The Special Senses By-Jyoti Joshi Nursing Tutor

Total Page:16

File Type:pdf, Size:1020Kb

The Special Senses By-Jyoti Joshi Nursing Tutor The special senses By-Jyoti joshi Nursing tutor. • The special senses are the senses that have specialized organs devoted to them: • vision (the eye) • hearing and balance (the ear, which includes the auditory system and vestibular system) • smell (the nose) • taste (the tongue) • The special senses have specialized sensory receptors (nerve endings) outside the brain. • Functions of Special Senses • The functions of the five special senses include: 1. Vision. Sight or vision is the capability of the eye(s) to focus and detect images of visible light on photoreceptors in the retina of each eye that generates electrical nerve impulses for varying colors, hues, and brightness. 2. Hearing. Hearing or audition is the sense of sound perception. 3. Taste. Taste refers to the capability to detect the taste of substances such as food, certain minerals, and poisons, etc. 4.Smell. Smell or olfaction is the other “chemical” sense; odor molecules possess a variety of features and, thus, excite specific receptors more or less strongly; this combination of excitatory signals from different receptors makes up what we perceive as the molecule’s smell. • Touch. Touch or somatosensory, also called tactition or mechanoreception, is a perception resulting from activation of neural receptors, generally in the skin including hair follicles, but also in the tongue, throat, and mucosa. Hearing and the ear • The ear is the organ of hearing and is also involved in balance. • Blood and nerve supply: • 8th cranial nerve, i.e. the cochlear part of the vestibulocochlear nerve • Except auricle (pinna), the remaining part of ear encased within the temporal bone. STRUCTURE OF EAR • The ear is divided into three distinct parts. 1. Outer Ear 2. Middle ear (tympanic cavity) 3. Inner ear. 1.Outer ear: The outer ear collects the sound waves and transfer them to the inner ear via middle ear. • It consist of auricle (pinna) and the external acoustic meatus (auditory canal). • The auricle (pinna): The auricle is the visible part of the ear project from the side of the head, • Made-up of fibroelastic cartilage and covered with skin. • Helix ceremonious gland Conchae tympanum Lobule External acoustic meatus • Upper end called- Helix • Lower muscular end called lobule. • Grooves present in pinna - conchae • External acoustic meatus (auditory canal) • ‘S’-shaped tube about 2.5 cm long extending from the auricle to the tympanic membrane (eardrum). • Lined with modified sebaceous gland (sweat gland) called ceruminous gland which secretes cerumen (ear wax). • Cerumen filter the dust particle. • External acoustic meatus conducts sound waves from pinna to the tympanum. Middle Ear: Middle ear consist of tympanum, tympanic cavity, ear ossicles. 1.Tympanum: • Membranous structure present at the junction of auditory canal(EAM) and tympanic cavity • It amplifies the sound. 2. Tympanic cavity • Air filled cavity with the pharynx through Eustachian tube to maintain the air pressure. 3. Ear ossicle or Auditory ossicle: • A chain of three bones includes- 1. Mallus ( hammer shaped) 2. Incus (Avil Shaped) 3. Stapes (stirrup shaped) • Present in tympanic cavity • Extended from the tympanum to internal ear. • Ear ossicle enter through an oval opening called oval window (fenestra ovalis) • Rounded opening present below oval window called round window (fenestra rotandus). Internal ear • Inner (internal ear) or labyrinth (mean maze) • Contains the organ of hearing and balance. • Divided into two parts. 1. Bony labyrinth 2. Membranous labyrinth. Bony labyrinth: • This is a cavity within the temporal bone lined with periosteum. • It encloses the membranous labyrinth of the same shape that fits into it, like a tube within a tube. • It is larger than membranous labyrinth. • Watery fluid (perilymph) is present between bony and membranous labyrinth. • within the membranous labyrinth there is a similarly watery fluid, endolymph. • The bony labyrinth consists of: • • the vestibule • • the cochlea • • three semicircular canals. 1. The vestibule The oval and round windows are located in its lateral wall. It contains two membranous sacs, the utricle and the saccule, which are important in balance. The cochlea • This resembles a snail’s shell. • spiral-shaped organ of hearing; transforms sound into signals that get sent to the brain The semicircular canals • Arrangement of three tubes and continous with vestibules. • filled with fluid • attached to cochlea and nerves • send information on balance and head position to the brain. Membranous labyrinth This is a network of delicate tubes, filled with endolymph. It comprises: • the vestibule, which contains the utricle and saccule • the cochlea • three semicircular canals. The cochlea • A cross-section of the cochlea contains three compartments: • • the scala vestibuli • • the scala media, or cochlear duct • • the scala tympani..
Recommended publications
  • Fallen in a Dead Ear: Intralabyrinthine Preservation of Stapes in Fossil Artiodactyls Maeva Orliac, Guillaume Billet
    Fallen in a dead ear: intralabyrinthine preservation of stapes in fossil artiodactyls Maeva Orliac, Guillaume Billet To cite this version: Maeva Orliac, Guillaume Billet. Fallen in a dead ear: intralabyrinthine preservation of stapes in fossil artiodactyls. Palaeovertebrata, 2016, 40 (1), 10.18563/pv.40.1.e3. hal-01897786 HAL Id: hal-01897786 https://hal.archives-ouvertes.fr/hal-01897786 Submitted on 17 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/297725060 Fallen in a dead ear: intralabyrinthine preservation of stapes in fossil artiodactyls Article · March 2016 DOI: 10.18563/pv.40.1.e3 CITATIONS READS 2 254 2 authors: Maeva Orliac Guillaume Billet Université de Montpellier Muséum National d'Histoire Naturelle 76 PUBLICATIONS 745 CITATIONS 103 PUBLICATIONS 862 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: The ear region of Artiodactyla View project Origin, evolution, and dynamics of Amazonian-Andean ecosystems View project All content following this page was uploaded by Maeva Orliac on 14 March 2016.
    [Show full text]
  • CONGENITAL MALFORMATIONS of the INNER EAR Malformaciones Congénitas Del Oído Interno
    topic review CONGENITAL MALFORMATIONS OF THE INNER EAR Malformaciones congénitas del oído interno. Revisión de tema Laura Vanessa Ramírez Pedroza1 Hernán Darío Cano Riaño2 Federico Guillermo Lubinus Badillo2 Summary Key words (MeSH) There are a great variety of congenital malformations that can affect the inner ear, Ear with a diversity of physiopathologies, involved altered structures and age of symptom Ear, inner onset. Therefore, it is important to know and identify these alterations opportunely Hearing loss Vestibule, labyrinth to lower the risks of all the complications, being of great importance, among others, Cochlea the alterations in language development and social interactions. Magnetic resonance imaging Resumen Existe una gran variedad de malformaciones congénitas que pueden afectar al Palabras clave (DeCS) oído interno, con distintas fisiopatologías, diferentes estructuras alteradas y edad Oído de aparición de los síntomas. Por lo anterior, es necesario conocer e identificar Oído interno dichas alteraciones, con el fin de actuar oportunamente y reducir el riesgo de las Pérdida auditiva Vestíbulo del laberinto complicaciones, entre otras —de gran importancia— las alteraciones en el área del Cóclea lenguaje y en el ámbito social. Imagen por resonancia magnética 1. Epidemiology • Hyperbilirubinemia Ear malformations occur in 1 in 10,000 or 20,000 • Respiratory distress from meconium aspiration cases (1). One in every 1,000 children has some degree • Craniofacial alterations (3) of sensorineural hearing impairment, with an average • Mechanical ventilation for more than five days age at diagnosis of 4.9 years. The prevalence of hearing • TORCH Syndrome (4) impairment in newborns with risk factors has been determined to be 9.52% (2).
    [Show full text]
  • Otitis Media and Interna
    Otitis Media and Interna (Inflammation of the Middle Ear and Inner Ear) Basics OVERVIEW • Inflammation of the middle ear (known as “otitis media”) and inner ear (known as “otitis interna”), most commonly caused by bacterial infection SIGNALMENT/DESCRIPTION OF PET Species • Dogs • Cats Breed Predilections • Cocker spaniels and other long-eared breeds • Poodles with long-term (chronic) inflammation of the ears (known as “otitis”) or the throat (known as “pharyngitis”) associated with dental disease • Primary secretory otitis media (PSOM) is described in Cavalier King Charles spaniels SIGNS/OBSERVED CHANGES IN THE PET • Depend on severity and extent of the infection; range from no signs, to those related to middle ear discomfort and nervous system involvement • Pain when opening the mouth; reluctance to chew; shaking the head; pawing at the affected ear • Head tilt • Pet may lean, veer, or roll toward the side or direction of the affected ear • Pet's sense of balance may be altered (known as “vestibular deficits”)—persistent, transient or episodic • Involvement of both ears—wide movements of the head, swinging back and forth; wobbly or incoordinated movement of the body (known as “truncal ataxia”), and possible deafness • Vomiting and nausea—may occur during the sudden (acute) phase • Facial nerve damage—the “facial nerve” goes to the muscles of the face, where it controls movement and expression, as well as to the tongue, where it is involved in the sensation of taste; signs of facial nerve damage include saliva and food dropping from the
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Management of Otitis
    Chronic and recurrent otitis is Management of Otitis frustrating! • Otitis externa is the most common ear disease in the cat and dog • Reported incidence is 10-20% in the dog Lindsay McKay, DVM, DACVD and 2-10% in the cat [email protected] • It is a common reason for referral to VCA Arboretum View Animal Hospital dermatology specialists and very common clinical problem for general practitioners 1- Primary causes- directly Breaking down the problem induce otic inflammation • ALLERGIES (atopy and food allergies) • Step 1- Identify the primary cause of otitis • Parasites (Otodectes cyanotis, Demodicosis) • Step 2- Assess for predisposing factors of • Masses (tumors and polyps) otitis • Foreign bodies (ex plant awns, hair, • Step 3- Treat the secondary infections ceruminoliths, hardened medications) • Step 4- Identify the perpetuating factors of • Disorders of keratinization (hypothyroidism, otitis primary seborrhea, sebaceous adenitis) • Immune mediated disease (pemphigus, juvenile cellulitis, vasculitis) What are most common causes of 2- Predisposing factors of ear disease recurrent otitis…. • These factors facilitate inflammation by changing • Allergic disease in the dog- over 40% cases environment of the ear! in one study • Ear conformation- stenotic • Polyps and ear mites in the cat canals, hair in canals, pendulous ears • Excessive moisture or cerumen production • Treatment effects- irritation from meds/contact allergy or trauma from cleaning 1 3- Secondary bacterial and/or 4- Perpetuating factors- prevent yeast infections the resolution
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • The Temporal Bone
    Anatomic Moment The Temporal Bone Joel D. Swartz, David L. Daniels, H. Ric Harnsberger, Katherine A. Shaffer, and Leighton Mark Despite the advent of thin-section high-reso- the inner ear structures and the external lution computed tomography and, more re- environment. cently, unique magnetic resonance imaging se- Virtually all textbooks define the inner ear as quences with thin sections, T2 weighting, and a membranous labyrinth housed within an os- maximum-intensity projection techniques, seous labyrinth. The membranous labyrinth three-dimensional neuroanatomy of the tempo- contains endolymph, a fluid rich in potassium ral bone and related structures remains some- and low in sodium, similar to intracellular fluid. what of an enigma to many medical specialists, Interposed between the membranous labyrinth neuroradiologists included. Therefore, we are and the osseous labyrinth resides a supportive undertaking a series of anatomic moments in perilymphatic labyrinth. Perilymph is similar to the hope of solidifying the most important ana- cerebrospinal fluid and other extracellular tissue tomic concepts as they relate to this region. Our fluid. approach will be organized so as to consider the The osseous labyrinth consists of the bony temporal bone to represent the complex inter- edifice for the vestibule, semicircular canals, relationship of three systems: hearing, balance, cochlea, and vestibular aqueduct. The mem- and related neuroanatomic and neurovascular branous labyrinth consists of the utricle and structures. saccule (located within the vestibule), the semi- The ear originated in fish as a water motion circular ducts, the cochlear duct, and the en- detection system (1). The vestibular (balance) dolymphatic duct. The latter is a channel within mechanism becomes more complex as we the vestibular aqueduct with communications to scale the embryologic ladder and endolymph the utricle and saccule.
    [Show full text]
  • The Membranous Labyrinth in Vivo from High-Resolution Temporal CT Data
    bioRxiv preprint doi: https://doi.org/10.1101/318030; this version posted May 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The Membranous Labyrinth in vivo from high-resolution Temporal CT data Hisaya Tanioka¹* ¹Department of Radiology, Tanioka Clinic *Corresponding author Hisaya Tanioka, MD, PhD Tanioka Clinic Tanioka Bldg. 3F, 6-24-2 Honkomagome Bunkyo-ku, Tokyo 113-0021 Japan Tel & Fax: 81-3-3945-5199 E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/318030; this version posted May 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The Membranous Labyrinth in vivo from high-resolution Temporal CT data bioRxiv preprint doi: https://doi.org/10.1101/318030; this version posted May 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. ABSTRACT A prerequisite for the modeling and understanding of the inner ear mechanics needs the accurate created membranous labyrinth. I present a semi-automated methodology for accurate reconstruction of the membranous labyrinth in vivo from high-resolution temporal bone CT data of normal human subjects.
    [Show full text]
  • Balance and Equilibrium, I: the Vestibule and Semicircular Canals
    Anatomic Moment Balance and Equilibrium, I: The Vestibule and Semicircular Canals Joel D. Swartz, David L. Daniels, H. Ric Harnsberger, Katherine A. Shaffer, and Leighton Mark In this, our second temporal bone installment, The endolymphatic duct arises from the en- we will emphasize the vestibular portion of the dolymphatic sinus and passes through the ves- labyrinth, that relating to balance and equilib- tibular aqueduct of the osseous labyrinth to rium. Before proceeding, we must again remind emerge from an aperture along the posterior the reader of the basic structure of the labyrinth: surface of the petrous pyramid as the endolym- an inner membranous labyrinth (endolym- phatic sac. phatic) surrounded by an outer osseous laby- The utricle and saccule are together referred rinth with an interposed supportive perilym- to as the static labyrinth, because their function phatic labyrinth. We recommend perusal of the is to detect the position of the head relative to first installment before continuing if there are gravity (5–7). They each have a focal concen- any uncertainties in this regard. tration of sensory receptors (maculae) located The vestibule, the largest labyrinthine cavity, at right angles to each other and consisting of measures 4 to 6 mm maximal diameter (1–3) ciliated hair cells and tiny crystals of calcium (Figs 1–3). The medial wall of the vestibule is carbonate (otoliths) embedded in a gelatinous unique in that it contains two distinct depres- mass. These otoliths respond to gravitational sions (Fig 4). Posterosuperiorly lies the elliptical pull; therefore, changes in head position distort recess, where the utricle is anchored.
    [Show full text]
  • Earwax, Clinical Practice Il Tappo Di Cerume: Pratica Clinica F
    Volume 29 – Supplement 1 – Number 4 – August 2009 Otorhinolaryngologica Italica Official Journal of the Italian Society of Otorhinolaryngology - Head and Neck Surgery Organo Ufficiale della Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale Editorial Board Italian Scientific Board © Copyright 2009 by Editor-in-Chief: F. Chiesa L. Bellussi, G. Danesi, C. Grandi, Società Italiana di Otorinolaringologia e President of S.I.O.: A. Rinaldi Ceroni A. Martini, L. Pignataro, F. Raso, Chirurgia Cervico-Facciale Former Presidents of S.I.O.: R. Speciale, I. Tasca Via Luigi Pigorini, 6/3 G. Borasi, E. Pirodda (†), 00162 Roma, Italy I. De Vincentiis, D. Felisati, L. Coppo, International Scientific Board G. Zaoli, P. Miani, G. Motta, J. Betka, P. Clement, A. De La Cruz, Publisher L. Marcucci, A. Ottaviani, G. Perfumo, M. Halmagyi, L.P. Kowalski, Pacini Editore SpA P. Puxeddu, I. Serafini, M. Maurizi, M. Pais Clemente, J. Shah, Via Gherardesca,1 G. Sperati, D. Passali, E. de Campora, H. Stammberger 56121 Ospedaletto (Pisa), Italy A. Sartoris, P. Laudadio, E. Mora, Tel. +39 050 313011 M. De Benedetto, S. Conticello, D. Casolino Treasurer Fax +39 050 313000 Former Editors-in-Chief: C. Miani [email protected] C. Calearo (†), E. de Campora, www.pacinimedicina.it A. Staffieri, M. Piemonte Editorial Office Editor-in-Chief: F. Chiesa Cited in Index Medicus/MEDLINE, Editorial Staff Divisione di Chirurgia Cervico-Facciale Science Citation Index Expanded, Scopus Editor-in-Chief: F. Chiesa Istituto Europeo di Oncologia Deputy Editor: C. Vicini Via Ripamonti, 435 Associate Editors: 20141 Milano, Italy C. Viti, F. Scasso Tel. +39 02 57489490 Editorial Coordinators: Fax +39 02 57489491 M.G.
    [Show full text]
  • Physiology of the Inner Ear Balance
    § Te xt § Important Lecture § Formulas No.15 § Numbers § Doctor notes “Life Is Like Riding A § Notes and explanation Bicycle. To Keep Your Balance, You Must Keep Moving” 1 Physiology of the inner ear balance Objectives: 1. Understand the sensory apparatus of the inner ear that helps the body maintain its postural equilibrium. 2. The mechanism of the vestibular system for coordinating the position of the head and the movement of the eyes. 3. The function of semicircular canals (rotational movements, angular acceleration). 4. The function of the utricle and saccule within the vestibule (respond to changes in the position of the head with respect to gravity (linear acceleration). 5. The connection between the vestibular system and other structure (eye, cerebellum, brain stem). 2 Control of equilibrium } Equilibrium: Reflexes maintain body position at rest & movement through receptors of postural reflexes: 1. Proprioceptive system (Cutaneous sensations). 2. Visual (retinal) system. 3. Vestibular system (Non auditory membranous labyrinth1). 4. Cutaneous sensation. } Cooperating with vestibular system wich is present in the semicircular canals in the inner ear. 3 1: the explanation in the next slide. • Ampulla or crista ampullaris: are the dilations at the end of the semicircular canals and they affect the balance. • The dilations connect the semicircular canals to the cochlea utricle Labyrinth and saccule: contain the vestibular apparatus (maculla). Bony labyrinth • bony cochlea, vestibule & 3 bony semicircular canals. • Enclose the membranous labyrinth. Labyrinth a. Auditory (cochlea for hearing). b. Non-auditory for equilibrium (Vestibular apparatus). composed of two parts: • Vestibule: (Utricle and Saccule). • Semicircular canals “SCC”. Membranous labyrinth • Membranous labyrinth has sensory receptors for hearing and equilibrium • Vestibular apparatus is responsible for equilibrium 4 Macula (otolith organs) of utricle and saccule } Hair cell synapse with endings of the vestibular nerve.
    [Show full text]
  • B005DTJC8Y.Usermanual.Pdf
    V2010 Auris Latin Auris externa 1 Auricula 2 Meatus acusticus externus 3 Membrana tympanica Auris media 4 Ossicula auditus: 4 a Malleus 4 b Incus 4 c Stapes 5 Cavitas tympani 6 Tuba auditiva 7 Fenestra vestibuli 8 Fenestra cochleae Auris interna 9 Labyrinthus osseus: 9 a Canalis semicircularis posterior 9 b Canalis semicircularis lateralis 9 c Canalis semicircularis anterior 9 d Vestibulum 9 e Cochlea 10 N. vestibularis 11 N. cochlearis ® 12 N. vestibulocochlearis [VIII] 13 Lig. spirale 14 Scala vestibuli 15 Ductus cochlearis 16 Scala tympani 17 N. cochlearis 18 Ganglion cochleare 19 Organum spirale 20 Modiolus cochleae 21 Paries vestibularis 22 Sulcus spiralis internus 23 Membrana tectoria 24 Cuniculus medius 25 Cuniculus externus 26 Cellulae terminales externae 27 Cellulae sustentaculares externae 28 Sulcus spiralis externus 29 Lamina basilaris 30 Cellulae phalangea externae 31 Cellulae capillares externae 32 Cellula stela externa 33 Cuniculus internus 34 Cellula capillaris interna 35 Cellula stela interna 36 Lamina spiralis ossea 37 Limbus spiralis English The Ear A Sectional view of the human ear B Sectional view of cochlea C Sectional view of cochlear duct with spiral organ External ear 1 Auricle 2 External acoustic meatus 3 Tympanic membrane Middle ear 4 Auditory ossicles: 4 a Malleus 4 b Incus 4 c Stapes 5 Tympanic cavity 6 Pharyngotympanice tube 7 Oval window 8 Round window Internal ear 9 Bony labyrinth 9 a Posterior semicircular canal 9 b Lateral semicircular canal 9 c Anterior semicircular canal ® 9 d Vestibule 9 e Cochlea 10
    [Show full text]