Coastal Brown Ant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
For Control of the Big-Headed Ant, Pheidole Megacephala (Fabricius)1
Vol. XIII, No. 1, April 1979 119 Laboratory Tests with Candidate Insecticides for Control of the Big-Headed Ant, Pheidole megacephala (Fabricius)1 F.L. McEwen, J.W. Beardsley, Jr. M. Hapai and T.H. Su DEPARTMENT OF ENTOMOLOGY, COLLEGE OF TROPICAL AGRICULTURE UNIVERSITY OF HAWAII, HONOLULU, HAWAII The big-headed ant, Pheidole megacephala (Fabr.) is the dominant ant species in pineapple fields in Hawaii (Phillips, 1934). Its main importance is the role it plays in nursing mealybugs; in particular the gray mealybug, Dysmicoccus neobrevipes Beardsley, the principal vector of mealybug wilt to pineapple. According to Carter (1967) the ant is essential to the well-being of the mealybug in that it ''fights off predators and parasites, cleans up the masses of honey dew secreted by the mealybugs and eats dead and dying members of the colony." Carter (1967) pointed out further that the ants move mealybugs from one plant to another and that in the absence of ants, "mealybug infestations either die out or are very small in num bers." Prior to 1945, ant control in pineapple plantations was difficult to achieve, the only methods available being the use of ant fences and long intercycles between plantings. Mealybugs were abundant and pineapple wilt a serious factor in produc tion. When DDT became available it was found that this insecticide provided con trol of the big-headed ant and the practice was adopted of using a broadcast spray of 4 lbs. active per acre as soon as possible after the pineapples were planted followed by three more applications of 2 lbs. -
Big-Headed Ant (361) Relates To: Ants
Pacific Pests, Pathogens & Weeds - Fact Sheets https://apps.lucidcentral.org/ppp/ Big-headed ant (361) Relates to: Ants Photo 1. Side view of 'major' worker, big-headed ant, Photo 2. Front view, head of 'major' worker, big- Pheidole megacephala. headed ant, Pheidole megacephala. Photo 3. Front view, head of 'minor' worker, big- headed ant, Pheidole megacephala. Common Name Big-headed ant, African big-headed ant, coastal brown ant. Scientific Name Pheidole megacephala Distribution Worldwide. Asia, Africa, North, South, and Central America, the Caribbean, Europe, Oceania. it is recorded from Australia, Cook Islands, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, New Caledonia, New Zealand, Niue, Northern Mariana Islands, Palau, Papua New Guinea, Samoa, Solomon Islands, Tokelau, Tonga, Vanuatu, Wallis and Futuna Islands. Hosts Nests of Pheidole megacephala are found under rotten logs, stones, tree bark and within leaf litter. More occasionally, nests occur in wall cavities and ceilings, and the ants forage in kitchens and bathrooms. Symptoms & Life Cycle Pheidole megacephala is one of the world's most invasive ant species. Direct damage occurs when seeds are taken as food, affecting agriculture, and home invasions result in chewed electrical and telephone cables. Indirect damage results from the ants' association with aphids, mealybugs, scale insects and whiteflies. They feed on the honeydew from these pests and protect them from their natural enemies and, consequently, pest populations increase to damaging levels. Furthermore, the honeydew excreted by these insects is colonised by sooty moulds turning leave black and blocking photosynthesis. Big-headed ants prefer disturbed habitats, agricultural and urban areas in tropical and subtropical countries, but they also invade rainforests. -
The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance. -
Population Dynamics of Coccus Viridis, a Ubiquitous Ant-Tended Agricultural Pest, Assessed by a New Photographic Method
Bulletin of Insectology 62 (2): 183-189, 2009 ISSN 1721-8861 Population dynamics of Coccus viridis, a ubiquitous ant-tended agricultural pest, assessed by a new photographic method 1 1 2 Shalene JHA , John H. VANDERMEER , Ivette PERFECTO 1Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA 2School of Natural Resources and the Environment, University of Michigan, Ann Arbor, USA Abstract Ant and homopteran mutualisms are complex because they depend on the behavior, abundance, and predation levels of both insect species. Because homopteran populations are critically impacted by these seasonally varying factors, it is important to measure the population dynamics of ant-tended homopterans outside of the laboratory. In this study, we develop a new method for docu- menting the population dynamics of sessile ant-tended homopterans in the field, using digital photography. We monitored the population dynamics of Coccus viridis (Green) (Hemiptera Coccidae), the green coffee scale, over a two year period, with and without the protection of the ant, Azteca instabilis (Smith) (Hymenoptera Formicidae). Our results reveal that C. viridis birth is episodic over the course of a single day, and that long term population dynamics depend critically on seasonality. We found that parasitization, chewing insect predation, and fungal infection are distinctive between C. viridis life-stages and that all three are critical factors governing C. viridis population growth and survivorship. Key words: scale, insect, coffee, Mexico, natural enemies. Introduction namics in their estimation. Scale insects, phloem- feeding homopterans that are only mobile during their Habitat selection is an essential task for all organisms; it first life-stage, are especially dependent on site-specific mediates the availability of food, mates, nesting sites resource availability and predator protection for sus- and refugia from natural enemies. -
A Thesis Entitled Influence of Soil-Quality on Coffee-Plant Quality
A Thesis entitled Influence of Soil-Quality on Coffee-Plant Quality and a Complex Tropical Insect Food Web by David J. Gonthier Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science in Biology (Ecology track) Dr. Stacy Philpott, Committee Chair Dr. Scott Heckathorn, Committee Member Dr. Ivette Perfecto, Committee Member Dr. Patricia Komuniecki, Dean College of Graduate Studies The University of Toledo May 2010 Copyright 2010, David J. Gonthier This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Influence of Soil-Quality on Coffee-Plant Quality and a Complex Tropical Insect Food Web by David J. Gonthier Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science in Biology (Ecology track) The University of Toledo May 2010 Tropical systems are complex, species diverse, and are often regulated by top-down forces (higher trophic levels control lower trophic levels). In many ecosystems insects, especially herbivores and their mutualists, may be strongly affected by plant quality and other bottom-up controls (nutrient availability, plant genetic variation, ect.). Yet few have asked how plant quality (nutritional and defensive plant traits) can contribute to the population regulation and the complexity of these systems. In this thesis, I investigate the importance of soil-quality to both the elemental and secondary metabolite content in coffee and ask how changes to plant quality can influence hemipteran herbivores, their ant-mutualists, predators, and insect communities in a tropical coffee agroecosystem. -
United States Department of Agriculture BUREAU of ENTOMOLOGY and Plat QUARANTIN!
Bur. Ent. & P. Q. Issued June 1944 United States Department of Agriculture BUREAU OF ENTOMOLOGY AND PLAt QUARANTIN! SERVICE AND REGULATORY ANNOUNCEMENTS LIST OF INTERCEPTED PLANT PESTS, 1943 (List of Pests Recorded During the Period July 1, 1942, to June 30, 1943, Inclusive, as Intercepted in, on, or with Plants anid-Plant Products Entering United States Territory.) INTRODUCTION This report covers the thirtieth year for which lsts of pest interceptions have been issued. During the first year, the fiscal year 1914, a total of 1,456 inter- ceptions were recorded. The highest number in any list is 81,592 for the fiscal year 1940. Interceptions for the thirty-year period total more than 600,000. The records summarized in this report include pests intercepted in, on, or with plants and plant products (1) imported, (2) offered for but refused entry, (3) held as ships' stores, etc., and hence not imported through customs, (4) offered for entry for immediate export or for immediate transportation and exportation in bond, and (5) in domestic shipments between Hawaii and Puerto Rico and the mainland. Determinations of collections made near the close of the preceding year are included with data for the current year. In addition to routine reports and determinations by the personnel of this Bureau, considerable information is supplied by State and customs officials. Staffs of specialists maintained by the States of California and Florida and the Territory of Hawaii determine most of the interceptions made there, and specialists of the Bureau of Plant Industry determine a large part of the more difficult plant-disease material. -
Farmnote 16/2005 : Green Coffee Scale Coccus Viridis
No. 16/2005 Green coffee scale Coccus viridis (Green) [Hemiptera: Coccidae] By Marc Poole, Research Officer, Entomology, Department of Agriculture, South Perth Background Green coffee scale, which has recently established in Western Australia, is considered to be an important pest of citrus and other fruit production. Green coffee scale belongs to the Hemiptera (sap- sucking bugs) order of insects and it is a member of the soft scale family, Coccidae. As green coffee scale is considered endemic to Western Australia, there is no need to report sightings of it to the Department of Agriculture. Potential impact Green coffee scale can be an important pest of citrus and other fruit in coastal and sub-coastal areas of Queensland. Although similar to the soft scale species already present in Western Australia, green coffee scale has two attributes which may favour an increased impact of it in the State. These include parthenogenic reproduction (males are not required for reproduction) and unlike most scale species, the adult is Figure 1. Adult green coffee scale surrounded by nymphs. Note the mobile. characteristic visible ‘U’- shaped gut, eyespot and legs of the adult scale. Photo: Sonya Broughton Current and potential distribution Identification Green coffee scale is present in Queensland, New South The adult scales are small insects (Figure 1), about Wales and the Northern Territory. The scale’s range 3 to 4 mm in length, which can be seen by the naked extends from the coastal and sub-coastal areas of Far eye. Unlike most other soft scale species, the green North Queensland to northern New South Wales. -
Bigheaded Ant, Pheidole Megacephala (Fabricius) (Insecta: Hymenoptera: Formicidae: Myrmicinae)1 John Warner and Rudolf H
EENY-369 Bigheaded Ant, Pheidole megacephala (Fabricius) (Insecta: Hymenoptera: Formicidae: Myrmicinae)1 John Warner and Rudolf H. Scheffrahn2 Introduction The bigheaded ant (BHA), Pheidole megacephala (Fabri- cius), is a very successful invasive species that is sometimes considered a danger to native ants and has been nominated as among 100 of the “World’s Worst” invaders (Hoffman 2006). The BHA has been a pest in southern Florida for many years, and according to reports by pest control operators, has become the most pervasive nuisance as it has replaced other ants such as the red imported fire ant (RIFA), Solenopsis invicta Buren, and the white-footed ant Tech- nomyrmex difficilis (Fr. Smith) in most areas. It is possible that the increase in BHA infestations was augmented by several years of excessive hurricane activity (2003 to 2005) Figure 1. Bigheaded ant, Pheidole megacephala (Fabricius), foraging tubes on a palm tree. Arrows indicate two of the foraging tubes. in Florida that damaged lawns and killed trees, which Credits: R. H. Scheffrahn, UF/IFAS necessitated the use of increased amounts of sod and other The BHA, a soil-nesting ant, is sometimes confused with replacement vegetation that may have been infested with subterranean termites because it may create debris-covered this ant (Warner, unpublished observation). In addition, it foraging tubes that are somewhat similar, albeit much more is thought that the BHA usually out-competes most other fragile, than termite tubes. More often these ants leave piles established ants, thereby dominating new areas. The BHA of loose sandy soil. Homeowners are annoyed by these “dirt does not sting or cause any structural damage and usually piles” and by ants foraging in bathrooms and kitchens and does not bite unless the nest is disturbed, and even then, around doors and windows, as well as on exterior paved or the bite is not painful. -
Sending Pest-Free Products to California
Sending Pest-Free Products to California Maui Flower Growers’ Association Hana, Maui, Hawaii November 3,2012 Arnold H. Hara University of Hawaii at Manoa College of Tropical Agriculture & Human Resources 875 Komohana St. Hilo, Hawaii E-mail: [email protected] Website: http://www.ctahr.hawaii.edu/haraa/index.asp Topics to Be Covered • Basic Entomology – Why so many invasive pests? What is an insect? – Major types of development – Types of mouthparts • California and Hawaii Quarantine Regulations • Recent Rejections of Hawaiian Shipments • Major Quarantine Pests and Control Strategies – Armored Scales - Mealybugs – Ants - Whiteflies • Systems Approach to Assure Pest-Free Shipments • Field Control Tactics • Postharvest Disinfestation Treatments What is an Insect? Head Thorax Abdomen 3 body 3 pairs of jointed 1 pair antennae 1 or 2 pairs of wings regions legs or feelers *Hard exoskeleton requiring molting for growth. *Open circulatory system (no blood vessels). *Highly adaptable to the environment (land, water, air). *Accounts for 90% of known animals w/ 10+ million species. Two Major Types of Insect Development I. Complete Metamorphosis II. Gradual Metamorphosis Complete Metamorphosis Beet armyworm Inside green onion Major Cause of Shipment Rejection Green Garden Looper Complete Metamorphosis Chewing mouthparts (caterpillars) Younger instars Older instar Pupa in silken cocoon Adult Insects with Complete Metamorphosis Butterflies, Moths Flies Bees and Wasps Beetles Gradual Metamorphosis Stink bug Insects with Gradual Metamorphosis Cockroaches, Grasshoppers, Crickets True Bugs (lacebugs, stinkbugs) Aphids, Mealybugs, Scales, Whiteflies Two Major Types of Mouthparts Chewing Mouthparts Sucking Mouthparts Mouthparts modified to function Mandibles are like teeth for like an hypodermic needle for chewing. sucking plant juices or blood. -
Rose Atoll National Wildlife Refuge C/O National Park Service Rose Atoll Pago Pago, AS 96799 Phone: 684/633-7082 Ext
U.S. Fish & Wildlife Service Draft Comprehensive Conservation and Environmental Plan Assessment Refuge Wildlife National Rose Atoll U.S. Department of the Interior U.S. Fish & Wildlife Service Rose Atoll National Wildlife Refuge c/o National Park Service Rose Atoll Pago Pago, AS 96799 Phone: 684/633-7082 ext. 15 National Wildlife Refuge Fax: 684/699-3986 Draft Comprehensive Conservation Plan and Environmental Assessment October 2012 Font Cover Photos Main: An array of seabirds find refuge at Rose Atoll USFWS Inset: Pisonia tree JE Maragos/USFWS Red-tailed tropic bird chick Greg Sanders/USFWS Tridacna maxima JE Maragos/USFWS Pink algae found on the coral throughout the Refuge gives Rose Atoll its name. USFWS October 2012 Refuge Vision Perched on an ancient volcano, reef corals, algae, and clams grow upwards thousands of feet on the foundation built by their ancestors over millions of years. Here, Rose Atoll National Wildlife Refuge glows pink in the azure sea. This diminutive atoll shelters a profusion of tropical life. Encircled by a rose-colored coralline algal reef, the lagoon teems with brilliant fish and fluted giant clams with hues of electric blue, gold, and dark teal. Sea turtles gracefully ply the waters and find safe haven lumbering ashore to lay eggs that perpetuate their ancient species. On land, stately Pisonia trees form a dim green cathedral where sooty tern calls echo as they fly beneath the canopy. Their calls join the cackling of the red-footed boobies, whinnying of the frigate birds, and moaning of the wedge-tailed shearwaters. Inspired by their living history at the atoll, tamaiti perpetuate Fa’a Samoa through an understanding and shared stewardship of their natural world. -
Defense, Regulation, and Evolution Li Tian University of Kentucky, [email protected]
University of Kentucky UKnowledge Entomology Faculty Publications Entomology 3-5-2014 The oldieS rs in Societies: Defense, Regulation, and Evolution Li Tian University of Kentucky, [email protected] Xuguo Zhou University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons Repository Citation Tian, Li and Zhou, Xuguo, "The oS ldiers in Societies: Defense, Regulation, and Evolution" (2014). Entomology Faculty Publications. 70. https://uknowledge.uky.edu/entomology_facpub/70 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. The Soldiers in Societies: Defense, Regulation, and Evolution Notes/Citation Information Published in International Journal of Biological Sciences, v. 10, no. 3, p. 296-308. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Digital Object Identifier (DOI) http://dx.doi.org/10.7150/ijbs.6847 This article is available at UKnowledge: https://uknowledge.uky.edu/entomology_facpub/70 Int. J. Biol. Sci. 2014, Vol. 10 296 Ivyspring International Publisher International Journal of Biological Sciences 2014; 10(3):296-308. doi: 10.7150/ijbs.6847 Review The Soldiers in Societies: Defense, Regulation, and Evolution Li Tian and Xuguo Zhou Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA. -
Ecology of Some Lesser-Studied Introduced Ant Species in Hawaiian Forests
Ecology of some lesser-studied introduced ant species in Hawaiian forests Paul D. Krushelnycky Journal of Insect Conservation An international journal devoted to the conservation of insects and related invertebrates ISSN 1366-638X J Insect Conserv DOI 10.1007/s10841-015-9789-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing Switzerland. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Insect Conserv DOI 10.1007/s10841-015-9789-y ORIGINAL PAPER Ecology of some lesser-studied introduced ant species in Hawaiian forests Paul D. Krushelnycky1 Received: 18 May 2015 / Accepted: 11 July 2015 Ó Springer International Publishing Switzerland 2015 Abstract Invasive ants can have strong ecological effects suggest that higher densities of these introduced ant species on native arthropods, but most information on this topic could result in similar interactions with arthropods as those comes from studies of a handful of ant species. The eco- of the better-studied invasive ant species.