Applications of Dynamical Systems in Biology and Medicine the IMA Volumes in Mathematics and Its Applications Volume 158

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Dynamical Systems in Biology and Medicine the IMA Volumes in Mathematics and Its Applications Volume 158 The IMA Volumes in Mathematics and its Applications Trachette Jackson Ami Radunskaya Editors Applications of Dynamical Systems in Biology and Medicine The IMA Volumes in Mathematics and its Applications Volume 158 More information about this series at http://www.springer.com/series/811 Institute for Mathematics and its Applications (IMA) The Institute for Mathematics and its Applications was established by a grant from the National Science Foundation to the University of Minnesota in 1982. The primary mission of the IMA is to foster research of a truly interdisciplinary nature, establishing links between mathematics of the highest caliber and important scientific and technological problems from other disciplines and industries. To this end, the IMA organizes a wide variety of programs, ranging from short intense workshops in areas of exceptional interest and opportunity to extensive thematic programs lasting a year. IMA Volumes are used to communicate results of these programs that we believe are of particular value to the broader scientific community. The full list of IMA books can be found at the Web site of the Institute for Mathematics and its Applications: http://www.ima.umn.edu/springer/volumes.html. Presentation materials from the IMA talks are available at http://www.ima.umn.edu/talks/. Video library is at http://www.ima.umn.edu/videos/. Fadil Santosa, Director of the IMA Trachette Jackson • Ami Radunskaya Editors Applications of Dynamical Systems in Biology and Medicine 123 Editors Trachette Jackson Ami Radunskaya Department of Mathematics Department of Mathematics University of Michigan Pomona College Ann Arbor, MI, USA Claremont, CA, USA ISSN 0940-6573 ISSN 2198-3224 (electronic) The IMA Volumes in Mathematics and its Applications ISBN 978-1-4939-2781-4 ISBN 978-1-4939-2782-1 (eBook) DOI 10.1007/978-1-4939-2782-1 Library of Congress Control Number: 2015942581 Mathematics Subject Classification (2010): 92-06, 92Bxx, 92C50, 92D25 Springer New York Heidelberg Dordrecht London © Springer Science+Business Media, LLC 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer Science+Business Media LLC New York is part of Springer Science+Business Media (www. springer.com) Contents Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model .... 1 Jana L. Gevertz, Zahra Aminzare, Kerri-Ann Norton, Judith Pérez-Velázquez, Alexandria Volkening, and Katarzyna A. Rejniak Flow Induced by Bacterial Carpets and Transport of Microscale Loads.............................................................. 35 Amy L. Buchmann, Lisa J. Fauci, Karin Leiderman, Eva M. Strawbridge, and Longhua Zhao Modeling Blood Flow Control in the Kidney.................................. 55 Julia Arciero, Laura Ellwein, Ashlee N. Ford Versypt, Elizabeth Makrides, and Anita T. Layton Injury-Initiated Clot Formation Under Flow: A Mathematical Model with Warfarin Treatment ............................................... 75 Lisette dePillis, Erica J. Graham, Kaitlyn Hood, Yanping Ma, Ami Radunskaya, and Julie Simons Clustering in Inhibitory Neural Networks with Nearest Neighbor Coupling ............................................................... 99 Jennifer Miller, Hwayeon Ryu, Zeynep Teymuroglu, Xueying Wang, Victoria Booth, and Sue Ann Campbell Effects of Thermoregulation on Human Sleep Patterns: A Mathematical Model of Sleep–Wake Cycles with REM–NREM Subcircuit ........................................................ 123 Selenne Bañuelos, Janet Best, Gemma Huguet, Alicia Prieto-Langarica, Pamela B. Pyzza, Markus H. Schmidt, and Shelby Wilson v vi Contents Modeling Sympatric Speciation in Quasiperiodic Environments........... 149 Jasmine Foo, Cymra Haskell, Natalia L. Komarova, Rebecca A. Segal, and Karen E. Wood A Stochastic Model of the Melanopsin Phototransduction Cascade ....... 175 R. Lane Brown, Erika Camacho, Evan G. Cameron, Christina Hamlet, Kathleen A. Hoffman, Hye-Won Kang, Phyllis R. Robinson, Katherine S. Williams, and Glenn R. Wyrick Intermittent Preventive Treatment (IPT) and the Spread of Drug Resistant Malaria....................................................... 197 Miranda I. Teboh-Ewungkem, Olivia Prosper, Katharine Gurski, Carrie A. Manore, Angela Peace, and Zhilan Feng WhAM! Workshop Trachette Jackson and Ami Radunskaya 1AimandScope The aim of this volume is to showcase original research conducted by newly formed collaborative teams during the IMA’s Women in Applied Mathematics (WhAM!) Research Collaboration Conference on Dynamical Systems with Applications to Biology and Medicine. The overarching goal of the workshop was to help build a strong network of women working on dynamical systems in biology by facilitating the formation of new and lasting research groups. This volume is the first fruit of those research efforts. This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control. Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification, and photo-transduction. Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2D and 3D numerical simulation. T. Jackson () Department of Mathematics, University of Michigan, Ann Arbor, MI, USA e-mail: [email protected] A. Radunskaya Department of Mathematics, Pomona College, Claremont, CA 91711, USA e-mail: [email protected] vii viii T. Jackson and A. Radunskaya 2 Introduction According to the 2013 survey from the American Mathematical Society, women make up approximately 30% of the recent U.S. PhDs in the mathematical sciences [1]. However, the visibility of women as research mathematicians is still dim, as evidenced by the percentages of women who are invited to speak at national conferences, the number of women who win prizes and the number of women who are editors of professional journals [2]. Kristin Lauter, a number theorist with Microsoft Research, decided to promote a community of women researchers in mathematics. In 2008 she organized the first Women in Number Theory (WIN) conference, with the help of co-organizers Rachel Pries (Colorado State University) and Renate Scheidler (University of Calgary). To date, there have been three WIN conferences, as well as Women in Shapes (WiSH), a workshop held at IPAM in July 2013 devoted to problems in shape modeling. Noting the success of these pioneering conferences, we wanted to bring together women working in applied mathematics in order to work on problems of mutual interest. We organized the IMA’s first special workshop targeting women as participants. We called it: Women in Applied Mathematics (WhAM!): A Research Collaboration Conference on Dynamical Systems with Applications to Biology and Medicine. Many questions about biological processes can be phrased in terms of dynamical systems. The evolution of these processes and the stability of their long-term behavior can be studied in terms of dynamical systems theory. Since the goal of the five-day workshop was to foster the building of long-term collaborative relationships, this workshop had a special format designed to maximize opportu- nities for collaboration. Nine senior women researchers working in mathematical biology were invited to present a problem and lead a research group. Each senior leader then chose a more junior co-leader with whom they did not have a long- standing collaboration, but who had enough experience to take on a leadership role. Other team members were chosen from applicants and invitees. Each group worked together during the five-day conference and all nine groups continued their project through the ensuing months. The results are being published in this volume. The benefit of such a structured program with leaders, projects, and working groups planned in advance is that senior women were able to meet, mentor, and collaborate with some of the brightest young women in their field. Junior faculty, post-docs, and graduate students developed their network of colleagues and were introduced to important new research areas, thereby improving their chances for successful research careers. The scientific atmosphere at WhAM! was truly exciting. The WhAM! format together with the IMA’s staff infrastructure
Recommended publications
  • CHAOS and DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET
    MATH-UA 264.001 – CHAOS AND DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET Objectives Dynamical systems theory is the branch of mathematics that studies the properties of iterated action of maps on spaces. It provides a mathematical framework to characterize a great variety of time-evolving phenomena in areas such as physics, ecology, and finance, among many other disciplines. In this class we will study dynamical systems that evolve in discrete time, as well as continuous-time dynamical systems described by ordinary di↵erential equations. Of particular focus will be to explore and understand the qualitative properties of dynamics, such as the existence of attractors, periodic orbits and chaos. We will do this by means of mathematical analysis, as well as simple numerical experiments. List of topics • One- and two-dimensional maps. • Linearization, stable and unstable manifolds. • Attractors, chaotic behavior of maps. • Linear and nonlinear continuous-time systems. • Limit sets, periodic orbits. • Chaos in di↵erential equations, Lyapunov exponents. • Bifurcations. Contact and office hours • Instructor: Dimitris Giannakis, [email protected]. Office hours: Monday 5:00-6:00PM and Wednesday 4:30–5:30PM ET. • Recitation Leader: Wenjing Dong, [email protected]. Office hours: Tuesday 4:00-5:00PM ET. Textbooks • Required: – Alligood, Sauer, Yorke, Chaos: An Introduction to Dynamical Systems, Springer. Available online at https://link.springer.com/book/10.1007%2Fb97589. • Recommended: – Strogatz, Nonlinear Dynamics and Chaos. – Hirsch, Smale, Devaney, Di↵erential Equations, Dynamical Systems, and an Introduction to Chaos. Available online at https://www.sciencedirect.com/science/book/9780123820105.
    [Show full text]
  • Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods
    Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods Yi Ding Panos Toulis University of Chicago University of Chicago Department of Computer Science Booth School of Business Abstract In this paper, we adopt results in nonlinear time series analysis for causal inference in dynamical settings. Our motivation is policy analysis with panel data, particularly through the use of “synthetic control” methods. These methods regress pre-intervention outcomes of the treated unit to outcomes from a pool of control units, and then use the fitted regres- sion model to estimate causal effects post- intervention. In this setting, we propose to screen out control units that have a weak dy- Figure 1: A Lorenz attractor plotted in 3D. namical relationship to the treated unit. In simulations, we show that this method can mitigate bias from “cherry-picking” of control However, in many real-world settings, different vari- units, which is usually an important concern. ables exhibit dynamic interdependence, sometimes We illustrate on real-world applications, in- showing positive correlation and sometimes negative. cluding the tobacco legislation example of Such ephemeral correlations can be illustrated with Abadie et al.(2010), and Brexit. a popular dynamical system shown in Figure1, the Lorenz system (Lorenz, 1963). The trajectory resem- bles a butterfly shape indicating varying correlations 1 Introduction at different times: in one wing of the shape, variables X and Y appear to be positively correlated, and in the In causal inference, we compare outcomes of units who other they are negatively correlated. Such dynamics received the treatment with outcomes from units who present new methodological challenges for causal in- did not.
    [Show full text]
  • A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
    A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity).
    [Show full text]
  • Arxiv:0705.1142V1 [Math.DS] 8 May 2007 Cases New) and Are Ripe for Further Study
    A PRIMER ON SUBSTITUTION TILINGS OF THE EUCLIDEAN PLANE NATALIE PRIEBE FRANK Abstract. This paper is intended to provide an introduction to the theory of substitution tilings. For our purposes, tiling substitution rules are divided into two broad classes: geometric and combi- natorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for this class there is a substantial body of research in the literature. Combinatorial sub- stitutions are just beginning to be examined, and some of what we present here is new. We give numerous examples, mention selected major results, discuss connections between the two classes of substitutions, include current research perspectives and questions, and provide an extensive bib- liography. Although the author attempts to fairly represent the as a whole, the paper is not an exhaustive survey, and she apologizes for any important omissions. 1. Introduction d A tiling substitution rule is a rule that can be used to construct infinite tilings of R using a finite number of tile types. The rule tells us how to \substitute" each tile type by a finite configuration of tiles in a way that can be repeated, growing ever larger pieces of tiling at each stage. In the d limit, an infinite tiling of R is obtained. In this paper we take the perspective that there are two major classes of tiling substitution rules: those based on a linear expansion map and those relying instead upon a sort of \concatenation" of tiles. The first class, which we call geometric tiling substitutions, includes self-similar tilings, of which there are several well-known examples including the Penrose tilings.
    [Show full text]
  • Handbook of Dynamical Systems
    Handbook Of Dynamical Systems Parochial Chrisy dunes: he waggles his medicine testily and punctiliously. Draggled Bealle engirds her impuissance so ding-dongdistractively Allyn that phagocytoseOzzie Russianizing purringly very and inconsumably. perhaps. Ulick usually kotows lineally or fossilise idiopathically when Modern analytical methods in handbook of skeleton signals that Ale Jan Homburg Google Scholar. Your wishlist items are not longer accessible through the associated public hyperlink. Bandelow, L Recke and B Sandstede. Dynamical Systems and mob Handbook Archive. Are neurodynamic organizations a fundamental property of teamwork? The i card you entered has early been redeemed. Katok A, Bernoulli diffeomorphisms on surfaces, Ann. Routledge, Taylor and Francis Group. NOTE: Funds will be deducted from your Flipkart Gift Card when your place manner order. Attendance at all activities marked with this symbol will be monitored. As well as dynamical system, we must only when interventions happen in. This second half a Volume 1 of practice Handbook follows Volume 1A which was published in 2002 The contents of stain two tightly integrated parts taken together. This promotion has been applied to your account. Constructing dynamical systems having homoclinic bifurcation points of codimension two. You has not logged in origin have two options hinari requires you to log in before first you mean access to articles from allowance of Dynamical Systems. Learn more about Amazon Prime. Dynamical system in nLab. Dynamical Systems Mathematical Sciences. In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. Since it contains items is not enter your country yet.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Homogeneous Dynamical Systems Theory Bijoy K
    462 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 3, MARCH 2002 Homogeneous Dynamical Systems Theory Bijoy K. Ghosh, Fellow, IEEE, and Clyde F. Martin, Fellow, IEEE Abstract—In this paper, we study controlled homogeneous dy- where the scalar output may be considered to be the slope namical systems and derive conditions under which the system is of the line spanned by the vector and where perspective controllable. We also derive conditions under which the system is observable in the presence of a control over the com- plex base field. In the absence of any control input, we derive a nec- essary and sufficient condition for observability of a homogeneous (1.3) dynamical system over the real base field. The observability crite- rion obtained generalizes a well known Popov–Belevitch–Hautus (PBH) rank criterion to check the observability of a linear dynam- ical system. Finally, we introduce rational, exponential, interpola- For a dynamical system of the form (1.1), (1.2), one is tion problems as an important step toward solving the problem of interested in controlling only the direction of the state vector realizing homogeneous dynamical systems with minimum state di- and such problems are, therefore, of interest in mensions. gaze control. To generalize the control problem, we consider a Index Terms—Author, please supply your own keywords or send dynamical system with state variable , control variable a blank e-mail to [email protected] to receive a list of suggested and observation function , the projective keywords. space of homogeneous lines in , where we assume that . The dynamical system is described as I.
    [Show full text]
  • Topic 6: Projected Dynamical Systems
    Topic 6: Projected Dynamical Systems Professor Anna Nagurney John F. Smith Memorial Professor and Director – Virtual Center for Supernetworks Isenberg School of Management University of Massachusetts Amherst, Massachusetts 01003 SCH-MGMT 825 Management Science Seminar Variational Inequalities, Networks, and Game Theory Spring 2014 c Anna Nagurney 2014 Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar Projected Dynamical Systems A plethora of equilibrium problems, including network equilibrium problems, can be uniformly formulated and studied as finite-dimensional variational inequality problems, as we have seen in the preceding lectures. Indeed, it was precisely the traffic network equilibrium problem, as stated by Smith (1979), and identified by Dafermos (1980) to be a variational inequality problem, that gave birth to the ensuing research activity in variational inequality theory and applications in transportation science, regional science, operations research/management science, and, more recently, in economics. Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar Projected Dynamical Systems Usually, using this methodology, one first formulates the governing equilibrium conditions as a variational inequality problem. Qualitative properties of existence and uniqueness of solutions to a variational inequality problem can then be studied using the standard theory or by exploiting problem structure. Finally, a variety of algorithms for the computation of solutions to finite-dimensional variational inequality problems are now available (see, e.g., Nagurney (1999, 2006)). Professor Anna Nagurney SCH-MGMT 825 Management Science Seminar Projected Dynamical Systems Finite-dimensional variational inequality theory by itself, however, provides no framework for the study of the dynamics of competitive systems. Rather, it captures the system at its equilibrium state and, hence, the focus of this tool is static in nature.
    [Show full text]
  • Jackson, Trachette L. Alternative Names: Jackson, Trachette L.;
    Biographical Description for The HistoryMakers® Video Oral History with Trachette Jackson PERSON Jackson, Trachette L. Alternative Names: Jackson, Trachette L.; Life Dates: July 24, 1972- Place of Birth: , Residence: , (from ? to ?) Occupations: Mathematician; Math Professor Biographical Note Mathematician and professor of mathematics Trachette Jackson was born on July 24, 1972. She attended a large public high school and spent her summers at a math-science honors program hosted by Arizona State University where she developed her passion for mathematics. Jackson was an excellent student and graduated in the top twenty of her class. In 1994, she received her B.S. degree in mathematics from Arizona State University. Jackson earned her M.S. and Ph.D. degrees from the University of Washington in 1996 and 1998, respectively. Her Ph.D. thesis was entitled “Mathematical Models in Two-Step Cancer Chemotherapy.” She completed postdoctoral positions with the Institute for Mathematics and its Applications at the University of Minnesota, and at Duke University. In 2000, Jackson joined the faculty at the University of Michigan as an assistant professor in the mathematics department. She was promoted to associate professor in 2003. In 2006, Jackson was appointed as the co- principal investigator of the National Science Foundation (NSF)-funded University of Michigan SUBMERGE (Supplying Undergraduate Biology and Mathematics Education Research Group Experiences) program. SUBMERGE is an interdisciplinary program in math and biology that exposes undergraduates to experimental biology within mathematical modeling and gives exposure to quantitative analysis in biology courses. In 2008, she became a full professor in Michigan’s mathematics department. Jackson is the co-founder, and is the co-director, of the the Mathematics Biology Research Group (MBRG).
    [Show full text]
  • Topological Dynamics: a Survey
    Topological Dynamics: A Survey Ethan Akin Mathematics Department The City College 137 Street and Convent Avenue New York City, NY 10031, USA September, 2007 Topological Dynamics: Outline of Article Glossary I Introduction and History II Dynamic Relations, Invariant Sets and Lyapunov Functions III Attractors and Chain Recurrence IV Chaos and Equicontinuity V Minimality and Multiple Recurrence VI Additional Reading VII Bibliography 1 Glossary Attractor An invariant subset for a dynamical system such that points su±ciently close to the set remain close and approach the set in the limit as time tends to in¯nity. Dynamical System A model for the motion of a system through time. The time variable is either discrete, varying over the integers, or continuous, taking real values. Our systems are deterministic, rather than stochastic, so the the future states of the system are functions of the past. Equilibrium An equilibrium, or a ¯xed point, is a point which remains at rest for all time. Invariant Set A subset is invariant if the orbit of each point of the set remains in the set at all times, both positive and negative. The set is + invariant, or forward invariant, if the forward orbit of each such point remains in the set. Lyapunov Function A continuous, real-valued function on the state space is a Lyapunov function when it is non-decreasing on each orbit as time moves forward. Orbit The orbit of an initial position is the set of points through which the system moves as time varies positively and negatively through all values. The forward orbit is the subset associated with positive times.
    [Show full text]
  • Glossary of Some Terms in Dynamical Systems Theory
    Glossary of Some Terms in Dynamical Systems Theory A brief and simple description of basic terms in dynamical systems theory with illustrations is given in the alphabetic order. Only those terms are described which are used actively in the book. Rigorous results and their proofs can be found in many textbooks and monographs on dynamical systems theory and Hamiltonian chaos (see, e.g., [1, 6, 15]). Bifurcations Bifurcation means a qualitative change in the topology in the phase space under varying control parameters of a dynamical system under consideration. The number of stationary points and/or their stability may change when varying the parameters. Those values of the parameters, under which bifurcations occur, are called critical or bifurcation values. There are also bifurcations without changing the number of stationary points but with topology change in the phase space. One of the examples is a separatrix reconnection when a heteroclinic connection changes to a homoclinic one or vice versa. Cantori Some invariant tori in typical unperturbed Hamiltonian systems break down under a perturbation. Suppose that an invariant torus with the frequency f breaks down at a critical value of the perturbation frequency !.Iff =! is a rational number, then a chain of resonances or islands of stability appears at its place. If f =! is an irrational number, then a cantorus appears at the place of the corresponding invariant torus. Cantorus is a Cantor-like invariant set [7, 12] the motion on which is unstable and quasiperiodic. Cantorus resembles a closed curve with an infinite number of gaps. Therefore, cantori are fractal. Since the motion on a cantorus is unstable, it has stable and unstable manifolds.
    [Show full text]
  • 2021 September-October Newsletter
    Newsletter VOLUME 51, NO. 5 • SEPTEMBER–OCTOBER 2021 PRESIDENT’S REPORT This is a fun report to write, where I can share news of AWM’s recent award recognitions. Sometimes hearing about the accomplishments of others can make The purpose of the Association for Women in Mathematics is us feel like we are not good enough. I hope that we can instead feel inspired by the work these people have produced and energized to continue the good work we • to encourage women and girls to ourselves are doing. study and to have active careers in the mathematical sciences, and We’ve honored exemplary Student Chapters. Virginia Tech received the • to promote equal opportunity and award for Scientific Achievement for offering three different research-focused the equal treatment of women and programs during a pandemic year. UC San Diego received the award for Professional girls in the mathematical sciences. Development for offering multiple events related to recruitment and success in the mathematical sciences. Kutztown University received the award for Com- munity Engagement for a series of events making math accessible to a broad community. Finally, Rutgers University received the Fundraising award for their creative fundraising ideas. Congratulations to all your members! AWM is grateful for your work to support our mission. The AWM Research Awards honor excellence in specific research areas. Yaiza Canzani was selected for the AWM-Sadosky Research Prize in Analysis for her work in spectral geometry. Jennifer Balakrishnan was selected for the AWM- Microsoft Research Prize in Algebra and Number Theory for her work in computa- tional number theory.
    [Show full text]