by reanalyzing the economic impact of ETA's terrorism in the Basque Country, studied first by Abadie & Gardeazabal(2003) and Abadie et al.(2011). Keywords: Synthetic Control Estimator, Hypothesis Testing, Sensitivity Analysis, Con- fidence Sets JEL Codes: C21, C23, C33 ∗We are grateful to FAPESP that provided financial aid through grant number 2014/23731-3. We are in debt to the editor and two anonymous referees for useful suggestions.
    [Show full text]