Table 7. Distance and Frequency of Amino Acid Polymorphisms

Total Page:16

File Type:pdf, Size:1020Kb

Table 7. Distance and Frequency of Amino Acid Polymorphisms Table 7. Distance and frequency of amino acid polymorphisms Type of Physiochemical Obseved frequency** / Amino acid pair mutation distance* expected frequency** Alanine Threonine Transition 58 1.46 Alanine Valine Transition 64 0.92 Arginine Cysteine Transition 180 0.41 Arginine Glutamine Transition 43 0.98 Arginine Glycine Transition 125 0.43 Arginine Histidine Transition 29 1.03 Arginine Lysine Transition 26 1.33 Arginine Tryptophan Transition 101 0.22 Asparagine Aspartic acid Transition 23 1.44 Asparagine Serine Transition 46 1.62 Aspartic acid Glycine Transition 94 0.58 Cysteine Tyrosine Transition 194 0.33 Glutamic acid Glycine Transition 98 0.58 Glutamic acid Lysine Transition 56 1.14 Glycine Serine Transition 56 1.14 Histidine Tyrosine Transition 83 0.96 Isoleucine Methionine Transition 10 1.47 Isoleucine Threonine Transition 89 0.73 Isoleucine Valine Transition 29 2.25 Leucine Phenylalanine Transition 22 0.48 Leucine Proline Transition 98 0.35 Leucine Serine Transition 145 1.13 Methionine Threonine Transition 81 1.09 Methionine Valine Transition 21 0.97 Phenylalanine Serine Transition 155 0.51 Proline Serine Transition 74 1.03 Alanine Aspartic acid Transversion 126 0.57 Alanine Glutamic acid Transversion 107 0.79 Alanine Glycine Transversion 60 0.95 Alanine Proline Transversion 27 0.80 Alanine Serine Transversion 99 2.46 Arginine Glycine Transversion 125 0.31 Arginine Isoleucine Transversion 97 0.58 Arginine Leucine Transversion 102 0.39 Arginine Methionine Transversion 91 0.46 Arginine Proline Transversion 103 0.35 Arginine Serine Transversion 110 0.68 Arginine Threonine Transversion 71 0.58 Arginine Tryptophan Transversion 101 0.16 Asparagine Histidine Transversion 68 1.57 Asparagine Isoleucine Transversion 149 0.60 Asparagine Lysine Transversion 94 1.12 Asparagine Threonine Transversion 65 1.66 Asparagine Tyrosine Transversion 143 0.55 Aspartic acid Glutamic acid Transversion 45 2.24 Aspartic acid HistidineTransversion810.47 Aspartic acid Tyrosine Transversion 160 0.30 Aspartic acid Valine Transversion 152 0.36 Cysteine Glycine Transversion 159 0.46 Cysteine Phenylalanine Transversion 205 0.37 Cysteine Serine Transversion 112 0.73 Cysteine Tryptophan Transversion 215 0.19 Glutamic acid Valine Transversion 121 0.45 Glutamine Glutamic acid Transversion 29 1.31 Glutamine Histidine Transversion 24 1.32 Glutamine Leucine Transversion 113 0.58 Glutamine Lysine Transversion 53 1.57 Glutamine Proline Transversion 76 1.04 Glycine Tryptophan Transversion 184 0.27 Glycine Valine Transversion 109 0.36 Histidine Leucine Transversion 99 0.45 Histidine Proline Transversion 77 0.80 Isoleucine Leucine Transversion 5 1.72 Isoleucine Lysine Transversion 102 0.57 Isoleucine Methionine Transversion 10 1.16 Isoleucine Phenylalanine Transversion 21 0.57 Isoleucine Serine Transversion 142 0.50 Leucine Methionine Transversion 15 1.84 Leucine Phenylalanine Transversion 22 0.88 Leucine Tryptophan Transversion 61 0.45 Leucine Valine Transversion 32 1.15 Lysine Methionine Transversion 95 0.52 Lysine Threonine Transversion 78 0.84 Phenylalanine Tyrosine Transversion 22 1.90 Phenylalanine Valine Transversion 50 0.56 Proline Threonine Transversion 38 0.89 Serine Threonine Transversion 58 2.37 Serine Tryptophan Transversion 177 0.28 Serine Tyrosine Transversion 144 0.49 * Distance is measured with the Granthem matrix. ** Only includes amino acid changes caused by a single nucleotide change..
Recommended publications
  • Metabolic Engineering of Escherichia Coli for Poly(3-Hydroxybutyrate)
    Lin et al. Microb Cell Fact (2015) 14:185 DOI 10.1186/s12934-015-0369-3 RESEARCH Open Access Metabolic engineering of Escherichia coli for poly(3‑hydroxybutyrate) production via threonine bypass Zhenquan Lin1,2,3†, Yan Zhang1,2,3†, Qianqian Yuan1,2,3,4, Qiaojie Liu1,2,3, Yifan Li1,2,3, Zhiwen Wang1,2,3, Hongwu Ma4*, Tao Chen1,2,3,5* and Xueming Zhao1,2,3 Abstract Background: Poly(3-hydroxybutyrate) (PHB), have been considered to be good candidates for completely biode- gradable polymers due to their similar mechanical properties to petroleum-derived polymers and complete biodeg- radability. Escherichia coli has been used to simulate the distribution of metabolic fluxes in recombinant E. coli pro- ducing poly(3-hydroxybutyrate) (PHB). Genome-scale metabolic network analysis can reveal unexpected metabolic engineering strategies to improve the production of biochemicals and biofuels. Results: In this study, we reported the discovery of a new pathway called threonine bypass by flux balance analysis of the genome-scale metabolic model of E. coli. This pathway, mainly containing the reactions for threonine synthesis and degradation, can potentially increase the yield of PHB and other acetyl-CoA derived products by reutilizing the CO2 released at the pyruvate dehydrogenase step. To implement the threonine bypass for PHB production in E. coli, we deregulated the threonine and serine degradation pathway and enhanced the threonine synthesis, resulting in 2.23-fold improvement of PHB titer. Then, we overexpressed glyA to enhance the conversion of glycine to serine and activated transhydrogenase to generate NADPH required in the threonine bypass.
    [Show full text]
  • Effect of Peptide Histidine Isoleucine on Water and Electrolyte Transport in the Human Jejunum
    Gut: first published as 10.1136/gut.25.6.624 on 1 June 1984. Downloaded from Gut, 1984, 25, 624-628 Alimentary tract and pancreas Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum K J MORIARTY, J E HEGARTY, K TATEMOTO, V MUTT, N D CHRISTOFIDES, S R BLOOM, AND J R WOOD From the Department of Gastroenterology, St Bartholomew's Hospital, London, The Liver Unit, King's College Hospital, London, Department ofMedicine, Hammersmith Hospital, London, and Department of Biochemistry, Karolinska Institute, Stockholm, Sweden SUMMARY Peptide histidine isoleucine, a 27 amino acid peptide with close amino acid sequence homology to vasoactive intestinal peptide and secretin, is distributed throughout the mammalian intestinal tract, where it has been localised to intramural neurones. An intestinal perfusion technique has been used to study the effect of intravenous peptide histidine isoleucine (44.5 pmol/kg/min) on water and electrolyte transport from a plasma like electrolyte solution in human jejunum in vivo. Peptide histidine isoleucine infusion produced peak plasma peptide histidine isoleucine concentrations in the range 2000-3000 pmolIl, flushing, tachycardia and a reduction in diastolic blood pressure. Peptide histidine isoleucine caused a significant inhibition of net absorption of water, sodium, potassium and bicarbonate and induced a net secretion of chloride, these changes being completely reversed during the post-peptide histidine isoleucine period. These findings suggest that endogenous peptide histidine isoleucine may participate in the neurohumoral regulation of water and electrolyte transport in the human jejunum. http://gut.bmj.com/ Peptide histidine isoleucine, isolated originally from INTESTINAL PERFUSION mammalian small intestine, is a 27-amino acid After an eight hour fast, each subject swallowed a peptide having close amino acid sequence homology double lumen intestinal perfusion tube, incorpo- to vasoactive intestinal peptide and secretin.
    [Show full text]
  • Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2
    Research Article Isoleucine, an Essential Amino Acid, Prevents Liver Metastases of Colon Cancer by Antiangiogenesis Kazumoto Murata1 and Masami Moriyama2 1The First Department of Internal Medicine, Mie University School of Medicine, Tsu, Mie, Japan and 2Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan Abstract infection in the airways of cystic fibrosis (8), and susceptibility to salmonella infection in mouse intestinal tracts (9). In addition to In spite of recent advances in the treatment of colon cancer, h multiple liver metastases of colon cancer are still difficult to their direct antimicrobial activities, -defensins are strong treat. Some chemotherapeutic regimens have been reported to chemotactic factors for memory T cells and dendritic cells, be efficient, but there is a high risk of side effects associated suggesting that they also play an important role in acquired immunity (10–12). h-defensins are also inducible by inflammatory with these. Here, we show that isoleucine, an essential amino a h acid, prevents liver metastases in a mouse colon cancer cytokines, such as tumor necrosis factor- and interleukin-1 (13, 14). Recently, Fehlbaum et al. (15) reported that isoleucine metastatic model. Because isoleucine is a strong inducer of h B-defensin, we first hypothesized that it prevented liver and its analogues are highly specific inducers of -defensins. We thus originally hypothesized that isoleucine may contribute to metastases via the accumulation of dendritic cells or memory B tumor immunity through both innate and acquired immunity by T cells through up-regulation of -defensin. However, neither h B-defensin nor immunologic responses were induced by induction of -defensins.
    [Show full text]
  • The Role of Agmatine and Arginine Decarboxylase in Ischemic Tolerance After Transient Cerebral Ischemia in Rat Models
    The role of agmatine and arginine decarboxylase in ischemic tolerance after transient cerebral ischemia in rat models Jin Young Jung Department of Medicine The Graduate School, Yonsei University The role of agmatine and arginine decarboxylase in ischemic tolerance after transient cerebral ischemia in rat models Directed by Professor Seung Kon Huh The Doctoral Dissertation submitted to the Department of Medicine, the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Jin Young Jung May 2007 This certifies that the Doctoral Dissertation of Jin Young Jung is approved. __________________________________ Thesis Supervisor: Seung Kon Huh __________________________________ Jong Eun Lee: Thesis Committee Member #1 __________________________________ Jin Woo Chang: Thesis Committee Member #2 __________________________________ Duck Sun Ahn: Thesis Committee Member #3 __________________________________ Ji Cheol Shin: Thesis Committee Member #4 The Graduate School Yonsei University May 2007 Acknowledgements Some may consider this short section of the thesis trivial but for me it is a chance to express my sincerest gratitude to those that I am truly thankful. First of all, I would like to express my deepest gratitude to my thesis supervisor and mentor Professor Seung Kon Huh. He has inspired me when I was troubled and always gave me a warm heart. I would also like to thank Professor Jong Eun Lee who shared her valuable time on the execution and interpretation of this study, Professor Jin Woo Chang who always inspiring me with passion and discerning insight. Professor Duck Sun Ahn whose insightful comments were essential in completing this thesis, Professor Ji Cheol Shin for the excellent suggestion for improvement in this thesis.
    [Show full text]
  • Workshop 1 – Biochemistry (Chem 160)
    Workshop 1 – Biochemistry (Chem 160) 1. Draw the following peptide at pH = 7 and make sure to include the overall charge, label the N- and C-terminus, the peptide bond and the -carbon. AVDKY Give the overall charge of the peptide at pH = 3 and 12. 2. Draw a titration curve for Arg, make sure to label the different points. Determine the pI for Arg. 3. Nonpolar solute + water = solution a. What is the S of the universe, system and surroundings? The S of the universe would decrease this is why it is not spontaneous, the S of the system would increase but to a lesser extent to which the S of the surrounding would decrease S universe = S system + S surroundings 4. What is the hydrophobic effect and explain why it is thermodynamically favorable. The hydrophobic effect is when hydrophobic molecules tend to clump together burying them and placing hydrophilic molecules on the outside. The reason this is thermodynamically favorable is because it frees caged water molecules when burying clumping the hydrophobic molecules together. 5. Urea dissolves very readily in water, but the solution becomes very cold as the urea dissolves. How is this possible? Urea dissolves in water because when dissolving there is a net increase in entropy of the universe. The heat exchange, getting colder only reflects the enthalpy (H) component of the total energy change. The entropy change is high enough to offset the enthalpy component and to add up to an overall -G 6. A mutation that changes an alanine residue in the interior of a protein to valine is found to lead to a loss of activity.
    [Show full text]
  • Thermal Decomposition of the Amino Acids Glycine, Cysteine, Aspartic Acid, Asparagine, Glutamic Acid, Glutamine, Arginine and Histidine
    bioRxiv preprint doi: https://doi.org/10.1101/119123; this version posted March 22, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine Ingrid M. Weiss*, Christina Muth, Robert Drumm & Helmut O.K. Kirchner INM-Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbruecken Germany *Present address: Universität Stuttgart, Institut für Biomaterialien und biomolekulare Systeme, Pfaffenwaldring 57, D-70569 Stuttgart, Germany Abstract Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185°C and 280°C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70 % volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H2O, some NH3 and no CO2. Cysteine produces CO2 and little else. The reactions are described by polynomials, AA → a (NH3) + b (H2O) + c (CO2) + d (H2S) + e (residue), with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. 1. Motivation Amino acids might have been synthesized under prebiological conditions on earth or deposited on earth from interstellar space, where they have been found [Follmann and Brownson, 2009]. Robustness of amino acids against extreme conditions is required for early occurrence, but little is known about their nonbiological thermal destruction. There is hope that one might learn something about the molecules needed in synthesis from the products found in decomposition.
    [Show full text]
  • Effects of Single Amino Acid Deficiency on Mrna Translation Are Markedly
    www.nature.com/scientificreports OPEN Efects of single amino acid defciency on mRNA translation are markedly diferent for methionine Received: 12 December 2016 Accepted: 4 May 2018 versus leucine Published: xx xx xxxx Kevin M. Mazor, Leiming Dong, Yuanhui Mao, Robert V. Swanda, Shu-Bing Qian & Martha H. Stipanuk Although amino acids are known regulators of translation, the unique contributions of specifc amino acids are not well understood. We compared efects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no signifcant efect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a signifcant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but efects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full
    [Show full text]
  • Analysis of the Effects of Three Commercially Available Supplements on Performance, Exercise Induced Changes and Bio-Markers in Recreationally Trained Young Males
    Analysis of the effects of three commercially available supplements on performance, exercise induced changes and bio-markers in recreationally trained young males Robert Cooper A thesis is submitted in partial fulfilment of the requirements of the University of Greenwich for the Degree of Doctor of Philosophy This research programme was carried out in collaboration with GlaxoSmithKline Maxinutrition division December 2013 School of Science University of Greenwich, Medway Campus Chatham Maritime, Kent ME4 4TB, UK i DECLARATION “I certify that this work has not been accepted in substance for any degree, and is not concurrently being submitted for any degree other than that of Doctor of Philosophy being studied at the University of Greenwich. I also declare that this work is the result of my own investigations except where otherwise identified by references and that I have not plagiarised the work of others”. Signed Date Mr Robert Cooper (Candidate) …………………………………………………………………………………………………………………………… PhD Supervisors Signed Date Dr Fernando Naclerio (1st supervisor) Signed Date Dr Mark Goss-Sampson (2nd supervisor) ii ACKNOWLEDGEMENTS Thank you to my supervisory team, Dr Fernando Naclerio, Dr Mark Goss Sampson and Dr Judith Allgrove for their support and guidance throughout my PhD. Particular thanks to Dr Fernando Naclerio for his tireless efforts, guidance and support in developing the research and my own research and communication skills. Thank you to Dr Eneko Larumbe Zabala for the statistics support. I would like to take this opportunity to thank my wonderful mother and sister who continue to give me the support and drive to succeed. Also on a personal level thank you to my amazing fiancée, Jennie Swift.
    [Show full text]
  • Amino Acid Recognition by Aminoacyl-Trna Synthetases
    www.nature.com/scientificreports OPEN The structural basis of the genetic code: amino acid recognition by aminoacyl‑tRNA synthetases Florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1 Storage and directed transfer of information is the key requirement for the development of life. Yet any information stored on our genes is useless without its correct interpretation. The genetic code defnes the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this process. We extensively characterize how these enzymes distinguish all natural amino acids based on the computational analysis of crystallographic structure data. The results of this meta-analysis show that the correct read-out of genetic information is a delicate interplay between the composition of the binding site, non-covalent interactions, error correction mechanisms, and steric efects. One of the most profound open questions in biology is how the genetic code was established. While proteins are encoded by nucleic acid blueprints, decoding this information in turn requires proteins. Te emergence of this self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily debated 1,2. Aminoacyl-tRNA synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently connected to the emergence of genetic coding. Tese enzymes link tRNA molecules with their amino acid cargo and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA features3, highly specifc non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated amino acid4–7 and to prevent errors in biosynthesis5,8.
    [Show full text]
  • Relative Reaction Rates of the Amino Acids Cysteine, Methionine, and Histidine with Analogs of the Anti-Cancer Drug Cisplatin Cynthia A
    Western Kentucky University TopSCHOLAR® Honors College Capstone Experience/Thesis Honors College at WKU Projects 5-11-2015 Relative Reaction Rates of the Amino Acids Cysteine, Methionine, and Histidine with Analogs of the Anti-Cancer Drug Cisplatin Cynthia A. Tope Western Kentucky University, [email protected] Follow this and additional works at: http://digitalcommons.wku.edu/stu_hon_theses Part of the Medicinal-Pharmaceutical Chemistry Commons Recommended Citation Tope, Cynthia A., "Relative Reaction Rates of the Amino Acids Cysteine, Methionine, and Histidine with Analogs of the Anti-Cancer Drug Cisplatin" (2015). Honors College Capstone Experience/Thesis Projects. Paper 571. http://digitalcommons.wku.edu/stu_hon_theses/571 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Honors College Capstone Experience/ Thesis Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. RELATIVE REACTION RATES OF THE AMINO ACIDS CYSTEINE, METHIONINE, AND HISTIDINE WITH ANALOGS OF THE ANTI-CANCER DRUG CISPLATIN A Capstone Experience/Thesis Project Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Science with Honors College Graduate Distinction at Western Kentucky University By: Cynthia A. Tope ***** Western Kentucky University 2015 CE/T Committee: Approved by: Professor Kevin Williams, Advisor _________________________ Professor Darwin Dahl Advisor Professor Lee Ann Smith Department of Chemistry Copyright: Cynthia A. Tope 2015 ABSTRACT We are studying the reaction of analogs of the anticancer drug cisplatin with amino acids that differ in size and shape. The reaction of cisplatin with proteins likely precedes reaction with DNA in the body, forming a variety of products that may be toxic to the human body.
    [Show full text]
  • 1 Isolation and Characterization of Cyclotides from Brazilian Psychotria
    Isolation and Characterization of Cyclotides from Brazilian Psychotria: Significance in Plant Defense and Co-occurrence with Antioxidant Alkaloids Hélio N. Matsuura,† Aaron G. Poth,‡ Anna C. A. Yendo,† Arthur G. Fett-Neto,† and David J. Craik‡,* †Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil ‡Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia. 1 ABSTRACT Plants from the genus Psychotria include species bearing cyclotides and/or alkaloids. The elucidation of factors affecting the metabolism of these molecules as well as their activities may help to understand their ecological function. In the present study, high concentrations of antioxidant indole alkaloids were found to co-occur with cyclotides in Psychotria leiocarpa and P. brachyceras. The concentrations of the major cyclotides and alkaloids in P. leiocarpa and P. brachyceras were monitored following herbivore- and pathogen-associated challenges, revealing a constitutive, phytoanticipin-like accumulation pattern. Psyleio A, the most abundant cyclotide found in the leaves of P. leiocarpa, and also found in P. brachyceras leaves, exhibited insecticidal activity against Helicoverpa armigera larvae. Addition of ethanol in the vehicle for peptide solubilization in larval feeding trials proved deleterious to insecticidal activity, and resulted in increased rates of larval survival in treatments containing indole alkaloids. This suggests that plant alkaloids ingested by larvae might contribute to herbivore oxidative stress detoxification, corroborating, in a heterologous system with artificial oxidative stress stimulation, the antioxidant efficiency of Psychotria alkaloids previously observed in planta. Overall, the present study reports data for eight novel cyclotides, the identification of P.
    [Show full text]
  • Asparagine-Proline Sequence Within Membrane-Spanning Segment of SREBP Triggers Intramembrane Cleavage by Site-2 Protease
    Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by Site-2 protease Jin Ye*†, Utpal P. Dave´ *†, Nick V. Grishin‡, Joseph L. Goldstein*§, and Michael S. Brown*§ Departments of *Molecular Genetics and ‡Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046 Contributed by Joseph L. Goldstein, March 16, 2000 The NH2-terminal domains of membrane-bound sterol regulatory nus. It translocates to the nucleus, where it activates more than element-binding proteins (SREBPs) are released into the cytosol by 20 genes encoding enzymes of cholesterol and fatty acid synthesis regulated intramembrane proteolysis, after which they enter the as well as the low density lipoprotein receptor (6, 7). When nucleus to activate genes encoding lipid biosynthetic enzymes. sterols build up in cells, the SREBP͞SCAP complex fails to exit Intramembrane proteolysis is catalyzed by Site-2 protease (S2P), a the ER, and it never reaches S1P (8, 9). As a result, the hydrophobic zinc metalloprotease that cleaves SREBPs at a mem- NH2-terminal domains of the SREBPs are no longer released brane-embedded leucine-cysteine bond. In the current study, we into the nucleus, and transcription of the target genes declines. use domain-swapping methods to localize the residues within This mechanism allows cholesterol to inhibit its own synthesis the SREBP-2 membrane-spanning segment that are required for and uptake, thereby preventing cholesterol overaccumulation in cleavage by S2P. The studies reveal a requirement for an asparag- cells. ine-proline sequence in the middle third of the transmembrane The human gene encoding S2P was cloned by complementa- segment.
    [Show full text]