Surface Finishing Treatments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thread Galling: What Is It & How to Prevent It?
Thread Galling: What Is It & How to Prevent It? Thread galling is a The Culprits: Metal Fasteners common yet a This generally happens to metal fasteners seldom understood when their protective oxide layer is worn fastener problem away during the installation process due seen by engineers to the increased pressure and heat and fabricators. It between the contacting thread surfaces. occurs when With the absence of the oxide coating, pressure and friction cause bolt the raw metal threads contact each other threads to seize to the threads of a nut directly with no barrier, causing the the or tapped hole. The fasteners are not nut and bolt to “fuse” together. Prior to just overly tight but “cold/contact” use, you inspect all fasteners, yet after welded together. installation they still fail. So how do you prevent this? Galling Prevention Install Slowly and Correctly Slowing down the installation RPM speed can often reduce and even completely prevent galling issues. As the installation speed increases, so does friction – resulting in the heat production that can cause galling. Also, over-tightening can also increase friction and galling. Use Lubrication and Coatings When Possible Lubricating the internal and/or external threads reduces friction which is a primary element of galling. Always take into consideration the end use of the fasteners before selecting a lubricant. Applications where food or laboratory purity is a concern may make some lubricants unacceptable. In addition, the fastener installer must take into consideration changes in the torque-tension relationship due to the use of lubricants as over-tightening can also result in galling. -
Chromate Conversion Coating and Alternatives As Corrosion-Resistant Treatments for Metal Parts
Chromate conversion coating and alternatives as corrosion-resistant treatments for metal parts Isaac Omari, Johanne Penafiel and J. Scott McIndoe* Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. Fax: +1 (250) 721-7147; Tel: +1 (250) 721-7181; E-mail: [email protected] Table of Contents Chromate conversion coating and alternatives as corrosion-resistant treatments for metal parts.......................................................................................................................................1 1.0 Introduction...................................................................................................................2 1.1 Disadvantages of hexavalent CCCs..........................................................................2 1.2 Hexavalent CCC alternatives.....................................................................................3 2.0 Experimental design......................................................................................................5 2.1 Chromate conversion process...................................................................................5 2.2 Chromic acid bath evaluation....................................................................................5 2.3 Corrosion test............................................................................................................6 2.4 Reduction of hexavalent chromium to trivalent chromium prior to disposal................6 2.5 Zinc plating procedure...............................................................................................7 -
Evaluation of Anti-Corrosion and Anti-Galling Performance
EVALUATION OF ANTI-CORROSION AND ANTI-GALLING PERFORMANCE OF A NOVEL GREASE COMPOUND A Thesis by JOHN OLUMIDE REIS Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Hong Liang Committee Members, Chii-Der Suh Sevan Goenezan Head of Department, Andreas A. Polycarpou December 2017 Major Subject: Mechanical Engineering Copyright 2017 John Olumide Reis ABSTRACT In this research, the effectiveness of CeO2, Y2O3 and Al2O3 as anti-corrosion and anti-wear additives in commercial grease was investigated. An experimental approach was used to carry on the research. The weight loss of steel coupons protected with a layer of thin grease, with and without the anti-corrosion additives in a corrosive environment was determined. The Friction factor of the grease compound was also evaluated. The accelerated corrosion tests were performed in a salt spray chamber for an exposure time of 2 weeks (336 hours). The corrosive medium was 5 % wt. of Brine. By varying the weight compositions of the additives (1% wt. and 3% wt.), and comparing the corrosion rates with that of base grease, the effectiveness of various grease additives was evaluated. The result showed that corrosive losses of the test samples can be effectively reduced by adding relatively small amounts of CeO2, Y2O3 and Al2O3 to the base grease. Corroded surfaces were examined using the Optical microscope to clarify the corrosion mechanism. The friction test was carried out using a galling tester. The standard test procedure as specified in API RP 7A1 was followed. -
Introduction to Surface Engineering for Corrosion and Wear Resistance
© 2001 ASM International. All Rights Reserved. www.asminternational.org Surface Engineering for Corrosion and Wear Resistance (#06835G) CHAPTER 1 Introduction to Surface Engineering for Corrosion and Wear Resistance SURFACE ENGINEERING is a multidisciplinary activity intended to tailor the properties of the surfaces of engineering components so that their function and serviceability can be improved. The ASM Handbook de- fines surface engineering as “treatment of the surface and near-surface regions of a material to allow the surface to perform functions that are distinct from those functions demanded from the bulk of the material” (Ref 1). The desired properties or characteristics of surface-engineered components include: • Improved corrosion resistance through barrier or sacrificial protection • Improved oxidation and/or sulfidation resistance • Improved wear resistance • Reduced frictional energy losses • Improved mechanical properties, for example, enhanced fatigue or toughness • Improved electronic or electrical properties • Improved thermal insulation • Improved aesthetic appearance As indicated in Table 1, these properties can be enhanced metallurgically, mechanically, chemically, or by adding a coating. The bulk of the material or substrate cannot be considered totally inde- pendent of the surface treatment. Most surface processes are not limited to the immediate region of the surface, but can involve the substrate by © 2001 ASM International. All Rights Reserved. www.asminternational.org Surface Engineering for Corrosion and Wear -
Phosphate Conversion Coating Composition and Process
Europa,schesP_ MM M II M Mill I M Ml M M M I II J European Patent Office ***** Att nt © Publication number: 0 610 421 B1 Office europeen- desj brevets^ . © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 27.12.95 © Int. CI.6: C23C 22/36, C23C 22/44 © Application number: 92924113.1 @ Date of filing: 28.10.92 © International application number: PCT/US92/08982 © International publication number: WO 93/09266 (13.05.93 93/12) &) PHOSPHATE CONVERSION COATING COMPOSITION AND PROCESS ® Priority: 01.11.91 US 786694 (73) Proprietor: HENKEL CORPORATION 140 Germantown Avenue, @ Date of publication of application: Suite 150 17.08.94 Bulletin 94/33 Plymouth Meeting, PA 19462 (US) © Publication of the grant of the patent: @ Inventor: BOULOS, Mervet Saleh 27.12.95 Bulletin 95/52 4395 Stonehenge Court Troy, Ml 48098 (US) © Designated Contracting States: AT BE DE DK ES FR GB IT NL SE © Representative: Jonsson, Hans-Peter, Dr. et al References cited: Patentanwalte EP-A- 0 015 020 EP-A- 0 287 133 von Krelsler Seltlng Werner, EP-A- 0 361 375 EP-A- 0 448 130 Bahnhofsvorplatz 1 (Delchmannhaus) EP-A- 0 454 361 FR-A- 2 347 459 D-50667 Koln (DE) 00 CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. -
Formation Mechanism and Properties of Fluoride–Phosphate Conversion
RSC Advances View Article Online PAPER View Journal | View Issue Formation mechanism and properties of fluoride– phosphate conversion coating on titanium alloy Cite this: RSC Adv.,2017,7,16078 Shuaixing Wang,*a Xiaohui Liu,a Liqiang Wang,b Qingjie Wen,b Nan Dua and Jianhang Huanga A uniform grey conversion coating with the thickness of 4–5 mm was prepared on titanium alloy by a fluoride–phosphate treatment. Scratch testing results indicated that the conversion coating greatly improved the adhesion strength of the paint coat to the titanium substrate. The growth mechanism of the conversion coating was analyzed comprehensively by E–t curve, SEM, EDS, XPS and XRD. In the conversion process, the titanium substrate was first dissolved (0–45 s), then Na3TiF6 nucleation occurred via a series of reactions (45–120 s), whereby the conversion coating grew steadily with the nucleation Received 23rd November 2016 and growth of Na TiF grains (120–600 s); after 600 s, the conversion coating reached dynamic Accepted 28th February 2017 3 6 equilibrium of growth/dissolution. In the drying process at 100 Æ 5 C, some Na3TiF6 grains reacted with DOI: 10.1039/c6ra27199e O2 to form Na3TiOF5. The components of the conversion coating were Na3TiF6,Na3TiOF5, a little TiO2, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. rsc.li/rsc-advances TiF4 and phosphate derivatives. 1. Introduction phytic acid (PA) treatment17 and Zr/Ti-based treatment18–20 may also be used for the pretreatment of titanium alloy. In general, Titanium and its alloys are increasingly -
A Crystal Plasticity Assessment of Normally-Loaded Sliding Contact in Rough Surfaces and Galling
A Crystal Plasticity Assessment of Normally-loaded Sliding Contact in Rough Surfaces and Galling Bartosz Barzdajna,1,*, Anthony T. Paxtonb, David Stewartc, Fionn P.E. Dunnea aDepartment of Materials, Imperial College, London SW67 2AZ, UK bDepartment of Physics, King’s College London, London WC2R 2LS, UK cRolls-Royce plc, Raynesway, Derby DE21, UK 1Now at School of Materials, The University of Manchester, Manchester M13 9PL, UK Abstract An investigation of rough metal to metal contacting surfaces under normal load and undergoing sliding has been carried out with explicit representation of measured surface profiles within a crystal plasticity finite element formulation in which grain size, texture and slip properties are incorporated. A new metric called plastic reach has been introduced for contacting surfaces which reflects both the magnitude of the local surface asperity plasticity and its spatial reach. This quantity has been shown to obey a power law relationship with the applied normal load for sliding contact which in turn has been related to a hazard function. In this way, a new methodology to predict the galling frequency that follows a Weibull distribution has been established. Additionally, a quantitative definition of galling for the class of metal on metal contacting surfaces is considered. The predicted galling frequency distribution for a 316 stainless steel has been compared with independently experimentally measured galling frequencies showing qualitative agreement of the distributions. An assessment of confidence limits has also therefore been provided for the modelling methodology. Keywords: galling, rough surfaces, sliding contact, crystal plasticity * Corresponding author: [email protected] 1 1. Introduction This paper addresses the problem of galling of metallic materials. -
Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys
ESA STM-276 February 2008 Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys A Comparison of Alodine 1200 with Chromium-Free Conversion Coatings A.M. Pereira, G. Pimenta Instituto de Soldadura e Oualidade (ISO), Oeiras, Portugal B.D. Dunn Product Assurance and Safety Department, ESA/ESTEC, The Netherlands 'uropean Spate Agenty Agenle spatiale europeenne 2 ESA STM-276 Publication: Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys (ESA STM-276, February 2008) Editor: K. Fletcher Published and distributed by: ESA Communication Production Office ESTEC, Noordwijk, The Netherlands Tel: +31 71 565-3408 Fax: +31 71 5655433 Printed in: The Netherlands Price: €20 ISBN: 978-92-9221-897-2 ISSN: 0379-4067 Copyright: (Q2008 European Space Agency ESA STM-276 3 Contents Introduction 5 1.1 Project Background and Objectives 5 1.2 State of the art 6 1.2.1 Commercially Available Chemical Conversion Coatings ... 6 1.2.2 Review of Published Papers 9 2 ExperimentalPhase ... 17 2.1 Materials, preparation of specimens, and treatments 17 2.2 Evaluation of the aluminium alloys samples 17 2.2.1 Surface roughness 17 2.2.2 Surface electrical resistivity 18 2.2.3 Thermal cycling tests 18 2.2.4 Salt spray tests ... ... 18 2.2.5 Scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS) 19 2.2.6 Chemical conversion coatings procedure 19 3 Results / Discussion... 21 3.1 Visual inspection 21 3.1.1 'As received' ... 21 3.1.2 'As produced' 21 3.1.3 After thermal cycling tests 21 3.1.4 After salt spray tests 21 3.1.5 After thermalcycling+ salt spraytests , 21 3.2 Surface roughness. -
CORROSION PROTECTION PROVIDED by TRIVALENT CHROMIUM PROCESS CONVERSION COATINGS on ALUMINUM ALLOYS By
CORROSION PROTECTION PROVIDED BY TRIVALENT CHROMIUM PROCESS CONVERSION COATINGS ON ALUMINUM ALLOYS By Liangliang Li A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Chemical Engineering – Doctor of Philosophy 2013 ABSTRACT CORROSION PROTECTION PROVIDED BY TRIVALENT CHROMIUM PROCESS CONVERSION COATINGS ON ALUMINUM ALLOYS By Liangliang Li High strength aluminum alloys are widely used in aviation and aerospace industries because of their desirable strength/weight ratio that results from the alloy addition ( e.g. , Cu, Fe etc ). However, this alloy addition causes pitting corrosion of the aluminum surrounding those intermetallic inclusions. One efficient way to inhibit the corrosion is through the protective coating system that contains the topcoat, primer, and conversion coating. The conversion coating is in direct contact with the alloy surface and is expected to provide both good corrosion protection and adhesion. The chromate conversion coating (CCC) has been widely used in aviation/aerospace industry and provides excellent active corrosion protection and adhesion to aluminum alloys. Unfortunately, the Cr(VI) is toxic and chromate is a carcinogen. Therefore, a trivalent chromium process (TCP) coating was developed as a drop-in replacement of CCC. This dissertation focuses on a fundamental understanding of the formation mechanism, chemical structure, and basic electrochemical properties of the TCP coating on three high strength aluminum alloys: AA2024-T3, AA6061-T6, and AA7075- T6. The formation of the TCP coating is driven by an increase in the interfacial pH. The coating is about 50-100 nm thick and has a biphasic structure consisting of a 3- ZrO 2/Cr(OH) 3 top layer and an AlF 6 /Al(OH) 3 interfacial layer. -
Copper Alloys ______
COPPER ALLOYS ___________________________ Guidelines for the use of copper alloys ·in seawater* Arthur H. Tuthill* rate of film formation is indicated as the rate of copper reduction in the Users and designers have found the charts and data sum effluent (Figure 1). Total copper decreases tenfold within 10 min and maries in an earlier work, " Guidelines for Selection of Marine 100-fold in the first hour. In three months, copper in the effluent is Materials," helpful in selecting materials for marine service. seen to be virtually at the level of the copper in the intake water. This review updates and extends those summaries for copper-base alloys, many of which were not included in the Weight loss corrosion studies show that the protective film earlier work. continues to improve, with the corrosion rate dropping to 0.5 mpy (0.012 mm/y) in - 1 y, and a long-term, steady-state rate of - 0.05 mpy (0.001 mm/y) in 3 to 7 y in quiet, tidal, and flowing seawater (Figure 2). 2 Alloy C71500 (70 :30 copper-nickel) exhibits the same pattern of decreasing corrosion rate with time. Introduction Reinhart found that copper and its alloys of aluminum, silicon, THE ENGINEER USUALLY BEGINS WITH a good idea of alloys that tin , beryllium, and nickel had significantly lower long-term corrosion will meet the stresses and mechanical requirements of the assembly rates after 18 months compared to those specimens measured after under consideration. The author's purpose is to provide guidelines only 6 months of exposure to seawater (Figure 3).3 The only that will allow the engineer to make a reasonable estimate of the exception was Alloy C28000, Muntz metal, which exhibited a slightly effect of the environment on the performance of copper alloys. -
Enghandbook.Pdf
785.392.3017 FAX 785.392.2845 Box 232, Exit 49 G.L. Huyett Expy Minneapolis, KS 67467 ENGINEERING HANDBOOK TECHNICAL INFORMATION STEELMAKING Basic descriptions of making carbon, alloy, stainless, and tool steel p. 4. METALS & ALLOYS Carbon grades, types, and numbering systems; glossary p. 13. Identification factors and composition standards p. 27. CHEMICAL CONTENT This document and the information contained herein is not Quenching, hardening, and other thermal modifications p. 30. HEAT TREATMENT a design standard, design guide or otherwise, but is here TESTING THE HARDNESS OF METALS Types and comparisons; glossary p. 34. solely for the convenience of our customers. For more Comparisons of ductility, stresses; glossary p.41. design assistance MECHANICAL PROPERTIES OF METAL contact our plant or consult the Machinery G.L. Huyett’s distinct capabilities; glossary p. 53. Handbook, published MANUFACTURING PROCESSES by Industrial Press Inc., New York. COATING, PLATING & THE COLORING OF METALS Finishes p. 81. CONVERSION CHARTS Imperial and metric p. 84. 1 TABLE OF CONTENTS Introduction 3 Steelmaking 4 Metals and Alloys 13 Designations for Chemical Content 27 Designations for Heat Treatment 30 Testing the Hardness of Metals 34 Mechanical Properties of Metal 41 Manufacturing Processes 53 Manufacturing Glossary 57 Conversion Coating, Plating, and the Coloring of Metals 81 Conversion Charts 84 Links and Related Sites 89 Index 90 Box 232 • Exit 49 G.L. Huyett Expressway • Minneapolis, Kansas 67467 785-392-3017 • Fax 785-392-2845 • [email protected] • www.huyett.com INTRODUCTION & ACKNOWLEDGMENTS This document was created based on research and experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. -
Ti-Based Conversion Coating for the Corrosion Protection of Electrogalvanized Steel
a *8 *9 */01- . - / w"#$ - 9 TI-BASED CONVERSION COATING FOR THE CORROSION PROTECTION OF ELECTROGALVANIZED STEEL Aleksey ABRASHOV 1, Nelya RI ORIAN 2, Tigran VA RAMIAN 3, Vladimir MEN‘SHIKOV 4, Anastasiya KOSTIUK 5 1MUCT, - D.Mendeleev University of Chemical Technology of ,ussia, Moscow, ,ussian 1ederation 1abr-ale [email protected], [email protected] , [email protected] , [email protected], 5nasten [email protected] Abstract 2rocess 0as de.eloped for free-chromate passi.ation of 4inc coatings. An optimal composition of the solution 0as de.eloped. It 0as sho0n that titanium-based passi.ating coatings on the electrogal.ani4ed steel articles compare 0ell in corrosion resistance and protecting capacity 0ith iridescent chromate coatings. It 0as re.ealed that, unlike chromate coatings, the de.eloped titanium-based coatings 0ithstand the thermal shock 0ithout degrading of characteristics. Keyw rds: Corrosion protection, con.ersion coatings, Ti-based coatings, chromate-free passi.ation 1. INTRODUCTION To impro.e the corrosion resistance of gal.anic 4inc and cadmium protecti.e coatings, as 0ell as aluminum surfaces, chromate processes are applied. 2rotecti.e chromate films inhibit corrosion processes on the surfaces of these metals and, besides, ha.e the ability to self-heal in case of mechanical .iolations of the integrity of the film 91:. Unfortunately, chromate solutions are .ery to6ic because of the constituent ions of he6a.alent chromium. The problem of replacing the chromating processes became more acute after the adoption of the European Directi.e 20003533EC in 2000 limiting the presence of Cr 7VI8 compounds in con.ersion coatings 92:, and in 2002 the additions to the directi.e, 0hich completely prohibits the presence of Cr 7VI8 in con.ersion coatings applied to parts of cars from July, 2007 93:.