The NASA Deep Space Network (DSN) Is the Largest and Most Sensitive Scientific, Telecommunications and Radio Navigation Network in the World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corrugated Feed-Horn Arrays for Future CMB Polarization Experiments Settore Scientifico Disciplinare FIS/01
UNIVERSITA` DEGLI STUDI DI MILANO FACOLTA` DI SCIENZE MATEMATICHE, FISICHE E NATURALI DOTTORATO DI RICERCA IN FISICA, ASTROFISICA E FISICA APPLICATA Corrugated feed-horn arrays for future CMB polarization experiments Settore Scientifico disciplinare FIS/01 Coordinatore: Prof. Marco BERSANELLI Tutore: Prof. Marco BERSANELLI Co-Tutore: Dott. Fabrizio VILLA Tesi di dottorato di: Francesco DEL TORTO Ciclo XXIV Anno Accademico 2011-2012 To my parents Introduction The actual most corroborated model of modern cosmology is the “Hot Big Bang Model”, that results in agree with the cosmological scientific discov- eries of the last 50 years. The main observational pillars that support the model are: the discovery by Edwin Hubble of the expansion of the Universe, the abundances of the primordial elements and the discovery of the Cosmic Microwave Background (CMB) radiation. In 1929 Edwin Hubble discovered the linear relationship in distant galax- ies between their distance and recession velocity: v = Hd. The current value for the Hubble constant is known with very high precision as 72 8 Km/sec/Mpc [1], from the measurements obtained by the Hubble Space Tele-± scope on even far distant galaxies w.r.t. to the Hubble measurements. According to the Hot Big Bang Model, in the first era of its life, the Universe was constituted by photons, electrons and protons. During this time the firsts primordial elements were produced, i.e. Helium, Deuterium, and Beryllium. The abundances of the primordial elements can be calculated with precision by the Hot Big Bang Model, resulting in good agreement with the measured abundances [2], [3]. In 1965 Arno Penzias and Robert Wilson discovered the CMB, already predicted in 1948 by George Gamow in the framework of an Hot Big Bang Model. -
Progress Toward Corrugated Feed Horn Arrays in Silicon Abstract
Progress Toward Corrugated Feed Horn Arrays in Silicon J. Britton,∗ K. W. Yoon, J. A. Beall, D. Becker, H. M. Cho, G. C. Hilton, M. D. Niemack, and K. D. Irwin Quantum Sensors Group, NIST, Boulder, CO 80305, USA Abstract We are developing monolithic arrays of corrugated feed horns fabricated in silicon for dual-polarization single-mode operation at 90, 145 and 220 GHz. The arrays consist of hundreds of platelet feed horns assembled from gold-coated stacks of micro- machined silicon wafers. As a first step, Au-coated Si waveguides with a circular, corrugated cross section were fabricated; their attenuation was measured to be less than 0.15 dB/cm from 80 to 110 GHz at room temperature. To ease the manufacture of horn arrays, electrolytic deposition of Au on degenerate Si without a metal seed layer was demonstrated. An apparatus for measuring the radiation pattern, optical efficiency, and spectral band-pass of prototype horns is described. Feed horn arrays made of silicon may find use in measurements of the polarization anisotropy of the cosmic microwave background radiation. Imaging detectors at millimeter wavelengths can now be built with hundreds of pixels.[1] However, parallel gains in free-space coupling optics have lagged. At NIST we are pursuing monolithic arrays of corru- gated platelet feed horns made with Si. Each layer in the stack is a Si wafer with photolithographically de- fined apertures. Once assembled and coated with Au, these horn arrays are expected to feature the same low loss, wide bandwidth, minimal side lobes and low cross- correlation as electroformed horns.[2, 3] Moreover, rel- ative to metal corrugated arrays [4], Si horn arrays are expected to have the following benefits: (a) a thermal ex- pansion matched to Si detectors, (b) lower thermal mass, and (c) a straightforward development to arrays of thou- sands of horns. -
Resolving Interference Issues at Satellite Ground Stations
Application Note Resolving Interference Issues at Satellite Ground Stations Introduction RF interference represents the single largest impact to robust satellite operation performance. Interference issues result in significant costs for the satellite operator due to loss of income when the signal is interrupted. Additional costs are also encountered to debug and fix communications problems. These issues also exert a price in terms of reputation for the satellite operator. According to an earlier survey by the Satellite Interference Reduction Group (SIRG), 93% of satellite operator respondents suffer from satellite interference at least once a year. More than half experience interference at least once per month, while 17% see interference continuously in their day-to-day operations. Over 500 satellite operators responded to this survey. Satellite Communications Overview Satellite earth stations form the ground segment of satellite communications. They contain one or more satellite antennas tuned to various frequency bands. Satellites are used for telephony, data, backhaul, broadcast, community antenna television (CATV), internet, and other services. Depending on the application, each satellite system may be receive only or constructed for both transmit and receive operations. A typical earth station is shown in figure 1. Figure 1. Satellite Earth Station Each satellite antenna system is composed of the antenna itself (parabola dish) along with various RF components for signal processing. The RF components comprise the satellite feed system. The feed system receives/transmits the signal from the dish to a horn antenna located on the feed network. The location of the receiver feed system can be seen in figure 2. The satellite signal is reflected from the parabolic surface and concentrated at the focus position. -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Development of Conical Horn Feed for Reflector Antenna
International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 1793-8236 Development of Conical Horn Feed For Reflector Antenna Jagdish. M. Rathod, Member, IACSIT and Y.P.Kosta, Senior Member IEEE waveguide that provides the impedance transformation Abstract—We have designed a antenna feed with prime between the waveguide impedance and the free-space concerned that with the growing conjunctions in the mobile impedance. Horn radiators are used both as antennas in their networks, the parabolic antenna are evolving as an useful device own right, and as illuminators for reflector antennas. Horn for point to point communications where the need for high antennas are not a perfect match to the waveguide, although directivity and high power density is at the prime importance. With these needs we have designed the unusual type of feed standing wave ratios of 1.5:1 or less are achievable. The gain antenna for parabolic dish that is used for both reception and of a horn radiator is proportional to the area A of the flared transmission purpose. This different frequency band open flange), and inversely proportional to the square of the performance having horn feed, works for the parabolic wavelength [8].Following Fig.1 gives types of Horn reflector antenna. We have worked on frequency band between radiators. 4.8 GHz to 5.9 GHz for horn type of feed. Here function of the horn is to produce uniform phase front with a larger aperture than that of the waveguide and hence greater directivity. Parabolic dish antenna is the most commonly and widely used antenna in communication field mainly in satellite and radar communication. -
POWER MICROWAVE FEED HORN C. Chang Department of Engineering
Progress In Electromagnetics Research, PIER 101, 157{171, 2010 DESIGN AND EXPERIMENTS OF THE GW HIGH- POWER MICROWAVE FEED HORN C. Chang Department of Engineering Physics Tsinghua University Beijing, China X. X. Zhu, G. Z. Liu, J. Y. Fang, R. Z. Xiao, C. H. Chen H. Shao, J. W. Li, H. J. Huang, and Q. Y. Zhang Northwest Institute of Nuclear Technology Xi'an, Shannxi, China Z. Q. Zhang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi'an, Shannxi, China Abstract|Design and optimization of high-power microwave (HPM) feed horn by combining the aperture ¯eld with radiation patterns are presented in the paper. The optimized feed horn in C band satis¯es relatively uniform aperture ¯eld, power capacity higher than 3 GW, symmetric radiation patterns, low sidelobes, and compact length. Cold tests and HPM experiments were conducted to investigate the radiation patterns and power capacity of the horn. The theoretical radiation patterns are consistent with the cold test and HPM experimental results. The power capacity of the compact HPM horn has been demonstrated by HPM experiments to be higher than 3 GW. 1. INTRODUCTION The maximum power produced by S-band resonant BWO has attained 5 GW with 100 J energy pulses [1]. With the development of narrowband multi-giga-watt HPM sources operated under vacuum, the power capacity of the HPM horn has become the major factor of Corresponding author: C. Chang ([email protected]). 158 Chang et al. limiting HPM transmission and radiation [2{5]. When the electric ¯eld amplitude at the aperture of the horn is higher than the breakdown threshold, secondary electron multipactor and plasma discharge happen at the vacuum side of the dielectric radome, leading to HPM breakdown and pulse shortening [2{5]. -
PARABOLIC DISH ANTENNAS Paul Wade N1BWT © 1994,1998
Chapter 4 PARABOLIC DISH ANTENNAS Paul Wade N1BWT © 1994,1998 Introduction Parabolic dish antennas can provide extremely high gains at microwave frequencies. A 2- foot dish at 10 GHz can provide more than 30 dB of gain. The gain is only limited by the size of the parabolic reflector; a number of hams have dishes larger than 20 feet, and occasionally a much larger commercial dish is made available for amateur operation, like the 150-foot one at the Algonquin Radio Observatory in Ontario, used by VE3ONT for the 1993 EME Contest. These high gains are only achievable if the antennas are properly implemented, and dishes have more critical dimensions than horns and lenses. I will try to explain the fundamentals using pictures and graphics as an aid to understanding the critical areas and how to deal with them. In addition, a computer program, HDL_ANT is available for the difficult calculations and details, and to draw templates for small dishes in order to check the accuracy of the parabolic surface. Background In September 1993, I finished my 10 GHz transverter at 2 PM on the Saturday of the VHF QSO Party. After a quick checkout, I drove up Mt. Wachusett and worked four grids using a small horn antenna. However, for the 10 GHz Contest the following weekend, I wanted to have a better antenna ready. Several moderate-sized parabolic dish reflectors were available in my garage, but lacked feeds and support structures. I had thought this would be no problem, since lots of people, both amateur and commercial, use dish antennas. -
The Deep Space Network - a Technology Case Study and What Improvements to the Deep Space Network Are Needed to Support Crewed Missions to Mars?
The Deep Space Network - A Technology Case Study and What Improvements to the Deep Space Network are Needed to Support Crewed Missions to Mars? A Master’s Thesis Presented to Department of Telecommunications State University of New York Polytechnic Institute Utica, New York In Partial Fulfillment of the Requirements for the Master of Science Degree By Prasad Falke May 2017 Abstract The purpose of this thesis research is to find out what experts and interested people think about Deep Space Network (DSN) technology for the crewed Mars mission in the future. The research document also addresses possible limitations which need to be fix before any critical missions. The paper discusses issues such as: data rate, hardware upgrade and new install requirement and a budget required for that, propagation delay, need of dedicated antenna support for the mission and security constraints. The Technology Case Study (TCS) and focused discussion help to know the possible solutions and what everyone things about the DSN technology. The public platforms like Quora, Reddit, StackExchange, and Facebook Mars Society group assisted in gathering technical answers from the experts and individuals interested in this research. iv Acknowledgements As the thesis research was challenging and based on the output of the experts and interested people in this field, I would like to express my gratitude and appreciation to all the participants. A special thanks go to Dr. Larry Hash for his guidance, encouragement, and support during the whole time. Additionally, I also want to thank my mother, Mrs. Mangala Falke for inspiring me always. Last but not the least, I appreciate the support from Maricopa County Emergency Communications Group (MCECG) and Arizona Near Space Research (ANSR) Organization for helping me to find the experts in space and communications field. -
Interaktiv 3D-Visualisering Av Nasas Deep Space Network Kommunikation Lovisa Hassler Agnes Heppich
LIU-ITN-TEK-A-19/005--SE Interaktiv 3D-visualisering av NASAs Deep Space Network kommunikation Lovisa Hassler Agnes Heppich 2019-04-30 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LIU-ITN-TEK-A-19/005--SE Interaktiv 3D-visualisering av NASAs Deep Space Network kommunikation Examensarbete utfört i Medieteknik vid Tekniska högskolan vid Linköpings universitet Lovisa Hassler Agnes Heppich Handledare Emil Axelsson Examinator Anders Ynnerman Norrköping 2019-04-30 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances. -
Radio Astronomy Users Guide
The Deep Space Network Radio Astronomy User Guide April 3, 2021 Document Owner: Joseph Lazio (Jet Propulsion Laboratory, California Institute of Technology) ⃝c 2021. California Institute of Technology. Government sponsorship acknowledged. Contents Changes to this Document . v Acknowledgments . vi 1 Introduction 1 2 Proposal Submission and DSN Scheduling 3 3 70 m Subnetwork 4 3.1 Antennas . 4 3.2 Efficiency and Gain . 4 3.3 Resolution . 5 4 34 m Subnetwork 7 4.1 Antennas . 7 4.2 Efficiency and Gain . 8 4.3 Resolution . 9 4.4 Polarization . 10 5 Receiving Systems 12 5.1 Radio Astronomical K Band (17 GHz{27 GHz) . 12 5.2 Radio Astronomical Q Band (38 GHz{50 GHz) . 13 5.3 L Band (1628 MHz{1708 MHz) . 13 5.4 S Band (2200 MHz{2300 MHz) . 13 5.5 X Band (8200 MHz{8600 MHz) . 14 5.6 Spacecraft Tracking K Band (25.5 GHz{27 GHz) . 14 5.7 Ka Band (31.8 GHz{32.3 GHz) . 14 5.8 Phase Calibration Tones for VLBI . 14 6 Signal Transport 20 7 Backends 23 7.1 Fast Fourier Transform Spectrometer (FFTS)-Madrid . 23 7.2 DSN Radio Astronomy Spectrometer-Canberra . 23 7.2.1 Level 0 Data . 24 7.2.2 Level 1 Data . 24 7.3 DSN Pulsar Processor-Canberra . 24 7.4 Open Loop Recorder . 25 7.5 VLBI Radio Astronomy (VRA) Assembly . 26 i A Proposal Preparation and Observation Planning 27 ii List of Figures 1.1 The DSN radio antennas and locations. 1 3.1 DSS-43, the 70 m antenna at the Canberra Complex . -
+ Mars Reconnaissance Orbiter Launch Press
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Mars Reconnaissance Orbiter Launch Press Kit August 2005 Media Contacts Dolores Beasley Policy/Program Management 202/358-1753 Headquarters [email protected] Washington, D.C. Guy Webster Mars Reconnaissance Orbiter Mission 818/354-5011 Jet Propulsion Laboratory, [email protected] Pasadena, Calif. George Diller Launch 321/867-2468 Kennedy Space Center, Fla. [email protected] Joan Underwood Spacecraft & Launch Vehicle 303/971-7398 Lockheed Martin Space Systems [email protected] Denver, Colo. Contents General Release ..................................………………………..........................................…..... 3 Media Services Information ………………………………………..........................................…..... 5 Quick Facts ………………………………………………………................................….………… 6 Mars at a Glance ………………………………………………………..................................………. 7 Where We've Been and Where We're Going ……………………................…………................... 8 Science Investigations ............................................................................................................... 12 Technology Objectives .............................................................................................................. 21 Mission Overview ……………...………………………………………...............................………. 22 Spacecraft ................................................................................................................................. 33 Mars: The Water Trail …………………………………………………………………...............…… -
IWPSS 2013 Multi-Mission Scheduling Operations at UC Berkeley Bester
Proceedings of the 2013 International Workshop on Planning & Scheduling for Space, Mountain View, CA, USA, March 25-26, 2013, Paper AIAA-2013-XXXX. THIS SPACE MUST BE KEPT BLANK] Multi-Mission Scheduling Operations at UC Berkeley Manfred Bester, Gregory Picard, Bryce Roberts, Mark Lewis, and Sabine Frey Space Sciences Laboratory, University of California, Berkeley [email protected], [email protected], [email protected], [email protected], [email protected] Abstract completed in 2011 when both probes were inserted into The University of California, Berkeley conducts mission stable lunar orbits (Cosgrove et al. 2012, Bester et al. operations for eight spacecraft at present. Communications 2013). with the orbiting spacecraft are established via a multitude of network resources, including all NASA networks, plus • The Nuclear Spectroscopic Telescope Array (NuSTAR) – assets provided by foreign space agencies and commercial a NASA SMEX mission launched in June 2012 – is a companies. Mission planning is based on the science re- high-energy X-ray observatory carrying twin telescopes quirements as well as accessibility to communications net- with focusing optics (Kim et al. 2013). work resources. The integrated scheduling process is com- plex and is supported by partly automated software tools. • The CubeSat for Ion, Neutral, Electron, and MAgnetic Challenges encountered and lessons learned are described. fields (CINEMA) – the first CubeSat built in-house at SSL – launched in September 2012. The project home page can be found at http://sprg.ssl.berkeley.edu/cinema. Introduction A summary of these missions and their characteristics is The University of California, Berkeley (UCB) currently provided in Table A1 in the Appendix.