Tyrophagus Putrescentiae As Causative Agent of Wet Bubble Disease in Agaricus Bisporus

Total Page:16

File Type:pdf, Size:1020Kb

Tyrophagus Putrescentiae As Causative Agent of Wet Bubble Disease in Agaricus Bisporus Int.J.Curr.Microbiol.App.Sci (2017) 6(10): 1172-1177 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 1172-1177 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.610.141 Tyrophagus putrescentiae as Causative Agent of Wet Bubble Disease in Agaricus bisporus Itisha*, Rachna Gulati, Manoj, Anita and Surjeet Singh Department of Zoology, Chaudhary Charan Singh Haryana Agriculture University, Hisar – 125004, Haryana, India *Corresponding author ABSTRACT A study was conducted to assess the role of Tyrophagus putrescentiae in dispersal K e yw or ds of Mycogone perniciosa, a causative agent of wet bubble disease in Agaricus Agaricus bisporus, bisporus. T. putrescentiae started feeding as soon as they were released in M. perniciosa culture plates. A continuous significant increase in mite number was Mycogone perniciosa , recorded at each observation period with peak (150.50 mites) after 20 days which Tyrophagus was statistically comparable with 145.50 mites at 18 days. After 15 days, 10 T. putrescentiae , Wet bubble disease. putrescentiae pairs were released from M. perniciosa infected plates to A. bisporus culture plates under aseptic conditions. After 6 days, whitish mouldy growth was Article Info started appearing on A. bisporus culture which soon spread to whole culture plate Accepted: within 18 days. Mites were feeding and multiplying at this stage. The mite number 10 September 2017 significantly increased with increase in observation period on A. bisporus culture nd Available Online: plates till 22 day. At this stage peak in the population was recorded (177.25 10 October 2017 mites). Introduction Mushroom growing is one of the fastest with mushrooms (Tripathi, 2005), out of growing and most technologically which Tarsonemus myceliophagus Hussey, sophisticated horticultural industries in the Tyrophagus lantneri Osb, Caloglyphus world. Three species of edible mushroom, mycophagus (Megnin) (Kumar et al., 2004), white button mushroom (Agaricus bisporus), Tyrophagus putrescentiae Schrank, paddy straw mushroom (Volvariella spp.) and Uroobovella sp. (Rana, 2008) are considered oyster mushroom (Pleurotus sp.) are economically important pests. commercially grown in India. Button mushrooms are subject to a range of diseases Tyrophagus putrescentiae, commonly called and pests which have the capacity to cause as mould mite, copra mite or cheese mite, serious crop losses. Sciarid fly, phorid fly, belong to the family Acaridae of the order spring tails and mites are important arthropod Astigmata. Their small size makes early pests of cultivated mushroom in India. Fifty infestation by mites difficult to detect and four mite species have been found associated enables them to enter packaging and exploit 1172 Int.J.Curr.Microbiol.App.Sci (2017) 6(10): 1172-1177 food residues in very small cracks and A. bisporus was reared on Potato Dextrose crevices. The life cycle consists of the egg, Agar (PDA) medium. Petriplates were larva, protonymph, tritonymph, and adult inoculated with a bit of Mycogone perniciosa stages. Development from the egg to adult under Laminar flow. After five days of takes about 1 to 3 weeks, and could take 118 inoculation of M. perniciosa, 10 pairs of T. days depending on environmental conditions putrescentiae were released in plates under and the food type on which the mite is reared aseptic and penta-replicate conditions. (Kheradmand et al., 2007). Experiments were conducted for 28 days at It is reported as an important vector of 27±1ºC, 95-99 percent relative humidity in dispersing weed fungi throughout mushroom the BOD incubator. Observations on mite cultivation facilities (Okabe et al., 2001; feeding and multiplication were recorded after Czajkowska, 2002). These include Fusariurm each alternative day. After 15 days, 10 pairs sp., Alternaria sp., Geotrichum sp., Mucor sp. of T. putrescentiae were picked from M. and Trichophyton sp. Red pepper mites are perniciosa infected plates and released in A. also considered as vectors of Trichoderma bisporus culture ABL-2 plates. Observations and Hypocrea nigricans. The mites swarming on the T. putrescentiae population build up on the casing and mushrooms bodies spread and development of whitish mouldy growth the spores of Trichoderma spp. (Hussey et al., of mycelium on strain of A. bisporus was 1969). Erban et al., (2016) studied the recorded to observe the transmission of presence of Wolbachia, Cardinium, disease. Counting of mites was done under Bartonella, Blattabacterium and Solitalea in the stereozoom microscope under 10X the eggs of T. putrescentiae which indicated magnification. mother to offspring (vertical) transmission. In white button mushroom, the incidence of wet Statistical analysis bubble disease caused by the fungus, Mycogone perniciosa is a serious problem Critical Difference (CD) was calculated for (Gahukar, 2014) whose carriers are presumed Tyrophagus putrescentiae population on fungi to be pests but no detailed study is available. to see the effect of observation periods. The It produces symptoms like dense white Software ‘OPSTAT’, developed at the growth on gills; swollen stems and caps from Computer Centre, College of Basic Sciences which reddish-brown liquid oozes, chlorine and Humanities, CCS Haryana Agricultural like smell and crinkled, walnut-like bodies on University, Hisar, was used for the analysis. the surface of the casing. T. putrescentiae can spread viruses causing diseases in mushrooms Results and Discussion (Hussey et al., 1969) and are also responsible for the dispersal of weed and pathogenic The data pertaining to T. putrescentiae fungal spores, so the present study has been population build up on M. perniciosa is undertaken to assess the role of Tyrophagus presented in Table 1. T. putrescentiae started putrescentiae in wet bubble disease dispersal. feeding as soon as they were released in culture plates. Eggs were laid by T. Materials and Methods putrescentiae, a continuous significant increase in number at each observation period To assess the role of T. putrescentiae in (CD= 6.62; p= 0.05). It was 28.00, 35.00, transmission of wet bubble disease, culture of 61.00, 71.75, 84.75, 101.75, 115.50, 129.25, pathogenic fungi (Mycogone perniciosa) and 145.50 mites and 150.50 at 2, 4, 6, 8, 10, 12, 1173 Int.J.Curr.Microbiol.App.Sci (2017) 6(10): 1172-1177 14, 16, 18 and 20 day. A peak in population II). The colour of culture changed from pale (150.50 mites) was recorded after 20 days brown to white. The statistical analysis which was statistically comparable with showed significant effect of observation 145.50 mites at 18 days. Thereafter, a gradual period on population buildup of T. but significant decline in population was putrescentiae on A. bisporus culture (CD= recorded with 137.25, 123.75 and 111.00 6.73; p= 0.05) (Table 2). The mite number mites at 22, 24 and 26 day respectively. significantly increased with increase in observation period till 22nd day. At this stage After 15 days, 10 T. putrescentiae pairs were peak in the population was recorded (177.25 released from M. perniciosa infected plates to mites). Afterwards, it gradually declined to A. bisporus culture plates under aseptic the lowest population count of 105.50 mites at conditions. After 6 days, whitish mouldy 32 day. The mite count was statistically non- growth was started appearing on A. bisporus significant at zero and second day, 20th and culture (Plate I). It soon spread to whole 26th days, 18th and 28th days, 16th and 30th culture plate within 18 days. Mites were days. Mite number at 14th and 32nd days was feeding and multiplying at this stage (Plate also found to be at par with each other. Table.1 Population of Tyrophagus putrescentiae on Mycogone perniciosa Observation (days after 10 pairs of mite/ strain of release of mites) Mycogone perniciosa 0 20.00 ± 0.00 2 28.25 ± 1.43 4 35.00 ± 1.78 6 61.00 ± 2.82 8 71.75 ± 4.55 10 84.75 ± 3.22 12 101.75 ± 1.93 14 115.50 ± 2.39 16 129.25 ± 1.93 18 145.50 ± 2.10 20 150.50 ± 1.44 22 137.25 ± 1.93 24 123.75 ± 1.88 26 111.00 ± 2.34 SE(m) 2.31 CD(p = 0.05) 6.62 1174 Int.J.Curr.Microbiol.App.Sci (2017) 6(10): 1172-1177 Table.2 Population of Tyrophagus putrescentiae on Agaricus bisporus Observation (days 10 pairs of mite/ strain of after release of mites) Agaricus bisporus 0 20.00 ±0.00a 2 26.00 ±0.81a 4 37.25 ±1.54 6 50.25 ±2.05 8 62.50 ±1.75 10 74.00 ±2.48 12 89.25 ±1.54 14 102.75 ±1.93e 16 113.50 ±2.95d 18 129.50 ±3.12c 20 150.50 ±1.70b 22 177.25 ±2.21 24 164.50 ±2.10 26 152.25 ±1.79b 28 131.25±3.70c 30 118.75 ±3.35d 32 105.50 ±3.66e SE(m) 2.36 CD(p = 0.05) 6.73 Plate.1 Appearance of wet bubble disease on A. bisporus Plate II: Spreading of wet bubble disease Most of the mites feed on wild fungus In nature, the spores of coprophilous fungi (contaminants in cultivated mushrooms) and survive their passage through the animal help in dispersal of their spores (Price, 1976). digestive system when consumed by Wild fungi act as competitive fungi in herbivorous (Richardson, 2001). Basidiospores cultivated mushroom beds thus affecting the ingested by the mites will not be digested. overall yield (Okabe, 1999). The life cycle of C. Faecal pellets containing a number of fungal cinerea along with the mite T. putrescentiae spores are formed and excreted. The spores in starts with the mite feeding on the mushroom the faecal pellets easily germinate and form tissues including the spores (González, 2008).
Recommended publications
  • Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 Pp. Donovan, B. J. 2007
    Donovan, B. J. 2007: Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 pp. EDITORIAL BOARD REPRESENTATIVES OF L ANDCARE R ESEARCH Dr D. Choquenot Landcare Research Private Bag 92170, Auckland, New Zealand Dr R. J. B. Hoare Landcare Research Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson c/- Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF M USEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS I NSTITUTIONS Dr M. J. Fletcher Director of the Collections NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 57 Apoidea (Insecta: Hymenoptera) B. J. Donovan Donovan Scientific Insect Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand [email protected] Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2007 4 Donovan (2007): Apoidea (Insecta: Hymenoptera) Copyright © Landcare Research New Zealand Ltd 2007 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Donovan, B. J. (Barry James), 1941– Apoidea (Insecta: Hymenoptera) / B. J. Donovan – Lincoln, N.Z. : Manaaki Whenua Press, Landcare Research, 2007. (Fauna of New Zealand, ISSN 0111–5383 ; no.
    [Show full text]
  • Comparing the Life Table and Population Projection Of
    agronomy Article Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) Based on the Age-Stage, Two-Sex Life Table Theory Jihye Park 1,†, Md Munir Mostafiz 1,† , Hwal-Su Hwang 1 , Duck-Oung Jung 2,3 and Kyeong-Yeoll Lee 1,2,3,4,* 1 Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea; [email protected] (J.P.); munirmostafi[email protected] (M.M.M.); [email protected] (H.-S.H.) 2 Sustainable Agriculture Research Center, Kyungpook National University, Gunwi 39061, Korea; [email protected] 3 Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea 4 Quantum-Bio Research Center, Kyungpook National University, Gunwi 39061, Korea * Correspondence: [email protected]; Tel.: +82-53-950-5759 † These authors contributed equally to this work. Abstract: Predatory soil-dwelling mites, Gaeolaelaps aculeifer (Canestrini) and Stratiolaelaps scimitus (Womersley) (Mesostigmata: Laelapidae), are essential biocontrol agents of small soil arthropod pests. To understand the population characteristics of these two predatory mites, we investigated their development, survival, and fecundity under laboratory conditions. We used Tyrophagus putrescentiae (Schrank) as a food source and analyzed the data using the age-stage, two-sex life table. The duration from egg to adult for G. aculeifer was longer than that for S. scimitus, but larval duration was similar Citation: Park, J.; Mostafiz, M.M.; between the two species. Notably, G. aculeifer laid 74.88 eggs/female in 24.50 days, but S. scimitus Hwang, H.-S.; Jung, D.-O.; Lee, K.-Y. Comparing the Life Table and laid 28.46 eggs/female in 19.1 days.
    [Show full text]
  • Slow-Release Sachets of Neoseiulus Cucumeris Predatory Mites Reduce Intraguild Predation by Dalotia Coriaria in Greenhouse Biological Control Systems
    Insects 2015, 6, 489-507; doi:10.3390/insects6020489 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Slow-Release Sachets of Neoseiulus cucumeris Predatory Mites Reduce Intraguild Predation by Dalotia coriaria in Greenhouse Biological Control Systems Emily Pochubay 1, Joseph Tourtois 2, Jeanne Himmelein 3 and Matthew Grieshop 2,* 1 Michigan State University, 6686 S. Center Hwy, Traverse City, MI 49684, USA; E-Mail: [email protected] 2 Michigan State University, 205 Center for Integrated Plant Systems, East Lansing, MI 48824, USA; E-Mail: [email protected] 3 Michigan State University, 3299 Gull Road Floor 4, Nazareth, MI 49074, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-517-331-3725. Academic Editor: Andrew G. S. Cuthbertson Received: 18 February 2015 / Accepted: 20 May 2015 / Published: 1 June 2015 Abstract: Intraguild predation of Neoseiulus cucumeris Oudemans (Phytoseiidae) by soil-dwelling predators, Dalotia coriaria Kraatz (Staphylinidae) may limit the utility of open rearing systems in greenhouse thrips management programs. We determined the rate of D. coriaria invasion of N. cucumeris breeder material presented in piles or sachets, bran piles (without mites), and sawdust piles. We also observed mite dispersal from breeder piles and sachets when D. coriaria were not present. Dalotia coriaria invaded breeder and bran piles at higher rates than sawdust piles and sachets. Furthermore, proportions of N. cucumeris in sachets were six- to eight-fold higher compared with breeder piles. When D. coriaria were absent, N. cucumeris dispersed from breeder piles and sachets for up to seven weeks.
    [Show full text]
  • Biology and Behavior of the Mite Cheletomorpha Lepidopterorum (Shaw) (Prostigmata:Cheyletidae) and Its Role As a Predator of a Grain Mite Acarus Farris (Oud
    AN ABSTRACT OF THE THESIS OF JAMES ROGER ALLISONfor the DOCTOR OF PHILOSOPHY (Name (Degree) in ENTOMOLOGY presented on41a21712Ajd2W;) /2.'7/ (Major) (Date) Title: BIOLOGY AND BEHAVIOR OF THE MITECHELETOMORPHA LEPIDOPTERORUM (SHAW) (PROSTIGMATA:CHEYLETIDAE) AND ITS ROLE AS A PREDATOR OF A GRAIN MITEACARUS FARRIS (OUD. )(ASTIGIV&TIAaR. Redacted for Privacy Abstract approved: /7J //I G.- W. Krantz Cheletomorpha lepidopterorum (Shaw), a predaceous, prostig- matid mite, was studied under laboratory conditions of20° - 30° C and 80% - 90% R. H. to determine its effectiveness as apossible biological control agent of Acarus farris (Oud. ),a graminivorous mite which infests stored grains and grain products.Although Cheletophyes knowltoni Beer and Dailey had been synonymized with C. lepidopterorum, it was found that the latter couldbe differentiated from C. knowltoni on the basis of biological, morphological,and behavioral data obtained from four species "populations"(Kansas, Oregon, California, and World-Wide). A temperature range of 20° - 25° C and relative humidities of 80% - 90% created conditions ideally suited to the rearing 'of C. lepidopterorum.Egg survival under optimal temperature and humidity regimes exceeded75%. Mated females laid more eggs than unmatedfemales at optimal environmental conditions. Development time from egg to adult ranged from alow of 192 hours for a single male at 30° C, 90% R. H. ,to 420 hours for a male at 20° C, 90% R. H.The second nymphal stage sometimes was omitted in the male ontogeny. Mated females produced male and female progeny,while unmated females produced a higher percentage ofmales. Starved C. lepidopterorum females survivedlongest at 20° C, 80% R. H. -- 31.
    [Show full text]
  • The Effect of Controlling Temperature and Relative
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2017 The Effect of Controlling Temperature and Relative Humidity on Tyrophagus Putrescentiae (Schrank) (Sarcoptiformes: Acaridae) Infestations on Dry Cured Hams Treated in Food Grade Ingredient Infused Nets Jasmine Deneen Hendrix Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Hendrix, Jasmine Deneen, "The Effect of Controlling Temperature and Relative Humidity on Tyrophagus Putrescentiae (Schrank) (Sarcoptiformes: Acaridae) Infestations on Dry Cured Hams Treated in Food Grade Ingredient Infused Nets" (2017). Theses and Dissertations. 4335. https://scholarsjunction.msstate.edu/td/4335 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Template B v3.0 (beta): Created by J. Nail 06/2015 The effect of controlling temperature and relative humidity on Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) infestations on dry cured hams treated in food grade ingredient infused nets By TITLE PAGE Jasmine Deneen Hendrix A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Food Science in the Department of Food Science, Nutrition, and Health Promotion Mississippi State, Mississippi December 2017 Copyright by COPYRIGHT PAGE Jasmine Deneen Hendrix 2017 The effect of controlling temperature and relative humidity on Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) infestations on dry cured hams treated in food grade ingredient infused nets By APPROVAL PAGE Jasmine Deneen Hendrix Approved: ____________________________________ M.
    [Show full text]
  • Neoseiulus Cucumeris (Oudemans) (Arachnida: Mesostigmata: Phytoseiidae)1 Garima Kakkar, Vivek Kumar, Cindy Mckenzie, and Lance Osborne2
    EENY661 Cucumeris Mite (Suggested Common Name) Neoseiulus cucumeris (Oudemans) (Arachnida: Mesostigmata: Phytoseiidae)1 Garima Kakkar, Vivek Kumar, Cindy McKenzie, and Lance Osborne2 Introduction Synonymy Neoseiulus cucumeris (Oudemans), first described by The first description of this predatory mite was based on Oudemans in 1930, is a generalist foliar predator known specimens found in muskmelon infested with Tetranychus worldwide for its biocontrol potential against a spectrum spider mites, collected in France (Beard 1999). In the fol- of pests (whiteflies, thrips, mites, aphids, and psyllids) of lowing years, it was described multiple times and confused horticultural importance. Its ability to survive on plant pol- with many other mite species around the world due to len in the absence of prey and commercialization make this limited character states available for species separation and mite one of the most easily adaptable and readily available lack of sophisticated tools. Due to multiple descriptions natural enemies for greenhouse, nursery, or interiorscape from various parts of the world, it was named differently production systems. Because of its broad host range and over time until 1989, when McMurtry and Bounfour ability to survive on plant pollen it has been categorized as a described it as Neoseiulus cucumeris and raised Neoseiulus type III predator (McMurtry and Croft 1997). to the genus level. It is now the most widely accepted name for this species. Synonyms of Neoseiulus cucumeris are: Typhlodromus cucumeris Oudemans Typhlodromus thripsi MacGill Amblyseius cucumeris (Oudemans) Athias-Henriot Amblyseius (Typhlodromopsis) cucumeris (Oudemans) Typhlodromus (Amblyseius) cucumeris (Oudemans) Figure 1. Neoseiulus cucumeris (Oudemans) adult. Amblyseius (Amblyseius) cucumeris Wainstein Credits: Garima Kakkar, UF/IFAS 1.
    [Show full text]
  • Natural and Synthetic Repellents for Pest Management of the Storage Mite Tyrophagus Putrescentiae (Schrank) (Sarcoptiformes: Acaridae)
    insects Article Natural and Synthetic Repellents for Pest Management of the Storage Mite Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) Naomi Manu 1, Mark Wesley Schilling 2 and Thomas Wesley Phillips 1,* 1 Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; [email protected] 2 Department of Food Science Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA; [email protected] * Correspondence: [email protected] Simple Summary: The ham mite is the major pest of dry-cured hams, aged cheeses, and specialty pet foods that are high in fats and proteins. Ham mites are also known to cause allergies in some cases for humans. The toxic fumigant gas methyl bromide had been used for years to control this mite pest, but it is being phased out of use due to its impact on the protective ozone layer of the earth’s upper atmosphere. Ham producers now require alternatives to methyl bromide for controlling mites. We conducted laboratory experiments with food-safe synthetic and plant-derived chemical repellents to keep mites away from dry cured hams. Our results showed that several of these repellents could effectively prevent ham mites from contacting and staying on treated pieces of ham, and that they would readily go to untreated ham pieces when given a choice. Further experiments found that mites would not feed on nor produce offspring when held on ham pieces coated with oils from thyme, lemon grass, rose, or a mixture of naturally occurring fat molecules. Our experiments suggest that Citation: Manu, N.; Schilling, these food-safe repellents might protect dry-cured hams from mites during their time in aging rooms M.W.; Phillips, T.W.
    [Show full text]
  • Notes on Biology of Cheletominus Congensis ( Cunliffe) When Feed on Different Dites at Different Tempreatures
    Provided for non-commercial research and education use. Not for reproduction, distri bution or commercial use. Vol. 10 No. 6 (2017) Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University. Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology. www.eajbs.eg.net ------------------------------------------------------------------------------------------------------ Citation: Egypt. Acad. J. Biolog. Sci. (A. Entomology) Vol. 10(6)pp: 97- 105(2017) Egypt. Acad. J. Biolog. Sci., 10(6): 97–105 (2017) Egyptian Academic Journal of Biological Sciences A. Entomology ISSN 1687- 8809 www.eajbs.eg.net Notes on biology of Cheletominus congensis ( Cunliffe) when feed on different dites at different tempreatures Mahagoub, M., H.; Yassin, E.M.A., A.M. Khalil and Hosnea A. Afify Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt ___________________________________________________________________ ARTICLE INFO ABSTRACT Article History This work is conducted to study the effect the acarid mite, Tyrophagu Received: 29/8/2017 putrescentiae (Schrank) and the free living nematodes, Rhabditi Accepted: 30/9/2017 scanica Allegan as food at 25 and 35°C, an relative humidity 70% R.H _______________ on the biological aspects of the predatory cheyletid mite Cheletominu Keywords: congensis (Cunliffe). Egg, life cycle, longevity and life span of C Biology, Cheletominus congensis that fed on free living nematodes had faster developmen congensis (Cunliffe). compared to those fed on the acarid mite and the temperature 35°C dites and tempreature induced a shorter periods, where 25°C resulted the longest periods.
    [Show full text]
  • Arthropod Infestation in Samples of Stored Seeds in the Czech Republic
    Czech J. Genet. Plant Breed., 40, 2004 (1): 11–16 Arthropod Infestation in Samples of Stored Seeds in the Czech Republic Z����� KUČEROVÁ and P���� HORÁK Department of Stored-Product Pest Control, Division of Phytomedicine, Research Institute of Crop Production, Prague-Ruzyně, Czech Republic Abstract: Twenty-one types of seed samples (mainly vegetable and grass seed) were analysed in laboratory and 60% arthropod infestation (14 Acarina, 5 Psocoptera species) was found. The seeds of beet, grass, onion, radish and lettuce were most sensitive to infestation. Acarus siro was a dominant mite pest from all aspects (frequency, abundance and seed diversity infestation), followed by Tyrophagus putrescentiae, Tarsonemus granarius and Lepi- doglyphus destructor. Cheyletus eruditus was a dominant predatory mite. Lepinotus patruelis was the most frequent psocid pest. Key words: mites; psocids; Acarina; Psocoptera; stored seed; stored product pests Many mites and psocid species are well known as rina, Psocoptera). We determined the species and stored-product pests of various agricultural com- examined population density. The whole analysed modities. Papers concerning faunistic research of samples (ca 10–100 g) were placed on Tullgren pests of stored seeds in the Czech Republic are funnel (exposure time 24 h) to extract arthropods. focused mainly on arthropod occurrence in stored Extracted specimens were counted individually grain or food commodities (Ž������� 1967, 1998; or with the use of Solomon’s method (S������ Z���� et al. 1984; W����� et al. 1999; S������� et al. 1945). Mite and psocid species were determined 2003; K������� et al. 2003). However, comprehen- under the microscope on slides. Determination was sive research on arthropod occurrence in stored done mainly according to G������ (1974), H����� seeds has not been conducted yet, except several (1976) and L������� (1990, 1998).
    [Show full text]
  • Damage Potential of Tyrophagus Putrescentiae Schrank (Acari: Acaridae) in Mushrooms
    emergent Life Sciences Research Mini-Review Article Damage potential of Tyrophagus putrescentiae Schrank (Acari: Acaridae) in mushrooms Itisha, Rachna Gulati, Anita, Manoj Abstract Tyrophagus putrescentiae Schrank (Acari: Acaridae), is one of the most serious pests of high protein food including mushrooms. It is known to feed and disperse various pathogenic fungi in stored grain and products. It causes economic losses in stored products in addition to allergic disorder in workers Received: 15 August 2017 handling stored products. Understanding T. putrescentiae multiplication on Accepted: 16 October 2017 Online: 24 October 2017 Agaricus bisporus compost, fruiting bodies, its role in transmission of disease is of paramount importance for the standardization of control measures. Authors: Documentation of the population abundance and selection of best compost for Itisha , Rachna Gulati, Anita, Manoj white button mushroom farming would open up new scope for farmers. Department of Zoology, Chaudhary Charan Considering the above facts, efforts have been made to assemble the available Singh Haryana Agricultural University, Hisar, India literature in this article. [email protected] Keywords abiotic factors, diseases, mushrooms, mites, Tyrophagus putrescentiae Emer Life Sci Res (2017) 3(2): 6-15 Introduction E-ISSN: 2395-6658 P-ISSN: 2395-664X Tyrophagus putrescentiae is a cosmopolitan pest of significant economic and health importance. The various feeding patterns are observed due to DOI: http://dx.doi.org/10.7324/ELSR.2017.32615 differences in various food preferences. Schuster [1] and Kaneko [2] had classified mites on the basis of food preferences. Luxton [3] reported that due to mite feeding, colour of produce changes from shiny to dull which slowly turns into blackish.
    [Show full text]
  • Meat and Muscle Biology™ Introduction
    Published February 8, 2018 Meat and Muscle Biology™ Use of Lard, Food Grade Propylene Glycol, and Polysaccharides in Infused Nets to Control Tyrophagus putrescentiae (Schrank; Sarcoptiformes: Acaridae) Infestation on Dry Cured Hams Xue Zhang1, Michael D. Byron1, Jerome Goddard2, Thomas W. Phillips3, and M. Wes Schilling1* 1Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA 2Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA 3Department of Entomology, Kansas State University, Manhattan, KS 66506, USA *Corresponding author. Email: [email protected] (M. W. Schilling) Abstract: Tyrophagus putrescentiae (Schrank) is controlled in the U.S. dry cured ham industry with methyl bromide (MB) fumigation. However, MB fumigation is being phased out of use since it is an ozone depleting substance. The objective of this research was to evaluate ham nets that were infused with lard, propylene glycol (PG) and polysaccharide coating for their ef- ficacy at controlling mite infestations on dry cured ham cubes from hams that were aged for 4 to 6 mo. Results indicated that fewer T. putrescentiae (P < 0.05) were on ham cubes with treated nets containing PG when compared to the number of mites on ham cubes with untreated nets over 10 wk of storage. Lard infused nets without PG did not decrease the mite population (P > 0.05). The net without coating slowed the growth and reproduction of T. putrescentiae since net controls had fewer mites (P < 0.05) than controls without nets. Fungi were not present on ham cubes that were treated with PG-containing nets over 10 wk of storage with a few exceptions.
    [Show full text]
  • Predatory Behaviour of a Nematode Feeding Mite Tyrophagus Putrescentiae (Sarcoptiformes : Acaridae)
    Fundam. appl. NemaLOI., 1994, 17 (4), 293-297 Predatory behaviour of a nematode feeding mite Tyrophagus putrescentiae (Sarcoptiformes : Acaridae) Am,var L. BILCRAt\ilI Section ofNematology, DejJarlment of Zoology, Aligarh Nluslim University, Aligarh-202002, India. Accepted for publication 27 August 1993. Sununary - Observations on Tyrophagus pUlrescenliae revealed mat mese mites are predaceous on many species of plant and soil nematodes belonging to Ù1ree prey trophic categories viz., saprophagous, plant parasitic and predaceous nematodes. Mites preferred second-stage juveniJes of plant parasitic nematodes but predaceous nematodes resisted predation comparatively better man omers. Physical and behavioural characreristics have been attributed to me cause of resistance. Predation by T. pUlrescenliae is density dependent which required essentiaUy a contact berween me chelecerae and me body of prey. Chelecerae are me main killing and feeding organs. Legs are used to hold me prey during attack and feeding. An injured prey, if escaped, attracted orner mires which aggregated at feeding site. The aggregation of mires at feeding sire often resulted in su-uggle amongst mem in order to snatch me prey and feed. Factors like temperarure, agar concentrations, agar micknesses and test arena governed predation by T. pUll·escentiae. The mites rurned coprophagous (feeding on their own excreta) in me absence of prey. No cannibaJistic behaviour was observed in T. putrescentiae eimer in me presence or absence of prey nematodes. Résumé - Cornportermmt prédateur de ['acarien nématophage Tyrophagus putrescentiae (Sarcoptiformes: Acari­ dae) - Les observations effecruées sur Tyrophagus putrescenliae monrrent que cet acarien agit comme prédateur de nombreuses espèces de nématodes phytoparasites ou libres appartenant à trois types trophiques: saprophages, phyto-parasites, prédateurs.
    [Show full text]