THE STELLAR POPULATIONS of the GLOBULAR CLUSTER M55 By

Total Page:16

File Type:pdf, Size:1020Kb

THE STELLAR POPULATIONS of the GLOBULAR CLUSTER M55 By THE STELLAR POPULATIONS OF THE GLOBULAR CLUSTER M55 By Georgi Mandushev B.Sc. Hon. (Physics) Sofia Univerisy St. Kliment Okhridski M.Sc. (Astronomy) Saint Mary's University A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES PHYSICS & ASTRONOMY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1998 © Georgi Mandushev, 1998 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Physics &; Astronomy The University of British Columbia 129-2219 Main MaU Vancouver, Canada V6T 1Z4 Date: Abstract New broad-band, ground-based photometry in four filters (UBVI) for two fields in the sparse, metal-poor Galactic globular cluster M55 (NGC 6809) is presented and analyzed. New values are derived for the reddening (EB_V = 0.13 ± 0.02 and Ev_i = 0.17 ± 0.02), distance modulus {{m~M)v = 14.02 ± 0.08) and age (14 ± 1.2 Gyr) of M55. The main-sequence luminosity function of M55 is found to be different from the luminosity functions of the metal-poor clusters M15, M30 and M92 and this difference is interpreted as a deficiency of low-mass stars by about 50% compared to the other three clusters. The mass function of M55 for masses below O.4A40 is found to be fairly flat and consequently low-mass stars do not dominate the cluster mass. The red giant branch of M55 has been observed from nearly its tip to the subgiant branch. In all passbands the observed luminosity of the red giant clump is lower than the predictions of theoretical models. The ratios of the number of stars on the red giant branch, the horizontal branch and the asymptotic giant branch are found to be in a good agreement with theoretical models. Neither the K-band nor the /-band luminosity functions for the evolved populations in M55 show any significant deviation from the theoretical luminosity functions. In particular, no evidence is found for a deficiency of main-sequence stars compared to the number of stars on the subgiant and giant branches. M55 is the only well-studied, metal- poor cluster for which no discrepancy between observations and canonical luminosity functions is found. A large sample of blue stragglers in the core of M55 is identified and analyzed. It is concluded that the blue stragglers in M55 are born with helium-enriched cores but not n envelopes, thus resembling stars that have already evolved away from the main sequence. It is also suggested that the observed blue straggler sequence represents the equivalent of a core helium-enriched main sequence where the blue stragglers spend most of their lives. The observations agree qualitatively with unmixed collisional or merger models, although the former are less likely in the low-density environment of M55. in Table of Contents Abstract ii List of Tables vii List of Figures ix Acknowledgements xii 1 Introduction 1 1.1 Globular Clusters and Stellar Populations 1 1.2 The Colour-Magnitude Diagram and the Evolution of Low-mass Stars . 5 1.3 Structure of Globular Clusters 13 1.4 Earlier Studies of M55 14 2 The Main Sequence of M55 17 2.1 Observations and Preprocessing 17 2.1.1 Flat Fields, Overscan Subtraction and Cosmic Ray Removal ... 18 2.2 Photometry 21 2.2.1 Instrumental Magnitudes 21 2.2.2 Aperture Corrections 22 2.2.3 Transformation to the Standard System 23 2.2.4 Comparison with Earlier Photometry 28 2.3 The Color-Magnitude Diagram of M55 31 2.3.1 Morphology and principal sequences 31 iv 2.3.2 The Stars of the Sagittarius Dwarf Galaxy and the Galactic bulge 36 2.4 Photometry of the comparison field 40 2.5 The Reddening and Metalhcity of M55 44 2.6 The Distance and Age of M55 47 2.6.1 Distance Modulus 47 2.6.2 The Age of M55 59 2.7 Luminosity and Mass Functions for the Main Sequence of M55 63 2.7.1 Completeness Corrections 66 2.7.2 Luminosity Functions 71 2.7.3 Mass Function 79 3 The Evolved Populations of M55 88 3.1 Observations and Preprocessing 90 3.2 Photometry 92 3.2.1 Instrumental Magnitudes and Aperture Corrections 92 3.2.2 Transformation to the Standard System 93 3.2.3 Quality of the UB VI Photometry: Errors and *2 99 3.3 The Color-Magnitude Diagram of Evolved Stars 106 3.3.1 Fiducial Sequences 110 3.4 The Horizontal Branch of M55 Ill 3.5 The Red Giant Branch of M55 119 3.5.1 The Gap at the Base of the Giant Branch and the RGB Clump . 119 3.5.2 Intrinsic Width of the Red Giant Branch 125 3.5.3 Population Ratios and the Helium Abundance of M55 129 3.6 Luminosity Functions for the Evolved Populations in M55 132 3.6.1 Artificial Star Tests and Completeness Corrections 133 v 3.6.2 Luminosity Functions in V and /: Theory vs. Observations . 137 4 The Blue Straggler Population of M55 151 4.1 The Blue-Straggler Sample - Definition and Completeness 152 4.2 Radial Distribution 159 4.3 Origin and Evolutionary Status 161 5 Conclusions 167 5.1 The Main Sequence of M55 167 5.2 The Evolved Populations of M55 169 5.3 The Blue Straggler Stars in M55 172 5.4 Future Directions 173 Appendices 175 A Summary of some important parameters for M55 175 B Publications Related to the Thesis 176 C Photometry Software Used in the Thesis 178 Cl DAOPHOT II 178 C.2 ALLSTAR 178 C.3 ALLFRAME 178 C.4 Calibration and Transformation Programs 179 D Journal Abbreviations 180 References 181 vi List of Tables 2.1 Program and comparison field exposure information 20 2.2 List of the observed Landolt standards 25 2.3 Local standards in M55 29 2.4 The fiducial main sequence and subgiant branch of M55 36 2.5 The fiducial main sequence of the Sagittarius Dwarf Galaxy 37 2.6 Galaxy counts in the comparison field 43 2.7 Observed and derived data for nearby subdwarfs 50 2.8 References for the compiled subdwarf data 51 2.9 Comparison of My(RR) estimates from different My(RR) - [Fe/H] rela• tions 58 2.10 Star and galaxy counts in the V band 71 2.11 Star and galaxy counts in the / band 72 2.12 Mass function slopes 84 3.1 Core field exposure information 92 3.2 List of the observed Landolt standards 94 3.3 Local standards in M55 97 3.4 Fiducial points for the giant branch, subgiant branch and the main se• quence 112 3.5 Fiducial points for the asymptotic giant branch 113 3.6 Fiducial points for the horizontal branch 113 3.7 Known and Suspected RR Lyrae Stars in the Core Field 115 vii 3.8 Star Counts and Population Ratios 130 3.9 K-band and /-band differential luminosity functions 144 4.1 Photometry for the blue stragglers in the core of M55 157 A.l Some parameters of M55 as derived in this work 175 vni List of Figures 1.1 Principal sequences of a globular-cluster colour-magnitude diagram ... 7 2.1 The location of the deep field relative to M55 19 2.2 Finder chart for the local standards in the deep field 27 2.3 Residuals for the Landolt standards 30 2.4 Color-magnitude diagram for all objects in the deep field 32 2.5 Color-magnitude diagram for the deep field with %2 restrictions 34 2.6 The principal sequences of M55 and other populations 39 2.7 Colour-magnitude diagram for the comparison field 41 2.8 Plot of the average image-sharpness index r0 versus V magnitude .... 42 2.9 Colour-colour diagram for the central field of M55 45 2.10 Fit of the main sequence of M55 to nearby subdwarfs 54 2.11 Agreement between the shapes of the main sequence and the isochrones . 56 2.12 Isochrone match to the photometry around the turnoff 60 2.13 Comparison between the observed and artificial main sequence 68 2.14 Differences between the input and output magnitudes and colour 69 2.15 Completeness fractions in the V and I passbands 70 2.16 The F-band and /-band luminosity functions 73 2.17 Comparison of the ground-based luminosity function of M55 with HST- based luminosity functions - faint normalization 75 2.18 Comparison of the ground-based luminosity function of M55 with HST- based luminosity functions - bright normalization 77 ix 2.19 Comparison of the mass-luminosity relations in V and / 80 2.20 Comparison of low-mass isochrones with the main sequence of M55 ... 81 2.21 The mass function of M55 83 2.22 More comparisons of the ground-based luminosity function of M55 with HST-ha.sed luminosity functions 86 3.1 Location of the core field relative to M55 91 3.2 Finder chart for the local standards in the core field 96 3.3 Residuals for the Landolt standards 98 3.4 Magnitude and colour errors as a function of V magnitude 100 3.5 Plot of x2 versus V magnitude 102 3.6 Rejection criteria in magnitude and colour index 104 3.7 The effect of error and \2 restrictions on the colour-magnitude diagram .
Recommended publications
  • Meet the Family
    Open Astronomy 2014; 1 Research Article Open Access Stephan Geier*, Roy H. Østensen, Peter Nemeth, Ulrich Heber, Nicola P. Gentile Fusillo, Boris T. Gänsicke, John H. Telting, Elizabeth M. Green, and Johannes Schaffenroth Meet the family − the catalog of known hot subdwarf stars DOI: DOI Received ..; revised ..; accepted .. Abstract: In preparation for the upcoming all-sky data releases of the Gaia mission, we compiled a catalog of known hot subdwarf stars and candidates drawn from the literature and yet unpublished databases. The catalog contains 5613 unique sources and provides multi-band photometry from the ultraviolet to the far infrared, ground based proper motions, classifications based on spectroscopy and colors, published atmospheric parameters, radial velocities and light curve variability information. Using several different techniques, we removed outliers and misclassified objects. By matching this catalog with astrometric and photometric data from the Gaia mission, we will develop selection criteria to construct a homogeneous, magnitude-limited all-sky catalog of hot subdwarf stars based on Gaia data. As first application of the catalog data, we present the quantitative spectral analysis of 280 sdB and sdOB stars from the Sloan Digital Sky Survey Data Release 7. Combining our derived parameters with state-of-the-art proper motions, we performed a full kinematic analysis of our sample. This allowed us to separate the first significantly large sample of 78 sdBs and sdOBs belonging to the Galactic halo. Comparing the properties of hot subdwarfs from the disk and the halo with hot subdwarf samples from the globular clusters ω Cen and NGC2808, we found the fraction of intermediate He-sdOBs in the field halo population to be significantly smaller than in the globular clusters.
    [Show full text]
  • Revisiting the Pre-Main-Sequence Evolution of Stars I. Importance of Accretion Efficiency and Deuterium Abundance ?
    Astronomy & Astrophysics manuscript no. Kunitomo_etal c ESO 2018 March 22, 2018 Revisiting the pre-main-sequence evolution of stars I. Importance of accretion efficiency and deuterium abundance ? Masanobu Kunitomo1, Tristan Guillot2, Taku Takeuchi,3,?? and Shigeru Ida4 1 Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan e-mail: [email protected] 2 Université de Nice-Sophia Antipolis, Observatoire de la Côte d’Azur, CNRS UMR 7293, 06304 Nice CEDEX 04, France 3 Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan 4 Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan Received 5 February 2016 / Accepted 6 December 2016 ABSTRACT Context. Protostars grow from the first formation of a small seed and subsequent accretion of material. Recent theoretical work has shown that the pre-main-sequence (PMS) evolution of stars is much more complex than previously envisioned. Instead of the traditional steady, one-dimensional solution, accretion may be episodic and not necessarily symmetrical, thereby affecting the energy deposited inside the star and its interior structure. Aims. Given this new framework, we want to understand what controls the evolution of accreting stars. Methods. We use the MESA stellar evolution code with various sets of conditions. In particular, we account for the (unknown) efficiency of accretion in burying gravitational energy into the protostar through a parameter, ξ, and we vary the amount of deuterium present. Results. We confirm the findings of previous works that, in terms of evolutionary tracks on the Hertzsprung-Russell (H-R) diagram, the evolution changes significantly with the amount of energy that is lost during accretion.
    [Show full text]
  • The X-Ray Universe 2017 List of Posters
    The X-ray Universe 2017 List of Posters A - Solar System, Exoplanets and Star-Planet-Interaction A01 Frederic Marin Transmitted and polarized scattered fluxes by the exoplanet HD 189733b in X-rays B - Star formation, Young Stellar Objects, Cool and Hot Stars B01 Yael Naze A legacy survey of early B-type stars using the RGS B02 Stefan Czesla The coronae of Kepler superflare stars B03 Mauricio Elías Chávez ESTIMATION OF THE STAR FORMATION RATE (SFR) THROUGH DATA ANALYSIS OF SWIFT'S LONG- GRBs FROM 2008 TO 2017 B04 Federico Fraschetti Local protoplanetary disk ionisation by T Tauri star energetic particles B05 Martin A. Guerrero The XMM-Newton View of Wolf-Rayet Bubbles B06 Sandro Mereghetti X-rays as a new tool to study the winds of hot subdwarf stars B07 Yael Naze Zeta Pup variability revisited B08 John Pye A survey of long-term X-ray variability in cool stars B09 Gregor Rauw The flaring activity of pre-main sequence stars in NGC6530 B10 Beate Stelzer Activity and rotation of the X-ray emitting Kepler stars B11 Beate Stelzer Calibrating the time-evolution of the X-ray emission of M dwarfs C - White Dwarfs, Cataclysmic Variables and Novae C01 Andrej Dobrotka XMM-Newton observation of nova like system MV Lyr and search for source of the fast variability detected in Kepler data C02 Cigdem Gamsizkan Reanalysis of high-resolution XMM-Newton data of V2491 Cygni using models of collisionally ionized hot absorbers C03 Isabel J. Lima Simultaneous modelling of X-ray emission and optical polarization of intermediate polars: the case of V405 Aur C04 Arti Joshi XMM-Newton observations of an asynchronously rotating polar CD Ind C05 Sandro Mereghetti The mysterious companion of the hot subdwarf HD 49798 C06 Nasrin Talebpour X-ray Spectra of the Cataclysmic Variable LS Peg using XMM-Newton and SWIFT data Sheshvan D - Isolated Neutron Stars & Magnetars D01 Jaziel G.
    [Show full text]
  • Detection and Characterization of Hot Subdwarf Companions of Massive Stars Luqian Wang
    Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Dissertations Department of Physics and Astronomy 8-13-2019 Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars Luqian Wang Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss Recommended Citation Wang, Luqian, "Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/phy_astr_diss/119 This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. DETECTION AND CHARACTERIZATION OF HOT SUBDWARF COMPANIONS OF MASSIVE STARS by LUQIAN WANG Under the Direction of Douglas R. Gies, PhD ABSTRACT Massive stars are born in close binaries, and in the course of their evolution, the initially more massive star will grow and begin to transfer mass and angular momentum to the gainer star. The mass donor star will be stripped of its outer envelope, and it will end up as a faint, hot subdwarf star. Here I present a search for the subdwarf stars in Be binary systems using the International Ultraviolet Explorer. Through spectroscopic analysis, I detected the subdwarf star in HR 2142 and 60 Cyg. Further analysis led to the discovery of an additional 12 Be and subdwarf candidate systems. I also investigated the EL CVn binary system, which is the prototype of class of eclipsing binaries that consist of an A- or F-type main sequence star and a low mass subdwarf.
    [Show full text]
  • Stellar Population Templates in the Near-Infrared by Crystal Brasseur B
    Stellar Population Templates in the Near-Infrared by Crystal Brasseur B.Sc., University of Victoria, 2007 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Physics and Astronomy c Crystal Brasseur, 2009 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Stellar Population Templates in the Near-Infrared by Crystal Brasseur B.Sc., University of Victoria, 2007 Supervisory Committee Dr. Peter B. Stetson, Supervisor (Herzberg Institute of Astrophysics) Dr. Don A. VandenBerg, Supervisor (Department of Physics and Astronomy) Dr. Kim Venn, Departmental Member (Department of Physics and Astronomy) Dr. Jon Willis, Departmental Member (Department of Physics and Astronomy) iii Supervisory Committee Dr. Peter B. Stetson, Supervisor (Herzberg Institute of Astrophysics) Dr. Don A. VandenBerg, Supervisor (Department of Physics and Astronomy) Dr. Kim Venn, Departmental Member (Department of Physics and Astronomy) Dr. Jon Willis, Departmental Member (Department of Physics and Astronomy) ABSTRACT We have obtained broad-band NIR-photometry for six Galactic star clusters, M92, M15, M13, NGC1851, M71 and NGC6791, as observed with the WIRCam wide-field imager on the Canada-France-Hawaii Telescope; supplemented by images taken with HAWK-I on VLT. From the resultant (V − J)-V and (V − K)-V colour-magnitude diagrams, fiducial sequences spanning the range in metallicity, −2.4 ≤ [Fe/H] ≤ +0.3, have been defined which extend from the tip of the red-giant branch to ∼ 2.5 magnitudes below the main-sequence turnoff.
    [Show full text]
  • Star Dust Newsletter of National Capital Astronomers, Inc
    Star Dust Newsletter of National Capital Astronomers, Inc. capitalastronomers.org March 2021 Volume 79, Issue 7 Celebrating 84 Years of Astronomy How Amateurs Can Measure the Spectra of Astronomical Objects Next Meeting Tom Field When: Sat. Mar. 13th, 2021 Field Tested Systems Time: 7:30 pm Where: Online (Zoom) See instructions for registering to participate in the meeting on Page 8. Speaker: Tom Field Table of Contents Preview of Mar. 2021 Talk 1 Recent Astronomy Highlights 2 Sighting by WISPR 2 Exploring the Sky 3 Sky Watchers 3 Perseverance Landing 3 Occultations 5 Calendar of Events 7 Image credit: Tom Field Abstract: Even if you wanted to touch a star, they’re all impossibly distant. Despite these great distances, astronomers have learned an enormous amount about stars. How? The most common method to study the stars is called spectroscopy, which is the science of analyzing the colorful rainbow spectrum produced by a prism-like device. Until recently, spectroscopy was too expensive and too complicated for all but a handful of amateurs. Today, though, new tools make spectroscopy accessible to almost all of us. You no longer need a PhD, dark skies, long Image Credit – NASA, JPL, University exposures, enormous aperture … or a big budget! With your current of Arizona telescope and FITS camera (or a simple web cam or even a DSLR Victoria Crater, near the equator of Mars, as imaged by the High without a telescope) you can now easily study the stars yourself. Wouldn’t Resolution Imaging Experiment you like to detect the atmosphere on Neptune or the red shift of a quasar (HiRISE) on the Mars right from your own backyard?! Reconnaissance Orbiter.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Stellar Evolution
    Stellar Astrophysics: Stellar Evolution 1 Stellar Evolution Update date: December 14, 2010 With the understanding of the basic physical processes in stars, we now proceed to study their evolution. In particular, we will focus on discussing how such processes are related to key characteristics seen in the HRD. 1 Star Formation From the virial theorem, 2E = −Ω, we have Z M 3kT M GMr = dMr (1) µmA 0 r for the hydrostatic equilibrium of a gas sphere with a total mass M. Assuming that the density is constant, the right side of the equation is 3=5(GM 2=R). If the left side is smaller than the right side, the cloud would collapse. For the given chemical composition, ρ and T , this criterion gives the minimum mass (called Jeans mass) of the cloud to undergo a gravitational collapse: 3 1=2 5kT 3=2 M > MJ ≡ : (2) 4πρ GµmA 5 For typical temperatures and densities of large molecular clouds, MJ ∼ 10 M with −1=2 a collapse time scale of tff ≈ (Gρ) . Such mass clouds may be formed in spiral density waves and other density perturbations (e.g., caused by the expansion of a supernova remnant or superbubble). What exactly happens during the collapse depends very much on the temperature evolution of the cloud. Initially, the cooling processes (due to molecular and dust radiation) are very efficient. If the cooling time scale tcool is much shorter than tff , −1=2 the collapse is approximately isothermal. As MJ / ρ decreases, inhomogeneities with mass larger than the actual MJ will collapse by themselves with their local tff , different from the initial tff of the whole cloud.
    [Show full text]
  • Solar Writer Report for Abraham Lincoln
    FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant
    [Show full text]
  • White Dwarf and Hot Subdwarf Binaries As Possible Progenitors of Type I A
    White dwarf and hot sub dwarf binaries as p ossible progenitors of type I a Sup ernovae Christian Karl July White dwarf and hot sub dwarf binaries as p ossible progenitors of type I a Sup ernovae Den Naturwissenschaftlichen Fakultaten der FriedrichAlexanderUniversitatErlangenN urnberg zur Erlangung des Doktorgrades vorgelegt von Christian Karl aus Bamberg Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultaten der UniversitatErlangenN urnberg Tag der m undlichen Pr ufung Aug Vositzender der Promotionskommission Prof Dr L Dahlenburg Erstb erichterstatter Prof Dr U Heb er Zweitberichterstatter Prof Dr K Werner Contents The SPY pro ject Selection of DB white dwarfs Color criteria Absorption line criteria Summary of the DB selection The UV Visual Echelle Sp ectrograph Instrumental setup UVES data reduction ESO pip elin e vs semiautomated pip eline Derivation of system parameters Denition of samples Radial velocity curves Followup observations Radial velocity measurements Power sp ectra and RV curves Gravitational redshift Quantitative sp ectroscopic analysis Stellar parameters of singleline d systems
    [Show full text]
  • ATHOS: On-The-Fly Stellar Parameter Determination of FGK Stars Based
    Astronomy & Astrophysics manuscript no. ATHOS c ESO 2018 September 7, 2018 ATHOS: On-the-fly stellar parameter determination of FGK stars based on flux ratios from optical spectra? Michael Hanke1, Camilla Juul Hansen2; 3, Andreas Koch1, and Eva K. Grebel1 1 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg, Germany e-mail: [email protected] 2 Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany 3 Dark Cosmology Centre, The Niels Bohr Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark September 7, 2018 ABSTRACT The rapidly increasing number of stellar spectra obtained by existing and future large-scale spectroscopic surveys feeds a demand for fast and efficient tools for the spectroscopic determination of fundamental stellar parameters. Such tools should not only comprise customized solutions for one particular survey or instrument, but, in order to enable cross-survey comparability, they should also be capable of dealing with spectra from a variety of spectrographs, resolutions, and wavelength coverages. To meet these ambitious specifications, we developed ATHOS (A Tool for HOmogenizing Stellar parameters), a fundamentally new analysis tool that adopts easy-to-use, computationally inexpensive analytical relations tying flux ratios (FRs) of designated wavelength regions in optical spectra to the stellar parameters effective temperature (Teff ), iron abundance ([Fe/H]), and surface gravity (log g). Our Teff estimator is based on FRs from nine pairs of wavelength ranges around the Balmer lines Hβ and Hα, while for [Fe/H] and log g we provide 31 and 11 FRs, respectively, which are spread between ∼ 4800 Å and ∼ 6500 Å; a region covered by most optical surveys.
    [Show full text]