Can Hawaiian Carnivorous Caterpillars Attack Invasive Ants Or Vice Versa?

Total Page:16

File Type:pdf, Size:1020Kb

Can Hawaiian Carnivorous Caterpillars Attack Invasive Ants Or Vice Versa? Can Hawaiian carnivorous caterpillars attack invasive ants or vice versa? Shinji Sugiura1,2 1Department of Forest Entomology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan 2Center for Conservation Research and Training, Pacific Biosciences Research Center, University of Hawaii, 3050 Maile Way, Gilmore 408, Honolulu, HI 96822, USA E-mail: [email protected] The Hawaiian Islands have allowed insects to evolve (Meyrick) preyed on a braconid parasitoid. Although unique habits, such as ambush predating in caterpillars1 phytophagous Eupithecia are frequently parasitised by and ground-dwelling in damselfly nymphs2, because the parasitic wasps and flies, the carnivorous species of islands are isolated and originally lacked predators, such Eupithecia are rarely parasitised, suggesting that as ants and wasps3. However, many exotic species have carnivorous Eupithecia counterattack the parasitoids4,5. been introduced to the islands through human activities, However, spiders may defend against Eupithecia attacks; which has affected the native fauna3. one spider, Theridion grallator Simon, was attacked by Ambush carnivorous caterpillars (Eupithecia spp.; E. orichloris, but the spider escaped from the E. Lepidoptera: Geometridae) provide a remarkable orichloris by biting it4. Similarly, ants with strong example of a feeding behaviour unique to the Hawaiian mandibles may counterattack Eupithecia larvae4. Islands1,4. More than 20 endemic species of Eupithecia However, it is unclear whether Eupithecia can attack have been recorded from the Hawaiian Islands1,4. While ants. the larvae of two Eupithecia species are herbivores, the Here, I examined whether E. orichloris can attack ants larvae of other species on the islands are obligate under laboratory conditions (21°C). An E. orichloris predators1,4. The larvae of carnivorous Eupithecia perch larva (body length, 19.3 mm) and workers of the invasive inconspicuously along leaf edges (Fig. 1a) and stems and ant Pheidole megacephala (Fabricius) collected from seize arthropods that touch their posterior body section1. Oahu Island in early June 2010 were used for the Their prey includes various arthropods species, such as experiment. Pheidole megacephala has minor (body springtails, drosophilid flies, cockroaches, crickets, length 2 mm) and major (3.5 mm) forms of workers; psocids, moths, and leafhoppers1,4. Eupithecia larvae major workers have larger heads with stronger mandibles even attack predatory arthropods. For example, than minor ones6. First, I used forceps to place a minor Montgomery4 reported that Eupithecia orichloris worker of P. megacephala on a leaf where E. orichloris Nature Precedings : doi:10.1038/npre.2010.5374.1 Posted 8 Dec 2010 Figure 1. a An Eupithecia orichloris larva perching on a leaf; b E. orichloris feeding on a minor worker of Pheidole megacephala; c The body of the minor worker was torn apart in the E. orichloris attack (the arrow indicates the removed abdomen); d E. orichloris was counterattacked by a major worker of P. megacephala (the arrow indicates the biting by P. megacephala); e The major worker escaped from the E. orichloris attack; f E. orichloris lost a foreleg as a result of the bite by the major worker (arrow). 1 perched. The E. orichloris was observed to bend the seized the ant the instant the ant touched its posterior ACKNOWLEDGEMENTS. I thank Vincent Costello body. The caterpillar seized the ant using its thoracic and Brenden Holland for providing the caterpillar. The (elongated spiny) legs (Fig. 1b), and then used its author was supported by a JSPS Postdoctoral Fellowship mandibles to tear the ant body in two (Fig. 1c). Thus, E. for Research Abroad. orichloris can successfully attack the minor workers of P. megacephala. The next day, I similarly placed a major REFERENCES worker of P. megacephala on a leaf where E. orichloris 1. Montgomery, S. L. GeoJournal 7, 549–556 (1983). perched. The E. orichloris was also observed to attack 2. Zimmerman, E. C. Insects of Hawaii vol. 2: the ant the instant the ant touched its posterior end. Apterygota to Thysanoptera, University of Hawai‘i However, the ant counterattacked (Fig. 1d) and was Press (1948). observed to bite one of the thoracic legs of E. orichloris 3. Ziegler, A. C. Hawaiian Natural History, Ecology, (Fig. 1d) and ultimately escaped (Fig. 1e). The E. and Evolution, University of Hawai‘i Press (2002). orichloris lost a foreleg and consequently lost its ability 4. Montgomery, S. L. Carnivorous caterpillars: the to seize prey (Fig. 1f). The caterpillar died 10 days later. systematics, behavior, biogeography and The Hawaiian Islands, which originally lacked ants, conservation of Eupithecia Curtis (Lepidoptera: have recently been invaded by many exotic ant species7. Geometridae) in the Hawaiian Islands, Ph.D. The invasion of native vegetation by exotic ants has Dissertation, University of Hawaii (1984). reduced the abundance of endemic arthropods8. For 5. Henneman, M. L. and Memmott, J. Science 293, example, the invasive ants Linepithema humile (Mayr), 1314–1316 (2001). Anoplolepis gracilipes (F. Smith), and P. megacephala 6. Wetterer, J. K. Pacific Science 61, 4437-456 (2007) have gradually been invading native forests where 7. Krushelnycky, P. D., Loope, L. L. and Reimer, N. J. Eupithecia caterpillars are found. Although it remains Proc. Entomol. Soc. 37, 1–25 (2005) unclear whether the invasive ants have reduced the 8. Cole, F. R., Medeiros, A. C., Loope, L. L. and Zuehlke, population of Eupithecia caterpillars, my simple W. W. Ecology 73, 1313–1322 (1992). experiment suggests that the invasive ant P. megacephala may affect Eupithecia caterpillars. Nature Precedings : doi:10.1038/npre.2010.5374.1 Posted 8 Dec 2010 2 .
Recommended publications
  • For Control of the Big-Headed Ant, Pheidole Megacephala (Fabricius)1
    Vol. XIII, No. 1, April 1979 119 Laboratory Tests with Candidate Insecticides for Control of the Big-Headed Ant, Pheidole megacephala (Fabricius)1 F.L. McEwen, J.W. Beardsley, Jr. M. Hapai and T.H. Su DEPARTMENT OF ENTOMOLOGY, COLLEGE OF TROPICAL AGRICULTURE UNIVERSITY OF HAWAII, HONOLULU, HAWAII The big-headed ant, Pheidole megacephala (Fabr.) is the dominant ant species in pineapple fields in Hawaii (Phillips, 1934). Its main importance is the role it plays in nursing mealybugs; in particular the gray mealybug, Dysmicoccus neobrevipes Beardsley, the principal vector of mealybug wilt to pineapple. According to Carter (1967) the ant is essential to the well-being of the mealybug in that it ''fights off predators and parasites, cleans up the masses of honey dew secreted by the mealybugs and eats dead and dying members of the colony." Carter (1967) pointed out further that the ants move mealybugs from one plant to another and that in the absence of ants, "mealybug infestations either die out or are very small in num bers." Prior to 1945, ant control in pineapple plantations was difficult to achieve, the only methods available being the use of ant fences and long intercycles between plantings. Mealybugs were abundant and pineapple wilt a serious factor in produc tion. When DDT became available it was found that this insecticide provided con trol of the big-headed ant and the practice was adopted of using a broadcast spray of 4 lbs. active per acre as soon as possible after the pineapples were planted followed by three more applications of 2 lbs.
    [Show full text]
  • Big-Headed Ant (361) Relates To: Ants
    Pacific Pests, Pathogens & Weeds - Fact Sheets https://apps.lucidcentral.org/ppp/ Big-headed ant (361) Relates to: Ants Photo 1. Side view of 'major' worker, big-headed ant, Photo 2. Front view, head of 'major' worker, big- Pheidole megacephala. headed ant, Pheidole megacephala. Photo 3. Front view, head of 'minor' worker, big- headed ant, Pheidole megacephala. Common Name Big-headed ant, African big-headed ant, coastal brown ant. Scientific Name Pheidole megacephala Distribution Worldwide. Asia, Africa, North, South, and Central America, the Caribbean, Europe, Oceania. it is recorded from Australia, Cook Islands, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, New Caledonia, New Zealand, Niue, Northern Mariana Islands, Palau, Papua New Guinea, Samoa, Solomon Islands, Tokelau, Tonga, Vanuatu, Wallis and Futuna Islands. Hosts Nests of Pheidole megacephala are found under rotten logs, stones, tree bark and within leaf litter. More occasionally, nests occur in wall cavities and ceilings, and the ants forage in kitchens and bathrooms. Symptoms & Life Cycle Pheidole megacephala is one of the world's most invasive ant species. Direct damage occurs when seeds are taken as food, affecting agriculture, and home invasions result in chewed electrical and telephone cables. Indirect damage results from the ants' association with aphids, mealybugs, scale insects and whiteflies. They feed on the honeydew from these pests and protect them from their natural enemies and, consequently, pest populations increase to damaging levels. Furthermore, the honeydew excreted by these insects is colonised by sooty moulds turning leave black and blocking photosynthesis. Big-headed ants prefer disturbed habitats, agricultural and urban areas in tropical and subtropical countries, but they also invade rainforests.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Notes on Eupithecia (Lepidoptera: Geometridae) 33-39 Deutschen Gesellschaft Für Orthopterologie E.V.; Download
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Articulata - Zeitschrift der Deutschen Gesellschaft für Orthopterologie e.V. DGfO Jahr/Year: 1987 Band/Volume: 3_1987 Autor(en)/Author(s): Vojnits Andras M. Artikel/Article: Notes on Eupithecia (Lepidoptera: Geometridae) 33-39 Deutschen Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/ Articulata, Bd. Ill, Folge 1, September 1987, Würzburg, ISSN 0171-4090 Notes on Eupithecia (Lepidoptera: Geometridae) by A. M. Vojnits Abstract Eupithecia silenicolata zengoeensis Fazekas, 1979 = the nominotypical species. Eupithecia inveterata nom. nov. for £ trita Vojnits, 1977 (secondary homonym, nec E. trita Turati, 1926). The separation as a subspecies of the Central European po­ pulations of Eupithecia sinuosaria Ev., an actively spreading species, is unrealistic. The paleozoographic analysis of most Eupithecia species rest on insufficient fun- dations. 1. Eupithecia silenicolata zengoeensis Fazekas, 1979 syn. nov. Linnaeana Bel- gica, 11: 406-411, figs. 1-4. Eupithecia silenicolata silenicolata Mabille, 1866 Ann. S. Fr., p. 562. Subspecific name. The Author named the new taxon after highest point in the Mec- sek Mountains, the 682 meters high Mount Zengo, mentioning that this place is the typical location of the subspecies. Following this he stated that the subspecies lives at altitudes between 200-350 m. These areas are entirely different from those of Mount Zengo and its environs, if a taxonomical name is given to a taxon, it should not be misleading under any circumstances. Diagnosis. Of the nine specimens which served as the basis for the description, one is in more or less good condition, one is slightly and the other seven are heavily worn.
    [Show full text]
  • MOTH CHECKLIST Species Listed Are Those Recorded on the Wetland to Date
    Version 4.0 Nov 2015 Map Ref: SO 95086 46541 MOTH CHECKLIST Species listed are those recorded on the Wetland to date. Vernacular Name Scientific Name New Code B&F No. MACRO MOTHS 3.005 14 Ghost Moth Hepialus humulae 3.001 15 Orange Swift Hepialus sylvina 3.002 17 Common Swift Hepialus lupulinus 50.002 161 Leopard Moth Zeuzera pyrina 54.008 169 Six-spot Burnet Zygaeba filipendulae 66.007 1637 Oak Eggar Lasiocampa quercus 66.010 1640 The Drinker Euthrix potatoria 68.001 1643 Emperor Moth Saturnia pavonia 65.002 1646 Oak Hook-tip Drepana binaria 65.005 1648 Pebble Hook-tip Drepana falcataria 65.007 1651 Chinese Character Cilix glaucata 65.009 1653 Buff Arches Habrosyne pyritoides 65.010 1654 Figure of Eighty Tethia ocularis 65.015 1660 Frosted Green Polyploca ridens 70.305 1669 Common Emerald Hermithea aestivaria 70.302 1673 Small Emerald Hemistola chrysoprasaria 70.029 1682 Blood-vein Timandra comae 70.024 1690 Small Blood-vein Scopula imitaria 70.013 1702 Small Fan-footed Wave Idaea biselata 70.011 1708 Single-dotted Wave Idaea dimidiata 70.016 1713 Riband Wave Idaea aversata 70.053 1722 Flame Carpet Xanthorhoe designata 70.051 1724 Red Twin-spot Carpet Xanthorhoe spadicearia 70.049 1728 Garden Carpet Xanthorhoe fluctuata 70.061 1738 Common Carpet Epirrhoe alternata 70.059 1742 Yellow Shell Camptogramma bilineata 70.087 1752 Purple Bar Cosmorhoe ocellata 70.093 1758 Barred Straw Eulithis (Gandaritis) pyraliata 70.097 1764 Common Marbled Carpet Chloroclysta truncata 70.085 1765 Barred Yellow Cidaria fulvata 70.100 1776 Green Carpet Colostygia pectinataria 70.126 1781 Small Waved Umber Horisme vitalbata 70.107 1795 November/Autumnal Moth agg Epirrita dilutata agg.
    [Show full text]
  • Scottish Macro-Moth List, 2015
    Notes on the Scottish Macro-moth List, 2015 This list aims to include every species of macro-moth reliably recorded in Scotland, with an assessment of its Scottish status, as guidance for observers contributing to the National Moth Recording Scheme (NMRS). It updates and amends the previous lists of 2009, 2011, 2012 & 2014. The requirement for inclusion on this checklist is a minimum of one record that is beyond reasonable doubt. Plausible but unproven species are relegated to an appendix, awaiting confirmation or further records. Unlikely species and known errors are omitted altogether, even if published records exist. Note that inclusion in the Scottish Invertebrate Records Index (SIRI) does not imply credibility. At one time or another, virtually every macro-moth on the British list has been reported from Scotland. Many of these claims are almost certainly misidentifications or other errors, including name confusion. However, because the County Moth Recorder (CMR) has the final say, dubious Scottish records for some unlikely species appear in the NMRS dataset. A modern complication involves the unwitting transportation of moths inside the traps of visiting lepidopterists. Then on the first night of their stay they record a species never seen before or afterwards by the local observers. Various such instances are known or suspected, including three for my own vice-county of Banffshire. Surprising species found in visitors’ traps the first time they are used here should always be regarded with caution. Clerical slips – the wrong scientific name scribbled in a notebook – have long caused confusion. An even greater modern problem involves errors when computerising the data.
    [Show full text]
  • Interesting Species of the Family Geometridae (Lepidoptera) Recently Collected in Serbia, Including Some That Are New to the Country’S Fauna
    Acta entomologica serbica, 2018, 23(2): 27-41 UDC 595.768.1(497.11) DOI: 10.5281/zenodo.2547675 INTERESTING SPECIES OF THE FAMILY GEOMETRIDAE (LEPIDOPTERA) RECENTLY COLLECTED IN SERBIA, INCLUDING SOME THAT ARE NEW TO THE COUNTRY’S FAUNA ALEKSANDAR STOJANOVIĆ1, MIROSLAV JOVANOVIĆ1 and ČEDOMIR MARKOVIĆ2 1 Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia E-mails: [email protected]; [email protected] 2 University of Belgrade, Faculty of Forestry, Kneza Višeslava 1, 11030 Belgrade, Serbia E-mail: [email protected] (corresponding author) Abstract Seventeen very interesting species were found in studying the fauna of Geometridae of Serbia. Ten of them are new to the fauna of Serbia (Ennomos quercaria, Anticollix sparsata, Colostygia fitzi, Eupithecia absinthiata, E. alliaria, E. assimilate, E. millefoliata, E. semigraphata, Perizoma juracolaria and Trichopteryx polycommata); five are here recorded in Serbia for the second time (Dyscia raunaria, Elophos dilucidaria, Eupithecia ochridata, Perizoma bifaciata and Rhodostrophia discopunctata); and two are recorded for the third time (Nebula nebulata and Perizoma hydrata). Information regarding where and when they were all found is given herein. KEY WORDS: geometrid moths, measuring worms, new record, taxonomy Introduction With more than 23000 species, Geometridae is one of the largest families of the order Lepidoptera (Choi et al., 2017). About 900 species have been found to date in Europe (Hausmann, 2001). Some of them are significant pests in agriculture and forestry (Carter, 1984; Barbour, 1988; Glavendekić, 2002; Pernek et al., 2013). Around 380 species have so far been recorded in Serbia (Dodok, 2006; Djurić & Hric, 2013; Beshkov, 2015a, 2015b, 2015c, 2017a, 2017b; Beshkov & Nahirnić, 2017; Nahirnić & Beshkov, 2016).
    [Show full text]
  • Bigheaded Ant, Pheidole Megacephala (Fabricius) (Insecta: Hymenoptera: Formicidae: Myrmicinae)1 John Warner and Rudolf H
    EENY-369 Bigheaded Ant, Pheidole megacephala (Fabricius) (Insecta: Hymenoptera: Formicidae: Myrmicinae)1 John Warner and Rudolf H. Scheffrahn2 Introduction The bigheaded ant (BHA), Pheidole megacephala (Fabri- cius), is a very successful invasive species that is sometimes considered a danger to native ants and has been nominated as among 100 of the “World’s Worst” invaders (Hoffman 2006). The BHA has been a pest in southern Florida for many years, and according to reports by pest control operators, has become the most pervasive nuisance as it has replaced other ants such as the red imported fire ant (RIFA), Solenopsis invicta Buren, and the white-footed ant Tech- nomyrmex difficilis (Fr. Smith) in most areas. It is possible that the increase in BHA infestations was augmented by several years of excessive hurricane activity (2003 to 2005) Figure 1. Bigheaded ant, Pheidole megacephala (Fabricius), foraging tubes on a palm tree. Arrows indicate two of the foraging tubes. in Florida that damaged lawns and killed trees, which Credits: R. H. Scheffrahn, UF/IFAS necessitated the use of increased amounts of sod and other The BHA, a soil-nesting ant, is sometimes confused with replacement vegetation that may have been infested with subterranean termites because it may create debris-covered this ant (Warner, unpublished observation). In addition, it foraging tubes that are somewhat similar, albeit much more is thought that the BHA usually out-competes most other fragile, than termite tubes. More often these ants leave piles established ants, thereby dominating new areas. The BHA of loose sandy soil. Homeowners are annoyed by these “dirt does not sting or cause any structural damage and usually piles” and by ants foraging in bathrooms and kitchens and does not bite unless the nest is disturbed, and even then, around doors and windows, as well as on exterior paved or the bite is not painful.
    [Show full text]
  • Sending Pest-Free Products to California
    Sending Pest-Free Products to California Maui Flower Growers’ Association Hana, Maui, Hawaii November 3,2012 Arnold H. Hara University of Hawaii at Manoa College of Tropical Agriculture & Human Resources 875 Komohana St. Hilo, Hawaii E-mail: [email protected] Website: http://www.ctahr.hawaii.edu/haraa/index.asp Topics to Be Covered • Basic Entomology – Why so many invasive pests? What is an insect? – Major types of development – Types of mouthparts • California and Hawaii Quarantine Regulations • Recent Rejections of Hawaiian Shipments • Major Quarantine Pests and Control Strategies – Armored Scales - Mealybugs – Ants - Whiteflies • Systems Approach to Assure Pest-Free Shipments • Field Control Tactics • Postharvest Disinfestation Treatments What is an Insect? Head Thorax Abdomen 3 body 3 pairs of jointed 1 pair antennae 1 or 2 pairs of wings regions legs or feelers *Hard exoskeleton requiring molting for growth. *Open circulatory system (no blood vessels). *Highly adaptable to the environment (land, water, air). *Accounts for 90% of known animals w/ 10+ million species. Two Major Types of Insect Development I. Complete Metamorphosis II. Gradual Metamorphosis Complete Metamorphosis Beet armyworm Inside green onion Major Cause of Shipment Rejection Green Garden Looper Complete Metamorphosis Chewing mouthparts (caterpillars) Younger instars Older instar Pupa in silken cocoon Adult Insects with Complete Metamorphosis Butterflies, Moths Flies Bees and Wasps Beetles Gradual Metamorphosis Stink bug Insects with Gradual Metamorphosis Cockroaches, Grasshoppers, Crickets True Bugs (lacebugs, stinkbugs) Aphids, Mealybugs, Scales, Whiteflies Two Major Types of Mouthparts Chewing Mouthparts Sucking Mouthparts Mouthparts modified to function Mandibles are like teeth for like an hypodermic needle for chewing. sucking plant juices or blood.
    [Show full text]
  • Rose Atoll National Wildlife Refuge C/O National Park Service Rose Atoll Pago Pago, AS 96799 Phone: 684/633-7082 Ext
    U.S. Fish & Wildlife Service Draft Comprehensive Conservation and Environmental Plan Assessment Refuge Wildlife National Rose Atoll U.S. Department of the Interior U.S. Fish & Wildlife Service Rose Atoll National Wildlife Refuge c/o National Park Service Rose Atoll Pago Pago, AS 96799 Phone: 684/633-7082 ext. 15 National Wildlife Refuge Fax: 684/699-3986 Draft Comprehensive Conservation Plan and Environmental Assessment October 2012 Font Cover Photos Main: An array of seabirds find refuge at Rose Atoll USFWS Inset: Pisonia tree JE Maragos/USFWS Red-tailed tropic bird chick Greg Sanders/USFWS Tridacna maxima JE Maragos/USFWS Pink algae found on the coral throughout the Refuge gives Rose Atoll its name. USFWS October 2012 Refuge Vision Perched on an ancient volcano, reef corals, algae, and clams grow upwards thousands of feet on the foundation built by their ancestors over millions of years. Here, Rose Atoll National Wildlife Refuge glows pink in the azure sea. This diminutive atoll shelters a profusion of tropical life. Encircled by a rose-colored coralline algal reef, the lagoon teems with brilliant fish and fluted giant clams with hues of electric blue, gold, and dark teal. Sea turtles gracefully ply the waters and find safe haven lumbering ashore to lay eggs that perpetuate their ancient species. On land, stately Pisonia trees form a dim green cathedral where sooty tern calls echo as they fly beneath the canopy. Their calls join the cackling of the red-footed boobies, whinnying of the frigate birds, and moaning of the wedge-tailed shearwaters. Inspired by their living history at the atoll, tamaiti perpetuate Fa’a Samoa through an understanding and shared stewardship of their natural world.
    [Show full text]
  • Defense, Regulation, and Evolution Li Tian University of Kentucky, [email protected]
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 3-5-2014 The oldieS rs in Societies: Defense, Regulation, and Evolution Li Tian University of Kentucky, [email protected] Xuguo Zhou University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons Repository Citation Tian, Li and Zhou, Xuguo, "The oS ldiers in Societies: Defense, Regulation, and Evolution" (2014). Entomology Faculty Publications. 70. https://uknowledge.uky.edu/entomology_facpub/70 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. The Soldiers in Societies: Defense, Regulation, and Evolution Notes/Citation Information Published in International Journal of Biological Sciences, v. 10, no. 3, p. 296-308. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Digital Object Identifier (DOI) http://dx.doi.org/10.7150/ijbs.6847 This article is available at UKnowledge: https://uknowledge.uky.edu/entomology_facpub/70 Int. J. Biol. Sci. 2014, Vol. 10 296 Ivyspring International Publisher International Journal of Biological Sciences 2014; 10(3):296-308. doi: 10.7150/ijbs.6847 Review The Soldiers in Societies: Defense, Regulation, and Evolution Li Tian and Xuguo Zhou Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.
    [Show full text]
  • Ecology of Some Lesser-Studied Introduced Ant Species in Hawaiian Forests
    Ecology of some lesser-studied introduced ant species in Hawaiian forests Paul D. Krushelnycky Journal of Insect Conservation An international journal devoted to the conservation of insects and related invertebrates ISSN 1366-638X J Insect Conserv DOI 10.1007/s10841-015-9789-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing Switzerland. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Insect Conserv DOI 10.1007/s10841-015-9789-y ORIGINAL PAPER Ecology of some lesser-studied introduced ant species in Hawaiian forests Paul D. Krushelnycky1 Received: 18 May 2015 / Accepted: 11 July 2015 Ó Springer International Publishing Switzerland 2015 Abstract Invasive ants can have strong ecological effects suggest that higher densities of these introduced ant species on native arthropods, but most information on this topic could result in similar interactions with arthropods as those comes from studies of a handful of ant species. The eco- of the better-studied invasive ant species.
    [Show full text]