CORROSION PROTECTION PROVIDED by TRIVALENT CHROMIUM PROCESS CONVERSION COATINGS on ALUMINUM ALLOYS By

Total Page:16

File Type:pdf, Size:1020Kb

CORROSION PROTECTION PROVIDED by TRIVALENT CHROMIUM PROCESS CONVERSION COATINGS on ALUMINUM ALLOYS By CORROSION PROTECTION PROVIDED BY TRIVALENT CHROMIUM PROCESS CONVERSION COATINGS ON ALUMINUM ALLOYS By Liangliang Li A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Chemical Engineering – Doctor of Philosophy 2013 ABSTRACT CORROSION PROTECTION PROVIDED BY TRIVALENT CHROMIUM PROCESS CONVERSION COATINGS ON ALUMINUM ALLOYS By Liangliang Li High strength aluminum alloys are widely used in aviation and aerospace industries because of their desirable strength/weight ratio that results from the alloy addition ( e.g. , Cu, Fe etc ). However, this alloy addition causes pitting corrosion of the aluminum surrounding those intermetallic inclusions. One efficient way to inhibit the corrosion is through the protective coating system that contains the topcoat, primer, and conversion coating. The conversion coating is in direct contact with the alloy surface and is expected to provide both good corrosion protection and adhesion. The chromate conversion coating (CCC) has been widely used in aviation/aerospace industry and provides excellent active corrosion protection and adhesion to aluminum alloys. Unfortunately, the Cr(VI) is toxic and chromate is a carcinogen. Therefore, a trivalent chromium process (TCP) coating was developed as a drop-in replacement of CCC. This dissertation focuses on a fundamental understanding of the formation mechanism, chemical structure, and basic electrochemical properties of the TCP coating on three high strength aluminum alloys: AA2024-T3, AA6061-T6, and AA7075- T6. The formation of the TCP coating is driven by an increase in the interfacial pH. The coating is about 50-100 nm thick and has a biphasic structure consisting of a 3- ZrO 2/Cr(OH) 3 top layer and an AlF 6 /Al(OH) 3 interfacial layer. The coating contains hydrated channels and or defects. The TCP coating provides good corrosion protection to all three aluminum alloys evidenced by e.g. , increased Rp, decreased icorr , and higher Epit for the coated alloys than uncoated samples. However, the protection by TCP is increased for AA2024-T3 < AA7075-T6 < AA6061-T6. The protection mechanisms include (i) reducing oxygen reduction kinetics, (ii) partially blocking the mass transfer of dissolved O 2 and ions to the metal, and (iii) insulating the electron transfer through the non-conductive oxide layer. The TCP coating (Cr(III)/Zr-based) provides better corrosion protection compared to other non-Cr alternatives of CCC, e.g. , Ti/Zr- and Zn/Zr-based conversion coatings, Another significant finding of this work is that the TCP coating provides some 2- active corrosion protection by transiently forming Cr(VI) species ( e.g. , CrO 4 ). The formation involves two steps: (i) O2 diffuses through the defects to the Cu-rich intermetallic sites where it is reduced to H 2O2; (ii) H2O2 oxidizes nearby Cr(III) to Cr(VI). The insights gained from this fundamental study provide information to improve the corrosion protection provided by TCP. For example, the coating contains defects through which dissolved O 2 and ions can still diffuse to the underlying metal. Therefore, its corrosion protection can be improved by (i) compressing the coating structure and (ii) reducing the alloy sites where defects form. The former is achieved by optimizing the curing temperature and time and the corrosion resistance is increased by ~4×; the latter is through optimization of the deoxidation/desmutting time and solution and the corrosion protection property is improved by ~5×. ACKNOWLEDGEMENTS My success in graduate school was made possible by the combined effort of a number of people. I would like to first thank my advisor, Dr. Greg Swain. He continually and convincingly conveyed a spirit of adventure in regard to research and an excitement as to teaching. He provided me with a research environment that encouraged me to solve scientific problems. His understanding and patience supported me through my research. I have been awarded the Dissertation Completion Fellowship, which would have been impossible without his advising and mentoring. I enjoyed working with him and am sincerely grateful for him and his guidance. I would also like to thank my committee professors, Dr. Scott Barton, Dr. Lawrence Drzal, and Dr. Andre Lee. They provided professional guidance and generous advice. I also thank several other great professors, Dr. Gerald Frankel and Dr. Rudy Buchheit from The Ohio State University (OSU), Dr. Mark Orazem from University of Florida, Dr. Wei Lai from Michigan State University (MSU) for their generous advice, persistent encouragement, and insightful comments. I would also like to take this opportunity to thank Dr. Robert Ofoli who was my first advisor in graduate school. Without his understanding and support during my transferring group, I could not get the chance to work in my interested research fields. My sincere thanks also go to my past and current group members for their sharing information and experiences. Dr. Doo Young Kim and Dr. Matthew Fhaner encouraged and helped train me to become the scientist I am today. I would also send iv thanks to David Woodbury, Brandon Whitman, Dr. Xingyi Yang, Marion France, LeighAnn Tomaswick, Yan Zhu, Chen Qiu and Catharine Munson along with all other Swain Group member. I would like to thank my friends I made during my graduate school. I cannot gain the success without their support, understanding, and help. I thank Xinting Lin, Huang Wu, Ruiguo Yang, Yan Li, Pitichon Klomjit (OSU), Zhicao Feng (OSU), Chao Cheng, and Heyi Hu for their academic and personal help. I thank Dr. Stanley Flegler, Carol Flegler, Abigail Tirrell, and Per Askeland for their technical support. Finally, I would like to thank my family, especially my parents for their support and understanding when I had to decline family functions for work reasons. I cannot achieve so much without their encouragement and motivation. v TABLE OF CONTENTS LIST OF TABLES ........................................................................................................... x LIST OF FIGURES........................................................................................................ xii CHAPTER 1. INTRODUCTION AND BACKGROUND ................................................... 1 1.1 Aluminum Alloys ............................................................................................... 1 1.1.1 Designation system, chemical compositions, and mechanical properties .. 1 1.1.2 Applications ............................................................................................... 3 1.2 Corrosion and Corrosion Protection for Aluminum Alloys ................................. 4 1.2.1 Corrosion types .......................................................................................... 4 1.2.2 Corrosion protection methods .................................................................... 7 1.3 Chromate Conversion Coatings ...................................................................... 12 1.4 Non-Chromate Conversion Coatings .............................................................. 14 1.5 Metal Surface Pretreatment ............................................................................ 17 1.5.1 Cleaning/degreasing ................................................................................ 17 1.5.2 Etching ..................................................................................................... 17 1.5.3 Deoxidizing/desmutting ............................................................................ 18 1.6 Research Objective and Aims ......................................................................... 19 CHAPTER 2. EXPERIMENTAL SECTION ................................................................... 22 2.1 Reagents......................................................................................................... 22 2.2 Preparation of TCP-coated aluminum alloys ................................................... 23 2.3 Physical and Chemical Characterization ......................................................... 24 2.3.1 Raman Spectroscopy............................................................................... 24 2.3.2 X-ray Photoelectron Spectroscopy .......................................................... 24 2.3.3 Auger Depth Profiling ............................................................................... 25 2.3.4 Scanning Electron Microscopy / Energy-Dispersive X-ray Spectroscopy 25 2.3.5 Transmission Electron Microscopy .......................................................... 25 2.3.6 Atomic Force Microscopy ......................................................................... 26 2.3.7 Spectroscopic ellipsometry ...................................................................... 26 2.3.8 Contact angle measurement .................................................................... 27 2.4 Electrochemical Characterization .................................................................... 27 2.5 In situ pH Measurement .................................................................................. 36 2.5.1 Tungsten Microelectrode Preparation ...................................................... 36 2.5.2 OCP traces of the tungsten microelectrode in buffer solutions ................ 37 2.5.3 Calibration Curves of OCP vs. pH ........................................................... 38 2.6 Accelerated corrosion (degradation) tests ...................................................... 40 2.6.1 Full immersion test ..................................................................................
Recommended publications
  • Cathodic Protection of Concrete Bridges: a Manual of Practice
    SHRP-S-372 Cathodic Protection of Concrete Bridges: A Manual of Practice J. E. Bennett John J. Bartholomew ELTECH Research Corporation Fairport Harbor, Ohio James B. Bushman Bushman & Associates Medina, Ohio Kenneth C. Clear K. C. Clear, Inc. Boston, Virginia Robert N. Kamp Consulting Engineer Albany, New York Wayne J. Swiat Corrpro Companies, Inc. Medina, Ohio Strategic Highway Research Program National Research Council Washington, DC 1993 SHRP-S-372 ISBN 0-309-05750-7 Contract C-102D Product No. 2034 Program Manager: Don M. Harriott Project Manager: It. Martin (Marty) Laylor Consultant: John P. Broomfield Production Editor: Cara J. Tate Program Area Secretary: Carina S. Hreib December 1993 key words: bridges bridge maintenance bridge rehabilitation cathodic protection chlorides corrosion corrosion prevention corrosion rate CP electrochemical methods reinforced concrete Strategic Highway Research Program National Academy of Sciences 2101 Constitution Avenue N.W. Washington, DC 20418 (202) 334-3774 The publication of this report does not necessarily indicate approval or endorsement of the findings, opinions, conclusions, or recommendations either inferred or specifically expressed herein by the National Academy of Sciences, the United States Government, or the American Association of State Highway and Transportation Officials or its member states. © 1993 National A_zademy of Sciences I.SM/NAP/1293 Acknowledgments The research described herein was supported by the Strategic Highway Research Program (SHRP). SHRP is a unit of the National Research Council that was authorized by section 128 of the Surface Transportation and Uniform Relocation Assistance Act of 1987. This report is a compilation of work by ELTECH Research Corporation, Corrpro Companies, Inc., and Kenneth C.
    [Show full text]
  • Chromate Conversion Coating and Alternatives As Corrosion-Resistant Treatments for Metal Parts
    Chromate conversion coating and alternatives as corrosion-resistant treatments for metal parts Isaac Omari, Johanne Penafiel and J. Scott McIndoe* Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. Fax: +1 (250) 721-7147; Tel: +1 (250) 721-7181; E-mail: [email protected] Table of Contents Chromate conversion coating and alternatives as corrosion-resistant treatments for metal parts.......................................................................................................................................1 1.0 Introduction...................................................................................................................2 1.1 Disadvantages of hexavalent CCCs..........................................................................2 1.2 Hexavalent CCC alternatives.....................................................................................3 2.0 Experimental design......................................................................................................5 2.1 Chromate conversion process...................................................................................5 2.2 Chromic acid bath evaluation....................................................................................5 2.3 Corrosion test............................................................................................................6 2.4 Reduction of hexavalent chromium to trivalent chromium prior to disposal................6 2.5 Zinc plating procedure...............................................................................................7
    [Show full text]
  • Analysis of Alternatives
    ANALYSIS OF ALTERNATIVES Legal name of applicants: Henkel AG & Co. KGaA; Henkel Global Supply Chain B.V. Submitted by: Henkel AG & Co. KGaA. Substance: Dichromium tris(chromate), EC No: 246-356-2, CAS No: 24613-89-6 Use title: Use of Dichromium tris(chromate) for surface treatment of metals such as aluminium, steel, zinc, magnesium, titanium, alloys, composites, sealings of anodic films Use number: 2 Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES Disclaimer This document shall not be construed as expressly or implicitly granting a license or any rights to use related to any content or information contained therein. In no event shall applicant be liable in this respect for any damage arising out or in connection with access, use of any content or information contained therein despite the lack of approval to do so. ii Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES CONTENTS DECLARATION .......................................................................................................................................................... XV 1. SUMMARY 1 2. INTRODUCTION .................................................................................................................................................. 8 2.1. Substances ........................................................................................................................................ 8 2.2.
    [Show full text]
  • Galvanic Corrosion
    10 GALVANIC CORROSION X. G. ZHANG Teck Metals Ltd., Mississauga, Ontario, Canada A. Introduction graphite, are dispersed in a metal, or on a ship, where the B. Definition various components immersed in water are made of different C. Factors in galvanic corrosion metal alloys. In many cases, galvanic corrosion may result in D. Material factors quick deterioration of the metals but, in other cases, the D1. Effects of coupled materials galvanic corrosion of one metal may result in the corrosion D2. Effect of area protection of an attached metal, which is the basis of cathodic D3. Effect of surface condition protection by sacrificial anodes. E. Environmental factors Galvanic corrosion is an extensively investigated subject, E1. Effects of solution as shown in Table 10.1, and is qualitatively well understood E2. Atmospheric environments but, due to its highly complex nature, it has been difficult to E3. Natural waters deal with in a quantitative way until recently. The widespread F. Polarity reversal use of computers and the development of software have made G. Preventive measures great advances in understanding and predicting galvanic H. Beneficial effects of galvanic corrosion corrosion. I. Fundamental considerations I1. Electrode potential and Kirchhoff’s law I2. Analysis B. DEFINITION I3. Polarization and resistance I4. Potential and current distributions When two dissimilar conducting materials in electrical con- References tact with each other are exposed to an electrolyte, a current, called the galvanic current, flows from one to the other. Galvanic corrosion is that part of the corrosion that occurs at the anodic member of such a couple and is directly related to the galvanic current by Faraday’s law.
    [Show full text]
  • Introduction to Surface Engineering for Corrosion and Wear Resistance
    © 2001 ASM International. All Rights Reserved. www.asminternational.org Surface Engineering for Corrosion and Wear Resistance (#06835G) CHAPTER 1 Introduction to Surface Engineering for Corrosion and Wear Resistance SURFACE ENGINEERING is a multidisciplinary activity intended to tailor the properties of the surfaces of engineering components so that their function and serviceability can be improved. The ASM Handbook de- fines surface engineering as “treatment of the surface and near-surface regions of a material to allow the surface to perform functions that are distinct from those functions demanded from the bulk of the material” (Ref 1). The desired properties or characteristics of surface-engineered components include: • Improved corrosion resistance through barrier or sacrificial protection • Improved oxidation and/or sulfidation resistance • Improved wear resistance • Reduced frictional energy losses • Improved mechanical properties, for example, enhanced fatigue or toughness • Improved electronic or electrical properties • Improved thermal insulation • Improved aesthetic appearance As indicated in Table 1, these properties can be enhanced metallurgically, mechanically, chemically, or by adding a coating. The bulk of the material or substrate cannot be considered totally inde- pendent of the surface treatment. Most surface processes are not limited to the immediate region of the surface, but can involve the substrate by © 2001 ASM International. All Rights Reserved. www.asminternational.org Surface Engineering for Corrosion and Wear
    [Show full text]
  • Phosphate Conversion Coating Composition and Process
    Europa,schesP_ MM M II M Mill I M Ml M M M I II J European Patent Office ***** Att nt © Publication number: 0 610 421 B1 Office europeen- desj brevets^ . © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 27.12.95 © Int. CI.6: C23C 22/36, C23C 22/44 © Application number: 92924113.1 @ Date of filing: 28.10.92 © International application number: PCT/US92/08982 © International publication number: WO 93/09266 (13.05.93 93/12) &) PHOSPHATE CONVERSION COATING COMPOSITION AND PROCESS ® Priority: 01.11.91 US 786694 (73) Proprietor: HENKEL CORPORATION 140 Germantown Avenue, @ Date of publication of application: Suite 150 17.08.94 Bulletin 94/33 Plymouth Meeting, PA 19462 (US) © Publication of the grant of the patent: @ Inventor: BOULOS, Mervet Saleh 27.12.95 Bulletin 95/52 4395 Stonehenge Court Troy, Ml 48098 (US) © Designated Contracting States: AT BE DE DK ES FR GB IT NL SE © Representative: Jonsson, Hans-Peter, Dr. et al References cited: Patentanwalte EP-A- 0 015 020 EP-A- 0 287 133 von Krelsler Seltlng Werner, EP-A- 0 361 375 EP-A- 0 448 130 Bahnhofsvorplatz 1 (Delchmannhaus) EP-A- 0 454 361 FR-A- 2 347 459 D-50667 Koln (DE) 00 CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art.
    [Show full text]
  • Introduction Engineering 360.826.4570 Nwcorrosion.Com Jeremy Hailey, P.E
    Jeremy Hailey Northwest Corrosion Introduction Engineering 360.826.4570 nwcorrosion.com Jeremy Hailey, P.E. • Corrosion Engineer with 16 years experience • Started NW Corrosion Engineering 10 years ago • Focus on corrosion control system designs, troubleshooting, and some installation work • Conduct training seminars and classes for Steel Tank Institute, National Association of Corrosion Engineers, and the American Water Works Ass’n. • NACE Certified Corrosion Specialist, Cathodic Protection Specialist, and Certified Coating Inspector Jeremy Hailey Northwest Corrosion Topics of Discussion Engineering 360.826.4570 nwcorrosion.com 1. Corrosion Theory 2. Methods of Corrosion Control 3. Corrosion Protection Criteria 4. Considerations for Design of Corrosion Control Systems Jeremy Hailey Northwest Corrosion Corrosion Theory Engineering 360.826.4570 nwcorrosion.com All materials have various physical properties – Color, hardness, ductility, shear strength, ability to conduct heat, melting point, electrical potential….. Corrosion in metal occurs because of an electrical imbalance, or electrical potential difference. Much like when two beakers of water, each at a different temperature, are poured together the resulting temperature will be somewhere between the two starting temperatures. Jeremy Hailey Northwest Corrosion Requirements of a Corrosion Cell Engineering 360.826.4570 nwcorrosion.com For corrosion to occur, four individual items must be present: 1. Anode – The place where corrosion occurs; the more electronegative site 2. Cathode
    [Show full text]
  • Surface Finishing Treatments
    Tel.: 1-800-479-0056 Fax: 1-888-411-2841 www.aspenfasteners.com [email protected] Surface finishing treatments Surface finishing treatments can have a significant impact on the properties of fasteners, making them more suitable for specific applications. Most typically finishes are applied to improve durability (wear resistance and corrosion resistance) and/or for decorative purposes. Fasteners that are to be used in conditions where they are exposed to high physical stress levels, corrosive elements, or extreme temperatures may benefit greatly from plating/coating. Anodizing An electrolytic passivation process that forms a thin, transparent oxide layer that protects the metal substrate. Anodizing modifies the surface of the metal to produce a decorative, durable, corrosion and wear resistant finish. Unlike plating or painting, the oxide finish becomes integrated with the metallic substrate, so it cannot chip or peel and minimally alters the dimensional aspects of the part. The physical properties of this oxide layer also provides excellent adhesion for secondary processes like colouring and sealing. The term "anodizing" reflects the process whereby the metal part to be finished forms the anode of an electric circuit immersed in an electrolyte bath. The current in the circuit causes ionic oxygen to be released from the electrolyte and combine with the metallic substrate of the finished part. Black Oxide Black Oxide is a low cost conversion coating where oxidizing salts are used to react with the iron in steel alloys to form magnetite (Fe304), the black oxide of iron. The result is an attractive and durable matte black finish. While steel is the usual substrate, other materials including stainless steel, alloy, copper, brass, bronze, die cast zinc, and cast iron react equally well.
    [Show full text]
  • Formation Mechanism and Properties of Fluoride–Phosphate Conversion
    RSC Advances View Article Online PAPER View Journal | View Issue Formation mechanism and properties of fluoride– phosphate conversion coating on titanium alloy Cite this: RSC Adv.,2017,7,16078 Shuaixing Wang,*a Xiaohui Liu,a Liqiang Wang,b Qingjie Wen,b Nan Dua and Jianhang Huanga A uniform grey conversion coating with the thickness of 4–5 mm was prepared on titanium alloy by a fluoride–phosphate treatment. Scratch testing results indicated that the conversion coating greatly improved the adhesion strength of the paint coat to the titanium substrate. The growth mechanism of the conversion coating was analyzed comprehensively by E–t curve, SEM, EDS, XPS and XRD. In the conversion process, the titanium substrate was first dissolved (0–45 s), then Na3TiF6 nucleation occurred via a series of reactions (45–120 s), whereby the conversion coating grew steadily with the nucleation Received 23rd November 2016 and growth of Na TiF grains (120–600 s); after 600 s, the conversion coating reached dynamic Accepted 28th February 2017 3 6 equilibrium of growth/dissolution. In the drying process at 100 Æ 5 C, some Na3TiF6 grains reacted with DOI: 10.1039/c6ra27199e O2 to form Na3TiOF5. The components of the conversion coating were Na3TiF6,Na3TiOF5, a little TiO2, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. rsc.li/rsc-advances TiF4 and phosphate derivatives. 1. Introduction phytic acid (PA) treatment17 and Zr/Ti-based treatment18–20 may also be used for the pretreatment of titanium alloy. In general, Titanium and its alloys are increasingly
    [Show full text]
  • State of the Art Cathodic Protection Practices and Equipment State of the Art
    State of the Art Cathodic Protection Practices and Equipment State of the Art Definition: The level of development (as of a device, procedure, process, technique, or science) reached at any particular time usually as a result of modern methods Cathodic Protection 9 Type 9 Materials 9 Installation 9 Monitor / Survey Techniques Types of Cathodic Protection Sacrificial Anode ¾Small Current Requirement • Well Coated Structures • Isolated Structures ¾Low to Medium Soil Resistivity Types of Cathodic Protection Impressed Current ¾ Large Current Requirement • Poorly Coated Structures • Shorted Structures ¾ High Soil Resistivity Sacrificial Anodes Magnesium & Zinc Typical Sacrificial Anode Zinc Ribbon TYPICAL SACRIFICIAL ANODE INSTALLATION SINGLE ANODE MULTIPLE ANODE GRADE GRADE PIPE PIPE AT PIPE DEPTH TO 5' TYPICAL ANODE ANODE ANODE ANODE 10'-15' MIN 5' TO 15' ANODE FOR MAGNESIUM TYPICAL 5' MIN FOR ZINC 5' MIN Typical Sacrificial Anode Installation Typical Sacrificial Anode Installation Typical Sacrificial Anode Installation Ribbon Anode Impressed Current Rectifier ¾ Constant Voltage ¾ Constant Current ¾ Auto Potential ¾ Pulse ¾ Alternative Power ¾Solar ¾ Thermo Electric ¾ Wind ¾ Hydro Impressed Current Anode Graphite Impressed Current Anode High Silicon Cast Iron Impressed Current Anode Mixed Metal Oxide TYPICAL IMPRESSED CURRENT ANODE INSTALLATION DISTRUBUTED PIPE PIPE - RECTIFIER + ANODE ANODE ANODE ANODE ANODE ANODE TYPICAL IMPRESSED CURRENT ANODE INSTALLATION REMOTE RECTIFIER ANODES - + PIPE 200' TO 500' TYPICAL TYPICAL IMPRESSED CURR 50'
    [Show full text]
  • Cathodic Protection
    December 6, 2016 Bridge Preservation in Corrosive Environments Using Cathodic Protection Transportation Research Board Webinar Presenters: Atiq H. Alvi, PE T.Y. Lin International Ivan Lasa Florida Department of Transportation Ali Akbar Sohangpurwala Concorr, Inc. Statistics Cost of Corrosion Corrosion Comprehensive Study 2002 Corrosion Costs and Preventive Strategies in the United States” PUBLICATION NO. FHWA-RD-01-156 Corrosion Total Direct Cost of Corrosion in the U.S. $276 billion per year = 3.1% of GDP Corrosion Costs and Preventive Strategies in the United States” PUBLICATION NO. FHWA-RD-01-156 Corrosion • 587,964 Bridges • Average Age = 40 years • 40% are ate least 40 years or older • 14% Structurally Deficient w/ Corrosion as Primary Cause • Cost to maintain $5.8 billion per year • Cost to improve $10.6 billion • Cost of corrosion to bridges $8.29 billion (not including cost to traveling public) Corrosion Costs and Preventive Strategies in the United States” PUBLICATION NO. FHWA-RD-01-156 Overview of the Corrosion Process Corrosion Process Four Components Needed for Corrosion Process • Electrolyte • Anodic Reaction • Cathodic Reaction • Electrical Path Corrosion Process Metals Return to Nature • Natural Ores Combined with Oxygen, Sulfur, etc. • Smelting Process • Extracted Metallic Materials • Eventually Return to Natural Condition - Corrosion Corrosion Process Ores in Natural State Corrosion Process Smelting Process Corrosion Process Extracted Metallic Materials Corrosion Process Eventual Return to Natural Condition Corrosion
    [Show full text]
  • Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys
    ESA STM-276 February 2008 Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys A Comparison of Alodine 1200 with Chromium-Free Conversion Coatings A.M. Pereira, G. Pimenta Instituto de Soldadura e Oualidade (ISO), Oeiras, Portugal B.D. Dunn Product Assurance and Safety Department, ESA/ESTEC, The Netherlands 'uropean Spate Agenty Agenle spatiale europeenne 2 ESA STM-276 Publication: Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys (ESA STM-276, February 2008) Editor: K. Fletcher Published and distributed by: ESA Communication Production Office ESTEC, Noordwijk, The Netherlands Tel: +31 71 565-3408 Fax: +31 71 5655433 Printed in: The Netherlands Price: €20 ISBN: 978-92-9221-897-2 ISSN: 0379-4067 Copyright: (Q2008 European Space Agency ESA STM-276 3 Contents Introduction 5 1.1 Project Background and Objectives 5 1.2 State of the art 6 1.2.1 Commercially Available Chemical Conversion Coatings ... 6 1.2.2 Review of Published Papers 9 2 ExperimentalPhase ... 17 2.1 Materials, preparation of specimens, and treatments 17 2.2 Evaluation of the aluminium alloys samples 17 2.2.1 Surface roughness 17 2.2.2 Surface electrical resistivity 18 2.2.3 Thermal cycling tests 18 2.2.4 Salt spray tests ... ... 18 2.2.5 Scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS) 19 2.2.6 Chemical conversion coatings procedure 19 3 Results / Discussion... 21 3.1 Visual inspection 21 3.1.1 'As received' ... 21 3.1.2 'As produced' 21 3.1.3 After thermal cycling tests 21 3.1.4 After salt spray tests 21 3.1.5 After thermalcycling+ salt spraytests , 21 3.2 Surface roughness.
    [Show full text]