Ecology and Management of Sand Shinnery Communities: a Literature Review

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and Management of Sand Shinnery Communities: a Literature Review United States Department of Agriculture Ecology and Management of Forest Service Rocky Mountain Sand Shinnery Communities: Research Station Fort Collins, Colorado 80526 A Literature Review General Technical Report RMRS–GTR–16 Roger S. Peterson and Chad S. Boyd D2 D2 H Abstract Peterson, Roger and Chad S. Boyd. Ecology and management of sand shinnery communities: a literature review. Gen. Tech. Rep. RMRS-GTR-16. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Sand shinnery is codominated by oak shrubs and mid and tallgrasses; the grasses are usually taller than the oaks. The shrubs are the small, visible shoots of massive underground stem systems, which are hundreds or thousands of years old. Sand shinnery occupies 5 to 7 M acres in western Oklahoma, western Texas, and southeastern New Mexico. This area is a decrease from the original due to land clearing for agriculture and eradication of oak to improve livestock-grazing. Oak control is controversial because it can open sandy soils to wind erosion and can conflict with wildlife-habitat quality. Of special concern are the lesser prairie-chicken and the sand dune lizard, which are heavily dependent on shinnery vegetation. This review of climate, soils, vegetation, ecosystem dynamics (including responses to drought and fire), wildlife and hunting, livestock grazing, and oak control in the sand shinnery provides managers with a knowledge-base for decision-making and points to areas where research is needed. Keywords: sand shinnery, Quercus havardii, drought, fire, livestock grazing, brush control, wildlife, lesser prairie-chicken, sand dune lizard The Authors Roger Peterson is a retired ecologist who worked for the USDA Forest Service Rocky Mountain Research Station. Chad Boyd is a doctoral candidate in range ecology at Oklahoma State University. Publisher Rocky Mountain Research Station Fort Collins, Colorado August 1998 You may order additional copies of this publication by sending your mailing information in label form through one of the following media. Please send the publication title and number. Telephone (970) 498-1719 E-mail rschneider/[email protected] FAX (970) 498-1660 Mailing Address Publications Distribution Rocky Mountain Research Station 3825 E. Mulberry Street Fort Collins, CO 80524-8597 Ecology and Management of Sand Shinnery Communities: A Literature Review Roger S. Peterson and Chad S. Boyd Contents Introduction ..................................................................................................... 1 Ecology ........................................................................................................... 1 Historical Accounts ..................................................................................... 1 Geographical Distribution ........................................................................... 1 Plant Composition....................................................................................... 2 Ecological Classification ............................................................................. 3 Shin-oak and Its Hybrids ............................................................................ 4 Soils ............................................................................................................ 6 Climate ........................................................................................................ 8 Phenology ................................................................................................... 8 Autoecology of Shin-oak............................................................................. 9 Vegetation Dynamics and Water Relations ................................................ 10 Organic Matter and Decomposition ............................................................ 12 Nutrient Cycling .......................................................................................... 13 Drought ....................................................................................................... 14 Fire .............................................................................................................. 14 Wildlife Species .......................................................................................... 15 Mule Deer ............................................................................................... 15 White-tailed Deer .................................................................................... 15 Pronghorn Antelope ............................................................................... 15 Peccary (Javelina) .................................................................................. 15 Barbary Sheep ....................................................................................... 16 Lagomorphs ........................................................................................... 16 Rodents .................................................................................................. 16 Insectivores ............................................................................................ 17 Contents (Cont’d.) Lesser prairie-chicken ............................................................................ 17 Quail ....................................................................................................... 19 Turkey .................................................................................................... 19 Mourning Doves ..................................................................................... 19 Perching Birds ........................................................................................ 20 Predators (Mammals and Birds) ............................................................ 20 Reptiles .................................................................................................. 20 Invertebrates .......................................................................................... 21 Management ................................................................................................... 22 Hunting ....................................................................................................... 22 Livestock Grazing ....................................................................................... 23 Management of Shin-oak ........................................................................... 26 Mechanical Means ................................................................................. 26 Fire ......................................................................................................... 26 Herbivory ................................................................................................ 27 Herbicides .............................................................................................. 27 Conclusions .................................................................................................... 30 Literature Cited ............................................................................................... 30 Appendix ......................................................................................................... 39 Acknowledgments Two longtime shinnery researchers helpfully shared their knowledge: E. P. McIlvain, retired supervisor of research, Southern Great Plains Field Station, Agricultural Research Service (Woodward, OK), and R. D. Pettit, retired professor of range management, Texas Tech University (Lubbock). James Zimmerman, research ento- mologist retired from The Smithsonian Institution provided information on shin-oak gall insects. W. A. Dick-Peddie, professor of biology at New Mexico State University, provided information on historical surveys of shinnery distribution. Calvin Smith, director of the Strecker Museum, Baylor University (Waco, TX) gave information on the New Mexico shinnery and provided figures 6 and 13. The New Mexico Depart- ment of Game and Fish provided figures 11 and 14. D. A. Swepston, district leader of the Wildlife Division, Texas Parks and Wildlife Department (Canyon, TX), provided information on mammals and hunting in Texas. Gesina (Niki) Threlkeld kindly created the drawings. The authors are also grateful to T. G. Bidwell (Oklahoma State University) and D. G. Brockway (Rocky Mountain Research Station) for review comments that improved the manuscript, and to Dale Brockway and Deborah Finch (Rocky Mountain Research Station) for facilitating publication of the review. seldom thicker than oat-straws, and frequently not a foot high. We also met with the same in Introduction many other places on the Prairies. In 1845, Lt. J. W. Abert (1846) recorded along the Sand shinnery communities comprise the nation’s larg- Washita that “...the uplands were thickly spread over by est stand of oak and occupy 5 to 7 M acres of the southern diminutive species of oak commonly called shin-oak, not Great Plains, extending from northern Texas and western exceeding 2 ft in height. We occasionally saw clumps of Oklahoma southward into Chihuahuan Desert scrubland. oak of greater size.” In 1854, R. B. Marcy described a The stand is made up of ancient plants, most of them landscape encountered in present-day Beckham County, hundreds or thousands of years old. Oklahoma: This oak forest is only 1 to 4 ft tall. The visible shrubs are ...the country we traversed was exceedingly mostly the short-lived twigs of massive underground monotonous and uninteresting being a con- stem systems, which slowly spread under
Recommended publications
  • Star Cactus (Astrophytum Asterias)
    U.S. Fish & Wildlife Service Star Cactus (Astrophytum asterias) Recovery Plan September 2003 DISCLAIMER Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance of recovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved as well as the need to address other priorities. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Literature citations should read as follows: U.S. Fish and Wildlife Service. 2003. Recovery Plan for Star Cactus (Astrophytum asterias). U.S. DOI Fish and Wildlife Service, Albuquerque, New Mexico. i-vii + 38pp., A1-19, B- 1-8. Additional copies may be purchased from: Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 1-301-492-6403 or 1-800-582-3421 The fee for the Plan varies depending on the number of pages of the Plan. Recovery Plans can be downloaded from the U.S. Fish and Wildlife Service website: http://endangered.fws.gov. -i- ACKNOWLEDGMENTS The author wishes to express great appreciation to Ms.
    [Show full text]
  • Datura- a Devil Weed Or Angel's Trumpet
    Datura- A Devil Weed Or Angel’s Trumpet. Review Article by : Shaheen Bibi Email: [email protected] 1 Datura Inoxia- A Devil weed or Angel’s Trumpet Abstract Datura is a mystery Plant. It belongs to family Solanaceae. There are many important species of genus Datura. Despite of many reports about being toxic, its still debated for its medicinal properties. The genus Datura has a vast history from early time through World War till modern times. Since long time, Datura has been used as a folk medicine in many ancient cultures and even used today. The ethnobotanical information predicts its useful drug value. This plant is well known for its hallucinogenic property. Heiser states that Datura is genus of contrast-from smelly weeds to lovely ornamentals”. 38 Analyzing the chemical profile of Datura , it is reported to be rich in alkaloids. These alkaloids are member of Tropane. Important tropines are Atropine, Scopolamine and Hyoscyamine. The highest in percentage of atropine in D.inoxia is found in its seeds.39 Datura can cause various complications. Some of its effects are systemic. The primary and alarming sign of toxicity with D.inoxia is mydriasis i.e. the change in pupil centration 40,41. Atropine also has the hallucination effect. It blocks the action of acetylcholine at its receptors. Datura inoxia foliage is also harmful for grazing animals or animals that feed on the seeds. Datura inoxia has an anticholinergic property. This property is due to presence of Scopolamine 18. Interestingly, there are beetles and some bees that survive on Datura and they have established certain biochemical mechanisms to defend themselves against the plants intoxicating chemicals.
    [Show full text]
  • 31295015064529.Pdf (3.477Mb)
    POPULATION DYNAMICS, REPRODUCTION, AND ACTIVITIES OF THE KANGAROO RAT, DIPODOMYS ORDII, IN WESTERN TEXAS by HERSCHEL VJHITAKER GARNER, B.S., M.S. A DISSERTATION IN ZOOLOGY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Accepted August, 1970 ACKNOWL EDGMENTS I am especially grateful to Professor Robert L. Packard for advising in research methods, aiding in collecting data, and critically reading the manuscript. Additional appreciated suggestions were made by Professors Archie C. Allen, John S. Mecham, Robert W.. Mitchell, Paul V. Prior (now at the University of Nebraska- Omaha), and Chester M. Rowell. Mr. Robert B. Wadley pro­ vided useful help in developing computer programs used in sorting and analysis of the data. An honorarium from the Department of Biology defrayed some of the cost of travel to the field. My wife, Anita, aided in making collections and recording data. Additional thanks are extended to fellow graduate students who provided help and ideas.' 11 TABLE OF CONTENTS ACKNOWLEDGMENTS ii LIST OF TABLES ; . iv LIST OF ILLUSTRATIONS V I. INTRODUCTION 1 II. METHODS AND MATERIALS 3 III. REPRODUCTION 15 IV. ACTIVITIES 35 V. POPULATION DYNAMICS 43 VI. SUMlvlARY AND CONCLUSIONS 72 LITERATURE CITED 76 111 LIST OF TABLES Table Page 1. Estimation of number of D. ordii on the Kermit area 51 IV LIST OF ILLUSTRATIONS Figure Page 1. The intensive study area viewed from the southern periphery June, 1956 .... 5 2. Diagram of study area showing position of activity center values of animals used in the experimental activity studies 12 3.
    [Show full text]
  • Bill Shape As a Generic Character in the Cardinals
    BILL SHAPE AS A GENERIC CHARACTER IN THE CARDINALS WALTER J. BOCK ANY genera in birds and other animal groups have been based essentially M upon a single character. This character may be a single morphological feature, such as the presence or absence of the hallux, or it may be a complex of characters which are all closely correlated functionally, such as the bones, muscles, and ligaments of the jaw apparatus. The validity of many of these genera has been questioned in recent years with the general acceptance of the polytypic species concept and the increasing acknowledgment of the grouping service at low taxonomic levels provided by the genus. An example is the North American passerine genus Pyrrhuloxia, which is distinguished from Richmondena essentially on the basis of bill shape. The overall similarity of Pyrrhuloxia sinuata to the two species of Richmondena in morphology and in general life history (Gould, 1961) has led several recent authors to synony- mize Richmondena with Pyrrhuloxia. Other workers have maintained the validity of the generic separation, basing their decision largely on the dif- ference in bill shape. The object of this paper is to ascertain the importance of this difference as a taxonomic character and whether the difference if con- firmed is of generic significance. THE JAW APPARATUS Ridgway (19013624-625) described the bill of P. sinuata (see Figs. 1 and 2) as follows: “Bill very short, thick and deep, with culmen strongly convex and maxillary tomium deeply and angularly incised a little posterior to the middle
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Final Report: Lesser Prairie-Chicken Survey − Kiowa and Rita Blanca National Grasslands, 2014
    Final Report: Lesser Prairie-Chicken Survey − Kiowa and Rita Blanca National Grasslands, 2014 Project Manager: Angela Dwyer, Rocky Mountain Bird Observatory, 230 Cherry St., Fort Collins, CO 80521 ([email protected]) Project Director: David Hanni, Rocky Mountain Bird Observatory, 230 Cherry St., Fort Collins, CO 80521 ([email protected]) Introduction The Lesser Prairie-Chicken (Tympanuchus pallidicinctus) (LEPC) occupies grassland habitat consisting of sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii) and mixed grass vegetation communities of the southern Great Plains. Since the 19th century, LEPC and the habitat upon which they depend has diminished across their historical range (Crawford and Bolen 1976, Taylor and Guthery 1980a), with recent estimates of current occupied range totaling approximately 17% of the estimated area of their historical range. Causes for this reduction in occupied range are primarily attributed to habitat loss and fragmentation (USFWS 2012). Habitat loss has been caused by conversion of native prairie to cropland (Bent 1932, Copelin 1963, Taylor and Guthery 1980) and long term fire suppression (Woodward et al. 2001) leading to tree invasion (Fuhlendorf et al. 2002). Grazing management practices would help improve habitat if managed to benefit LEPC. Heavily grazed fields that leave no residual vegetation for broods can be detrimental to LEPC (Sell 1979, Hunt and Best 2010). Habitat fragmentation has resulted from a combination of habitat loss and degradation caused by oil and gas development (Hunt 2004) and suspected effects of wind energy development (Pruett et al. 2009). The LEPC is not thought to occur in Kiowa and Rita Blanca National Grasslands (KRB) (Giesen 2003), however some parcels within the grasslands are managed for LEPC.
    [Show full text]
  • Taxonomic Notes and Type Designations of Gall Inducing Cynipid Wasps Described by G.Mayr (Insecta: Hymenoptera: Cynipidae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2001 Band/Volume: 103B Autor(en)/Author(s): Bechtold M., Melika George Artikel/Article: Taxonomic notes and type designations of gall inducing cynipid wasps described by G.Mayr (Insecta: Hymenoptera: Cynipidae). 327-339 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 327 - 339 Wien, Dezember 2001 Taxonomic notes and type designations of gall inducing cynipid wasps described by G. Mayr (Insecta: Hymenoptera: Cynipidae) G. Melika & M. Bechtold* Abstract Lectotypes for twelve of Mayr's cynipid gall wasp species (Hymenoptera: Cynipidae: Cynipinae) are desi- gnated. From twenty cynipid gall wasp species, described by Mayr, seven have already been synonymized, and thirteen species are still valid. Andricus insana (WESTWOOD, 1837) syn.n. is a new synonym of Andricus quercustozae (Bosc, 1792). Key words: Cynipidae, gall wasps, Hymenoptera, lectotype designation, Gustav Mayr, new synonymy, taxonomy. Zusammenfassung Lectotypen für zwölf der von Mayr beschriebenen Gallwespenarten (Hymenoptera: Cynipidae: Cynipinae) werden designiert. Mayr hat zwanzig Gallwespenarten beschrieben, davon sind sieben bereits synonymi- siert worden, dreizehn Arten sind noch gültig. Andricus insana (WESTWOOD, 1837) syn.n. ist ein neues Synonym von Andricus quercustozae (Bosc, 1792). Introduction Gustav Mayr, a famous Austrian entomologist, described eleven genera of gall inducing Cynipidae and twenty species from twelve genera (Hymenoptera: Cynipoidea). Seven of them have already been synonymized, while thirteen species are still valid. However, he never designated types for his newly described species. All the specimens are syn- or cotypes and usually these specimens were marked with "Type" or even not so.
    [Show full text]
  • An Ethnographicsurvey
    SMITHSONIAN INSTITUTION Bureau of American Ethnology Bulletin 186 Anthropological Papers, No. 65 THE WARIHIO INDIANS OF SONORA-CHIHUAHUA: AN ETHNOGRAPHIC SURVEY By Howard Scott Gentry 61 623-738—63- CONTENTS PAGE Preface 65 Introduction 69 Informants and acknowledgments 69 Nominal note 71 Peoples of the Rio Mayo and Warihio distribution 73 Habitat 78 Arroyos 78 Canyon features 79 Hills 79 Cliffs 80 Sierra features - 80 Plants utilized 82 Cultivated plants 82 Wild plants 89 Root and herbage foods 89 Seed foods 92 Fruits 94 Construction and fuel 96 Medicinal and miscellaneous uses 99 Use of animals 105 Domestic animals 105 Wild animals and methods of capture 106 Division of labor 108 Shelter 109 Granaries 110 Storage caves 111 Elevated structures 112 Substructures 112 Furnishings and tools 112 Handiwork 113 Pottery 113 The oUa 114 The small bowl 115 Firing 115 Weaving 115 Woodwork 116 Rope work 117 Petroglyphs 117 Transportation 118 Dress and ornament 119 Games 120 Social institutions 120 Marriage 120 The selyeme 121 Birth 122 Warihio names 123 Burial 124 63 64 CONTENTS PAGE Ceremony 125 Tuwuri 128 Pascola 131 The concluding ceremony 132 Myths 133 Creation myth 133 Myth of San Jose 134 The cross myth 134 Tales of his fathers 135 Fighting days 135 History of Tu\\njri 135 Songs of Juan Campa 136 Song of Emiliano Bourbon 136 Metamorphosis in animals 136 The Carbunco 136 Story of Juan Antonio Chapapoa 136 Social customs, ceremonial groups, and extraneous influences 137 Summary and conclusions 141 References cited 143 ILLUSTEATIONS PLATES (All plates follow p. 144) 28. a, Juan Campa and Warihio boy.
    [Show full text]
  • The Population Biology of Oak Gall Wasps (Hymenoptera:Cynipidae)
    5 Nov 2001 10:11 AR AR147-21.tex AR147-21.SGM ARv2(2001/05/10) P1: GSR Annu. Rev. Entomol. 2002. 47:633–68 Copyright c 2002 by Annual Reviews. All rights reserved THE POPULATION BIOLOGY OF OAK GALL WASPS (HYMENOPTERA:CYNIPIDAE) Graham N. Stone,1 Karsten Schonrogge,¨ 2 Rachel J. Atkinson,3 David Bellido,4 and Juli Pujade-Villar4 1Institute of Cell, Animal, and Population Biology, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom; e-mail: [email protected] 2Center of Ecology and Hydrology, CEH Dorset, Winfrith Technology Center, Winfrith Newburgh, Dorchester, Dorset DT2 8ZD, United Kingdom; e-mail: [email protected] 3Center for Conservation Science, Department of Biology, University of Stirling, Stirling FK9 4LA, United Kingdom; e-mail: [email protected] 4Departamento de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain; e-mail: [email protected] Key Words cyclical parthenogenesis, host alternation, food web, parasitoid, population dynamics ■ Abstract Oak gall wasps (Hymenoptera: Cynipidae, Cynipini) are characterized by possession of complex cyclically parthenogenetic life cycles and the ability to induce a wide diversity of highly complex species- and generation-specific galls on oaks and other Fagaceae. The galls support species-rich, closed communities of inquilines and parasitoids that have become a model system in community ecology. We review recent advances in the ecology of oak cynipids, with particular emphasis on life cycle characteristics and the dynamics of the interactions between host plants, gall wasps, and natural enemies. We assess the importance of gall traits in structuring oak cynipid communities and summarize the evidence for bottom-up and top-down effects across trophic levels.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Literature Cited
    Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes.
    [Show full text]
  • Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
    Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
    [Show full text]