Journal of Threatened Taxa

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Threatened Taxa PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles online OPEN ACCESS every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication Observations on nesting activity, life cycle, and brood ball morphometry of the Bordered Dung Beetle Oniticellus cinctus (Fabricius, 1775) (Coleoptera: Scarabaeidae) under laboratory conditions Amar Paul Singh, Kritsh De, Shagun Mahajan, Ritwik Mondal & Virendra Prasad Uniyal 26 July 2019 | Vol. 11 | No. 9 | Pages: 14137–14143 DOI: 10.11609/jot.4023.11.9.14137-14143 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors. Partner Member Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2019 | 11(9): 14137–14143 Observations on nesting activity, life cycle, and brood ball morphometry of the Bordered Dung Beetle Communication Oniticellus cinctus (Fabricius, 1775) (Coleoptera: ISSN 0974-7907 (Online) Scarabaeidae) under laboratory conditions ISSN 0974-7893 (Print) PLATINUM 1 2 3 4 Amar Paul Singh , Kritsh De , Shagun Mahajan , Ritwik Mondal & OPEN ACCESS Virendra Prasad Uniyal 5 1,2,5 Department of Landscape Level Planning & Management, Wildlife Insttute of India, Chandrabani, Dehradun, Utarakhand 248001, India. 1,4 Department of Zoology, University of North Bengal, Darjeeling, West Bengal 734013, India. 3 Department of Zoology, Alpine Insttute of Management and Technology, Dehradun, Utarakhand 248007, India. 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] (corresponding author), 5 [email protected] Abstract: The nestng actvity, life cycle, and brood ball morphometry of the dung beetle Onitcellus cinctus (Fabricius, 1775) (Coleoptera: Scarabaeidae) were studied under laboratory conditons for the frst tme in India. The females made a brood chamber within the dung mass provided, wherein they made brood balls to lay eggs. The life cycle includes egg, larva (three instars), pupa, and adult stages. The total duraton for the development was about one month. The study found that there was a signifcant diference present in the brood ball diameter (except in the frst and second instars) and brood ball weight (except in the second instar and pupa) of the six life cycle stages. It was also found that brood ball weight and diameter have a signifcant positve correlaton as well as a linear relatonship. Keywords: Morphometry, nidifcaton, scarabaeid beetle, Scarabaeinae, weight-diameter relatonship. DOI: htps://doi.org/10.11609/jot.4023.11.9.14137-14143 Editor: Hemant V. Ghate, Modern College of Arts Science and Commerce, Pune, India. Date of publicaton: 26 July 2019 (online & print) Manuscript details: #4023 | Received 23 January 2018 | Final received 23 June 2019 | Finally accepted 02 July 2019 Citaton: Singh, A.P., K. De, S. Mahajan, R. Mondal & V.P. Uniyal (2019). Observatons on nestng actvity, life cycle, and brood ball morphometry of the Bordered Dung Beetle Onitcellus cinctus (Fabricius, 1775) (Coleoptera: Scarabaeidae) under laboratory conditons. Journal of Threatened Taxa 11(9): 14137–14143. htps:// doi.org/10.11609/jot.4023.11.9.14137-14143 Copyright: © Singh et al. 2019. Creatve Commons Atributon 4.0 Internatonal License. JoTT allows unrestricted use, reproducton, and distributon of this artcle in any medium by adequate credit to the author(s) and the source of publicaton. Funding: No funding was received for this study. Competng interests: The authors declare no competng interests. Author details: Amar Paul Singh was a postgraduate (zoology) student and he is presently working as a researcher. His research interests include diversity, taxonomy, ecology and behaviour of insects partcularly in beetles. Kritish De is presently working as a researcher and his research interests include diversity and ecology of insects. Shagun Mahajan was a postgraduate (zoology) student and she is interested in the feld of biodiversity and ecology. Ritwik Mondal is working as an assistant professor. He has previous research experience in the feld of mosquito ecology, vector biology and fsh toxicology. His current research interest is in the feld of molecular taxonomy of arthropods and fsh as well as in the physiological and genotoxic efects of insectcides and pestcides on fsh. Virendra Prasad Uniyal is working as Senior Professor and Scientst G. He is a Fellow of The Royal Entomological Society, London. His research interests include ecology and systematc of insects, bioindicators, biodiversity surveys and ecological monitoring in western Himalayan protected areas. Author contributon: APS—collecton of samples, laboratory work, and preparaton of the manuscript; KD—laboratory work, data analysis, and preparaton of the manuscript; SM—collecton of samples and laboratory work; RM—designing the study, directng and supervising laboratory work and data analysis, and preparaton of the manuscript; VPU—designing the study, directng and supervising laboratory work and data analysis, and preparaton of the manuscript. Acknowledgements: Authors are thankful to the Director and the Dean, Wildlife Insttute of India, Dehradun and Dr V.P. Sharma, Principal, Alpine Insttute of Management and Technology, Dehradun for their support and for providing necessary facilites for the study. 14137 Nestng, life cycle and brood ball of Bordered Dung Beetle Singh et al. INTRODUCTION tray. Fresh cow dung was provided and the old dung replaced daily. The coleopteran insects (beetles) belonging to the Afer about six days from the release of the adults subfamilies Aphodiinae and Scarabaeinae under the in the rearing trays, the nest constructon occurred. A family Scarabaeidae are commonly called dung beetles total of 50 brood balls (10 from each pair in each tray) as they feed primarily on mammalian dung and also were selected for our study; the rest of the brood balls use it for providing nestng and food for their larvae. were removed from the tray. Regular observatons were The beetles of the subfamily Scarabaeinae are well- conducted once a day (at 08.00h) by opening the brood represented insects in the tropical regions (Filgueiras et balls to observe the development of the individual from al. 2009). Both sexes of the adults were identfed with egg to adult stage. The opening in the brood balls was the help of published taxonomic keys (Chandra & Gupta immediately sealed afer observaton with the help of 2013). fresh dung. The weight and diameter of the brood balls Globally, some studies have been done to understand were taken on the fnal day of each developmental stage nidifcaton of dung beetles. Klemperer (1982a,b,c, by Kerro laboratory analytcal balance (accuracy 0.01gm) 1983a,b,c, 1984) studied the nestng behaviour of and Mitutoyo digital vernier calliper. several species of dung beetles. Biscoe (1983) studied One-way ANOVA followed by post hoc Dunn’s test the efects of ovarian conditon on the nestng behaviour was performed to fnd out the presence of a signifcant of Copris diversus Waterhouse, 1891. Sato & Imamori diference (if any) in the diameter and weight of brood (1987) studied the nestng behaviour of the African balls between lifecycle stages. Pearson’s product- Ball-roller Kheper platynotus (Bates, 1888). Edwards & moment correlaton coefcient (r) was calculated Aschenborn (1987) studied paterns of nestng and dung to explore the strength of associaton between the burial in Onits dung beetles. Davis (1989) studied nestng diameter and weight of brood balls between lifecycle of the Afrotropical Onitcellus and its evolutonary trend stages. Linear regression model between diameter and from soil to dung. weight of brood balls in diferent life cycle stages was So far, there are no studies to understand the calculated. All the statstcal analysis was performed morphometry of brood balls (the round-shaped ball using R version 3.3.1 (R Core Team 2016). made up of dung constructed by the female to lay eggs within it) as well as the weight-diameter relatonship of diferent life cycle stages of Onitcellus cinctus from RESULTS India. The life cycle of Onitcellus cinctus includes egg, three larval (frst, second, and third instar) stages, pupal MATERIAL AND METHODS stage, and adult. The body of the adult (Image 1A) is dorsoventrally The study was carried out from the frst week of compressed and oblong and the colour is shiny black. May to the end of the second week of June 2017 for The head is shining, smooth, and without any carina a period of about six weeks. The adults (both males (elevaton or ridge of the cutcle). The antennae are and females) of Onitcellus cinctus were collected from 8-segmented. The scutellum is visible. The pronotum is dung that was 2–3 days old using hand-sortng method smooth and a deeply impressed median longitudinal line and were transported to the laboratory of the zoology is present upon its posterior half. The elytra (external department, Alpine Insttute of Management and and sclerotzed forewings) are deeply striated and each Technology, Dehradun. elytron has a pale yellow external border.
Recommended publications
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • Revision of the Genera Tiniocellus Péringuey, 1901 and Nitiocellus Gen
    Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 47 (2010) : 71‒126. REVISION OF THE GENERA TINIOCELLUS PÉRINGUEY, 1901 AND NITIOCELLUS GEN. N. (COLEOPTERA, SCARABAEIDAE, ONITICELLINI) Tristão Branco Rua de Camões, 788, 2º Dto, P-4000-142 Porto, Portugal − [email protected] Abstract: The taxonomical history of the genus Tiniocellus Péringuey, 1901 and the 10 species-group names that have been associated with it is reviewed, and the reasons that justify the creation of Nitiocellus gen. n. for Oniticellus panthera Boucomont, 1921 and Oniticellus collarti Janssens, 1939, are explained. The taxonomy of the Oniticellini is briefly reviewed and a key is provided for the separation of Tiniocellus and Nitiocellus gen. n. from all the other genera currently ranged in the tribe. The synonymies of Oniticellus variegatus Fåhraeus, 1857 and Oniticellus humilis Gerstaecker, 1871 with Tiniocellus spinipes (Roth, 1851) are confirmed. The Asian Tiniocellus imbellis (Bates, 1891) and the African Tiniocellus setifer (Kraatz, 1895) are rehabilitated as good species. Oniticellus modestus Arrow, 1908 is synonymised with T. imbellis, and Tiniocellus asmarensis Balthasar, 1968 with T. spinipes. Three Afrotropical species, one of them containing two subspecies, are described: T. praetermissus sp. n. from western Africa, T. dolosus sp. n. from eastern, central and western Africa, T. eurypygus sp. n. from South Africa, the nominotypical subspecies from the uplands west of the Drakensberg mountain range, and T. eurypygus transdrakensbergensis ssp. n. from the lowlands east of the same mountain range. Keys are provided to the species and sub- species of Tiniocellus, and to the species of Nitiocellus gen. n. For this study 4,628 specimens were examined, including the name-bearing types of all the species-group names, except that of T.
    [Show full text]
  • Oniticellus (Liatongus)
    Zootaxa 3974 (1): 145–147 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3974.1.13 http://zoobank.org/urn:lsid:zoobank.org:pub:AC597535-68B3-45C5-BBF2-AD0287A15A4C Oniticellus (Liatongus) boucomonti Balthasar, 1932 (Coleoptera: Scarabaeidae: Scarabaeinae: Oniticellini)—clarification of its taxonomic status by lectotype designation ALEŠ BEZDĚK1, DAVID KRÁL2 & FRANTIŠEK X. J. SLÁDEČEK1,3 1Biology Centre CAS, Institute of Entomology, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic. E-mail: [email protected] 2Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-128 43 Praha 2, Czech Republic. E-mail: [email protected] 3Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic. E-mail: [email protected] The dung beetle Oniticellus (Liatongus) boucomonti Balthasar, 1932 was described according to an unknown number of specimens labelled “Giufu-Shan, Szechuan” [= Jinfo Shan, ca. 29°04′N, 107°18′E, Chongqing province, China]. Balthasar evidently did not dissect these specimens and simply assumed that specimens with a small horn on vertex were males and specimens without such horn but with two elevated transversal carinae on head were the females of the same species (Balthasar 1932, 1935). Later, Janssens (1953) claimed that the type series of O. (L.) boucomonti was a mixture of two species. Specimens considered males by Balthasar were actually identical to the female of Liatongus denticornis (Fairmaire, 1887), and those sexed as females were identical to the female of L.
    [Show full text]
  • This Is a Copy of That Talk Including Her Notes
    1 I’ll start with the obvious– that dung beetles eat dung. But that’s not the only requirement to be categorized as a “dung beetle”. For example, in this region you have lots of water beetles, called hydrophilids, that have made a neat behavioral shift from swimming in water to swimming in fresh cow poop, BUT they are not called dung beetles even though they are absolutely beetles in dung. We can safely call them dung-inhabiting beetles, but “dung beetle” strictly refers to specific taxonomic groupings of beetles found within the scarab super family that have all life stages associated with dung. 2 Now, I come from an insect biodiversity background, which means that I really like to order and categorize life into evolutionarily meaningful arrangements. And that is taxonomy in a nutshell. For my group, the dung beetles, we can see how they fit into the larger classification of beetles. Those considered dung beetles include: those from family Geotrupidae, depending on who’s defining the term “dung beetle” and two scarab subfamilies: Scarabaeinae and Aphodiinae– these two groups are the ones I work most closely with. And for two groups who are very closely related, there is an incredible amount of variation in things like development, behavior, and size. For example, the adult body size of these guys can span four orders of magnitude! 3 I don’t want to bog you all down too much with the morphological characteristics we look at to distinguish scarabaeines from aphodiines, but in looking at a representative from each subfamily– we can see they’re pretty different and they serve as a great example of how so often in biology that form follows function.
    [Show full text]
  • Coleoptera: Introduction and Key to Families
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON Vol. IV. Part 1. HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS COLEOPTERA INTRODUCTION AND KEYS TO FAMILIES By R. A. CROWSON LONDON Published by the Society and Sold at its Rooms 41, Queen's Gate, S.W. 7 31st December, 1956 Price-res. c~ . HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows : I. Part 1. General Introduction. Part 9. Ephemeroptera. , 2. Thysanura. 10. Odonata. , 3. Protura. , 11. Thysanoptera. 4. Collembola. , 12. Neuroptera. , 5. Dermaptera and , 13. Mecoptera. Orthoptera. , 14. Trichoptera. , 6. Plecoptera. , 15. Strepsiptera. , 7. Psocoptera. , 16. Siphonaptera. , 8. Anoplura. 11. Hemiptera. Ill. Lepidoptera. IV. and V. Coleoptera. VI. Hymenoptera : Symphyta and Aculeata. VII. Hymenoptera: Ichneumonoidea. VIII. Hymenoptera : Cynipoidea, Chalcidoidea, and Serphoidea. IX. Diptera: Nematocera and Brachycera. X. Diptera: Cyclorrhapha. Volumes 11 to X will be divided into parts of convenient size, but it is not possible to specify in advance the taxonomic content of each part. Conciseness and cheapness are main objectives in this new series, and each part will be the work of a specialist, or of a group of specialists.
    [Show full text]
  • Of Peru: a Survey of the Families
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2015 Beetles (Coleoptera) of Peru: A Survey of the Families. Scarabaeoidea Brett .C Ratcliffe University of Nebraska-Lincoln, [email protected] M. L. Jameson Wichita State University, [email protected] L. Figueroa Museo de Historia Natural de la UNMSM, [email protected] R. D. Cave University of Florida, [email protected] M. J. Paulsen University of Nebraska State Museum, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Ratcliffe, Brett .;C Jameson, M. L.; Figueroa, L.; Cave, R. D.; Paulsen, M. J.; Cano, Enio B.; Beza-Beza, C.; Jimenez-Ferbans, L.; and Reyes-Castillo, P., "Beetles (Coleoptera) of Peru: A Survey of the Families. Scarabaeoidea" (2015). Faculty Publications: Department of Entomology. 483. http://digitalcommons.unl.edu/entomologyfacpub/483 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Brett .C Ratcliffe, M. L. Jameson, L. Figueroa, R. D. Cave, M. J. Paulsen, Enio B. Cano, C. Beza-Beza, L. Jimenez-Ferbans, and P. Reyes-Castillo This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/entomologyfacpub/ 483 JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 88(2), 2015, pp. 186–207 Beetles (Coleoptera) of Peru: A Survey of the Families.
    [Show full text]
  • Phylogenetic Analysis of Geotrupidae (Coleoptera, Scarabaeoidea) Based on Larvae
    Systematic Entomology (2004) 29, 509–523 Phylogenetic analysis of Geotrupidae (Coleoptera, Scarabaeoidea) based on larvae JOSE´ R. VERDU´ 1 , EDUARDO GALANTE1 , JEAN-PIERRE LUMARET2 andFRANCISCO J. CABRERO-SAN˜ UDO3 1Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Spain; 2CEFE, UMR 5175, De´ partement Ecologie des Arthropodes, Universite´ Paul Vale´ ry, Montpellier, France; and 3Departamento Biodiversidad y Biologı´ a Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain Abstract. Thirty-eight characters derived from the larvae of Geotrupidae (Scarabaeoidea, Coleoptera) were analysed using parsimony and Bayesian infer- ence. Trees were rooted with two Trogidae species and one species of Pleocomidae as outgroups. The monophyly of Geotrupidae (including Bolboceratinae) is supported by four autapomorphies: abdominal segments 3–7 with two dorsal annulets, chaetoparia and acanthoparia of the epipharynx not prominent, glossa and hypopharynx fused and without sclerome, trochanter and femur without fossorial setae. Bolboceratinae showed notable differences with Pleocomidae, being more related to Geotrupinae than to other groups. Odonteus species (Bolboceratinae s.str.) appear to constitute the closest sister group to Geotrupi- nae. Polyphyly of Bolboceratinae is implied by the following apomorphic char- acters observed in the ‘Odonteus lineage’: anterior and posterior epitormae of epipharynx developed, tormae of epipharynx fused, oncyli of hypopharynx devel- oped, tarsal claws reduced or absent, plectrum and pars stridens of legs well developed and apex of antennal segment 2 with a unique sensorium. A ‘Bolbelas- mus lineage’ is supported by the autapomorphic presence of various sensoria on the apex of the antennal segment, and the subtriangular labrum (except Eucanthus). This group constituted by Bolbelasmus, Bolbocerosoma and Eucanthus is the first evidence for a close relationship among genera, but more characters should be analysed to test the support for the clade.
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • Dung Inhabiting Insects, Their Diversity, Abundance and Bio
    Journal of Entomology and Zoology Studies 2021; 9(2): 537-546 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Dung inhabiting insects, their diversity, abundance and www.entomoljournal.com JEZS 2021; 9(2): 537-546 bio ecology of coprine beetles © 2021 JEZS Received: 24-01-2021 Accepted: 28-02-2021 Sumana Saha, Avirup Ghosh, Arghya Biswas and Dinendra Sumana Saha Raychaudhuri Post Graduate, Department of Zoology, Barasat Government College, 10, K.N.C. Road, DOI: https://doi.org/10.22271/j.ento.2021.v9.i2h.8532 Barasat, Kolkata, West Bengal, India Abstract The insects most prominently colonized in a nutrient-rich fresh dung habitat are mainly beetles and flies Avirup Ghosh and the group is termed collectively, the dung community. Coprophagous insects play an important role Post Graduate, Department of in tropical ecosystems by providing essential functions including mechanically breaking down excrement Zoology, Barasat Government into smaller-sized particles, mixing of organic matter in the soil, soil aeration, nutrient cycling and to College, 10, K.N.C. Road, remove unhealthy materials from their surroundings. Against this backdrop, present study is an attempt to Barasat, Kolkata, West Bengal, assess the insect diversity and abundance inhabiting dairy farm dung community in North & South 24 India Parganas, West Bengal along with the study on the life cycle pattern of frequently encountered dung beetle taxa, Oniticellus cinctus (Fabricius) and to observe their role in the decomposition. Altogether 2 Arghya Biswas Post Graduate, Department of dung beetles, 4 dung loving beetles, 8 dung loving flies, 17 dung associated insects of different groups, Zoology, Barasat Government one mesostigmatic mite species are recorded from cow and buffalo dung community during the study College, 10, K.N.C.
    [Show full text]
  • Reproductive Behaviour and Development of the Dung Beetle Typhaeus Typhoeus (Coleoptera, Geotrupidae)
    REPRODUCTIVE BEHAVIOUR AND DEVELOPMENT OF THE DUNG BEETLE TYPHAEUS TYPHOEUS (COLEOPTERA, GEOTRUPIDAE) by LIJBERTBRUSSAARD Dept. of Animal Ecology and Dept. of Soil Science & Geology, Agricultural University, Wageningen, The Netherlands . ABSTRACT This paper is part of a study of the contribution of dung beetles to soil formation in sandy soils. Typhaeus typhoeus (Linnaeus) has been selected because it makes deep burrows and is locally abundant. The beetles are active from autumn until spring, reproduction takes place from February to April. Sex pheromones probably influence pair formation. The sexes co­ operate in excavating a burrow (up to 0.7 m below surface) and in provisioning the burrow with dung as food for the larvae. Co-operation is reset by scraping each other across the thorax or elytra. Dung sausages, appr. 12.5 cm long and 15 mm in diameter, are manufac­ tured above each other. Development is rapid at 13—17°C. The life cycle is accelerated by a cold period in the third larval stage. These requirements are met by soil temperatures up to 15° C in summer and down to 5 °C in winter. The life cycle lasts two years, but longer under certain conditions. Newly hatched beetles make their way to the surface through the soil, but do not follow the old shaft. Adults reproduce only once. Differential rate of com­ pletion of the life cycle and occasional flying probably reduce the risk of local extinction. The study is thought to be relevant for behavioural ecology and soil science. CONTENTS tion of how much dung beetles contribute to Introduction 203 soil formation today.
    [Show full text]
  • (Coleoptera: Polyphaga) En El Norte De Sinaloa, México
    Revista Colombiana de Entomología 39 (1): 95-104 (2013) 95 Especies nocturnas de Scarabaeoidea (Coleoptera: Polyphaga) en el norte de Sinaloa, México Nocturnal species of Scarabaeoidea (Coleoptera: Polyphaga) in northern Sinaloa, Mexico GABRIEl A. lUGO1,4, MIGUEl Á. MORóN2, AGUSTíN ARAGóN3, lAURA D. Ortega1, Álvaro REyES-Olivas4 y BARDO H. SÁNCHEz4 Resumen: Con la finalidad de inventariar la fauna de escarabajos lamelicornios en el norte de Sinaloa, entre julio y diciembre de 2008 se realizaron colectas con trampas de luz en tierras de cultivo, bosque caducifolio, bosque espinoso y matorral xerófilo, establecidos entre los 8 y 84 m de altitud en ocho localidades de los municipios de Ahome y El Fuerte, Sinaloa. Se obtuvieron 38.619 ejemplares que representan a 29 especies de los géneros Phyllophaga, Diplotaxis, Paranomala, Pelidnota, Cyclocephala, Dyscinetus, Strategus, Xyloryctes, Ligyrus, Oxygrylius, Megasoma, Omorgus, Copris, Digitonthophagus, Dichotomius, Hybosorus y Ptichopus. la mayor riqueza correspondió a Phyllophaga, repre- sentado por 10 especies, entre las que predomina Phyllophaga opaca. las especies mas abundantes en las zonas de estu- dio fueron: Cyclocephala sinaloae (45,06%), Oxygrylius ruginasus (28,66%), Phyllophaga opaca (25,03%) y Ph. cris- tagalli (0,24%). la mayor abundancia de todas se presentó en julio (51,38%) lo cual coincidió con el inicio del periodo de lluvias. la mayor riqueza se observó en el Cerro de las Microondas, con 17 especies capturadas. Phyllophaga yaqui, Diplotaxis ambigua, Dyscinetus picipes y Xyloryctes corniger se registran por primera vez para el estado de Sinaloa. Palabras clave: Dynastinae. Hybosoridae. Melolonthinae. Passalidae. Phyllophaga. Rutelinae. Scarabaeinae. Trogidae. Abstract: Abundance and richness of nocturnal species of Scarabaeoidea in northern Sinaloa, were recorded by mean of light traps operated during July to December, 2008.
    [Show full text]
  • Dinâmica Evolutiva De Dnas Repetitivos Com Ênfase Em
    DINÂMICA EVOLUTIVA DE DNAS REPETITIVOS COM ÊNFASE EM ESPÉCIES DA TRIBO PHANAEINI SARAH GOMES DE OLIVEIRA Botucatu – SP 2013 UNIVERSIDADE ESTADUAL PAULISTA “Julio de Mesquita Filho” INSTITUTO DE BIOCIÊNCIAS DE BOTUCATU DINÂMICA EVOLUTIVA DE DNAS REPETITIVOS COM ÊNFASE EM ESPÉCIES DA TRIBO PHANAEINI CANDIDATA: SARAH GOMES DE OLIVEIRA ORIENTADOR: CESAR MARTINS CO-ORIENTADORA: RITA DE CÁSSIA DE MOURA Tese apresentada ao Instituto de Biociências, Câmpus de Botucatu, UNESP, para obtenção do título de Doutora no Programa de Pós-Graduação em Ciências Biológicas (Genética). Botucatu – SP 2013 @@ A A ? #","(=(!&$)@ "%/$",&#+*", )('*"*",&)&$3%)$)'2")*("& !%"%"B(!&$)#","(C&*+*+?F)@%G=JHIK )D&+*&(&EA%",()")*+#+#")*= %)*"*+*& "&"3%")&*+*+ ("%*&(?)( (*"%) &&("%*&(?"*.))" &+( ')?JHJHLHHH I@ @J@(&$&))&$&)@K@&#6'*(&@L@,&#+10&D"&#& "E@ M@ '$%*&(&$&))7$"&@ #,()A!,?&#&'*(> ('*"*",&>#$%*&)*(%)'&)"10&> ,&#+10&(&$&))7$">,&#+10&$&%(*&>$4#")$+#*" 3%")> (%)(3%"!&("-&%*#@ Dedico aos meus amados pais, por acreditarem. AGRADECIMENTOS A realização desta tese marca o final de uma importante etapa da minha vida. Gostaria de agradecer a todos que contribuíram de forma decisiva para a sua concretização: À minha amada família, que sempre me estimulou a crescer cientifica e pessoalmente; apoiando-me nos momentos de ansiedade, de desespero e de empolgação. Acima de tudo aos meus pais, Márcia e Manoel, pelo inestimável apoio familiar, pelo incentivo por toda a minha vida e, principalmente, durante esta trajetória na pós-graduação. À minha vozinha pelo carinho, amor e paciência revelados ao longo destes anos. Ao meu querido irmão Mauro e sua adorável esposa, pela compreensão e ternura manifestadas apesar da falta de atenção e ausências; e pela excitação e orgulho com que sempre reagiram aos meus resultados acadêmicos ao longo dos anos. Ao meu orientador, Prof.
    [Show full text]