<<

RESEARCH ARTICLE

AMERICAN JOURNAL OF BOTANY

INVITED PAPER For the Special Issue: Patterns and Processes of American Amphitropical Disjunctions: New Insights

American amphitropical disjuncts: Perspectives from analyses and prospects for future research 1

Michael G. Simpson2,7 , Leigh A. Johnson3 , Tamara Villaverde 4,5 , and C. Matt Guilliams6

PREMISE OF THE STUDY: Historical patterns and processes of with an American amphitropical disjunct (AAD) distribution have long interested bota- nists and biogeographers. Here we update examples of AAD vascular plants, their biogeographic history, and aspects of their biology elucidated by recent studies to make inferences about common patterns of AAD plants and formulate future research questions.

METHODS: All known examples of AAD vascular plants were tabulated, along with data on plant duration and habit, chromosome number, dispersal direc- tion, and divergence time. The data were then compared with regard to taxonomic categories, AAD bioregions, and character evolution.

KEY RESULTS: We clarify the defi nition of amphitropical and summarize features of AAD plants. We identify 237 AAD plant divergence events. Timing of these events generally corresponds with taxonomic category. Plant duration and habit are associated with AAD bioregions. Increases in chromosome number mostly occurred in members of the recipient area. The AAD plants of bipolar or temperate bioregions entirely or largely dispersed from North to , whereas almost half of desert plants dispersed from South to .

CONCLUSIONS: Tabulating AAD plants by taxonomic group and bioregion yields insight into character evolution and processes of divergence. Phylogenetic studies provide information on the timing and direction of dispersal. However, more research on AAD plants is needed to draw inferences regarding gen- eral patterns and processes, especially those at the clade level. Our AAD Working Group website provides current information on AAD vascular plants to aid workers doing research in this fi eld.

KEY WORDS Biogeography; biogeographic patterns; disjunction; long-distance dispersal; divergence; North America; ; South America

Plants with a native (i.e., naturally occurring or nonanthropo- distributions, the geological timing of AAD dispersal events, and genic) American amphitropical disjunct (AAD) distribution, oc- the evolution of plant features associated with AAD taxa have long curring on both sides of, but not within, the American tropics, have fascinated botanists, biogeographers, and ecologists. long been recognized as a repeating biogeographic pattern found in Here we review and summarize some features of AAD vascular a number of plant groups (Gray and Hooker, 1880; Bray, 1898, plants with suggestions for future research on this topic and pro- 1900 ; Raven, 1963 ; Cruden, 1966 ; Th orne, 1972; Carlquist, 1983; vide an up-to-date compendium of examples. Insightful research, Wen and Ickert-Bond, 2009 ). Th e mechanisms giving rise to AAD including molecular phylogenetic analyses, have enabled us to tab- ulate more precise data about relationships of AAD plants, possible 1 Manuscript received 4 August 2017; Revision accepted 25 October 2017. mechanisms giving rise to their disjunct distributions, number and 2 Department of Biology, San Diego State University, San Diego, 92128 USA; timing of evolutionary divergences, and attributes of plant dura- 3 Department of Biology & S.L. Welsh Herbarium, 4102 LSB, Brigham Young University, tion, substrate preference, reproductive biology, propagule mor- Provo, 84602 USA; 4 Real Jardín Botánico, CSIC, Plaza de Murillo 2, ES-28014, Madrid, Spain; phology, changes in chromosome number, genetic divergence, 5 Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de speciation rate, and direction of dispersal. Th ese data may ulti- Olavide, Carretera de Utrera km 1, ES-41013, Seville, Spain; and mately allow us to elucidate common patterns of AAD events, in 6 Department of Conservation and Research, Santa Barbara Botanic Garden, Santa Barbara, concert with the geologic and climatic history of the Americas. California 93105 USA 7 Author for correspondence (e-mail: [email protected]); ORCID id 0000-0002- Although bryophytes and lichens make up a large percentage of 6197-2132 AAD organisms (Du Rietz, 1940), including approximately 66 https://doi.org/10.3732/ajb.1700308 of mosses, 24 species of liverworts, and 160 species of 1600 • AMERICAN JOURNAL OF BOTANY 104 (11): 1600 – 1650 , 2017; http://www.amjbot.org/ © 2017 Simpson et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC). NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1601

lichens ( Lewis et al., 2014a ), we only consider vascular plants in this year for annual or perennial herbs and 1.86 × 10−9 substitutions/ study. See the articles by Lewis et al. (2017) and Garrido-Benavent site/year for woody perennials. Th ese are slightly diff erent from the and Pérez-Ortega (2017) in this issue for updated studies on bryo- mean values of 4.13 × 10 −9 and 2.5 × 10−9 substitutions/site/year, phytes and lichens, respectively. respectively, listed by these authors, but should provide better esti- mates by removing the potential eff ect of outliers in this small data set. We note, however, that Kay et al. (2006) listed ranges of 1.72 × MATERIALS AND METHODS 10 −9 to 8.34 × 10 −9 substitutions/site/year for herbaceous annuals/ perennials and 0.38 × 10−9 to 7.83 × 10−9 for woody perennials, We used Raven (1963) as a starting point, updating nomenclature spanning 5-fold and 20-fold diff erences in magnitude, respectively. and checking the listed species of vascular plants for those with a For single-copy intergenic markers, we used the aver- native AAD distribution in North America (NA) and South Amer- age value of 2.1 × 10−9 substitutions/site/year ( Gaut, 1998 ; Muse, ica (SA). We then added examples from more recent literature ref- 2000 ; synonymous and nonsynonomous substitutions averaged). erences, including those of phylogenetic studies of AAD vascular When the phylogenetic in a given study were not ultrametric, plants. We checked nomenclature using Th e Plant List (http:// the branch lengths along sister lineages were averaged, with ranges www.theplantlist.org ), International Plant Names Index ( http:// in the appendices listing minimum and maximum values of ITS www.ipni.org ), Catálogo de las Plantas Vasculares del Cono Sur and chloroplast markers together. If no detectable variation in se- (Zuloaga et al., 2008), and the companion and continually updated quences was reported, we assigned a value of zero. We realize these website Flora del Cono Sur (2017 ; http://www.darwin.edu.ar/ calculations are approximations only and await refi nement in fu- Proyectos/FloraArgentina/Familias.asp ), Flora of North America ture, more precisely calibrated molecular studies. (See Future direc- (Flora of North America Editorial Committee, 1993+; http:// tions section.) floranorthamerica.org ), or recent taxonomic studies. We noted We compiled all of these data, organized by general AAD biore- synonymy where new taxonomic concepts have been accepted in gions (Appendices 1–3; see below), and designating those AAD the above references. We also checked the native vs. introduced sta- plants that additionally occur on other continents. We also created tus of a taxon with various sources, particularly the USDA-NRCS a listing of rejected AAD taxa (Appendix 4). We used these data to (2017) database for NA north of ( http://plants.usda.gov ), summarize various features of AAD plants ( see Tables ). Finally, we Rebman et al. (2016) and Villaseñor (2016) for Mexico, Zuloaga have established an American Amphitropical Disjunction Working et al. (2008) and Flora del Cono Sur (2017) for the “Southern Cone” of Group website (see Future directions section), where we present a SA, and regional fl oras including the Catalogue ( Jørgensen compendium of this information, such that known AAD examples et al., 2014 ; http://www.tropicos.org/Project/BC ). We checked dis- and their supporting data may be continually checked and revised, tributions using the Global Biodiversity Information Facility as a resource to those doing research on this topic. (GBIF, 2017; http://www.gbif.org) or the Encyclopedia of Life (2017 ; http://www.eol.org ). We listed each example as having a typical AAD distribution or deviating as “trans-AADs” or “eastern- RESULTS AND DISCUSSION AADs” (see Defi nition of amphitropical section, below). In some cases where was complicated, we assessed distributions Defi nition of amphitropical— Th e term “amphitropical” refers to from original records. We then compiled each AAD example by either side of the tropics, in this case within the western hemi- general plant group, family, , and species/infraspecies and by sphere. The tropical zone is technically the geographic region type of taxonomic category (see AAD taxonomic categories sec- between the Tropic of Cancer and the Tropic of Capricorn (ap- tion), both for NA and SA. We also listed, where available, chromo- proximately 23° 26ʹN and S; Fig. 1 ), where the sun is directly over- some numbers of NA and SA samples (not those from other head at the time of the summer solstice of the two hemispheres. regions), using cited references from the Index to Plant Chromo- Strictly speaking, an amphitropically distributed taxon occurs on some Numbers (Goldblatt and Johnson, 1979–present), or other both sides of this tropical zone but not within it . A plant species sources. We tabulated plant duration and plant habit from the lit- with a typical AAD distribution is exemplifi ed by tessel- erature, verifi ed using the USDA-NRCS (2017) database for NA lata A.Gray ( Fig. 2A ), with NA and SA populations well on either plants north of Mexico and Zuloaga et al. (2008) or Flora del side of the tropical zone. However, here we are defi ning “amphi- Cono Sur (2017) for SA plants of the “Southern Cone” region. We tropical” to also include disjuncts with populations in the amphi- recorded dispersal direction where known from phylogenetic or tropical zone but that may also have additional occurrences within rigorous taxonomic studies, either NA to SA, SA to NA, or equivo- the strict tropical zone (examples in Fig. 2B–D ). We recognize the cal; in some cases, dispersal direction was inferred by us, if not ex- problem in distinguishing such AAD examples from those that plicitly stated in a research study. Where data were available, we have a continuous distribution in the western hemisphere, and we listed the time of evolutionary divergence (mean and range, if avail- attempt to clarify this distinction by categorizing these encroach- able) in millions of years ago (Ma) for the most recent common ments of some AAD plants into the tropics (see below). ancestor of NA and SA lineages. If there was confl ict in data, e.g., Vegetation regions, which are a function largely of climate, to- between plastome markers and ITS, we averaged the two means pography, geology, and biotic interactions, are likely even more and listed the extreme ranges. For nine molecular phylogenetic important in understanding AAD distributions than simply con- studies in which divergence dates were not listed, we calculated sidering northern and southern sides of the tropics. By this reason- them from the data presented (these indicated with an asterisk in the ing, the “amphitropical” zone would not be limited by the strict Time of Divergence–Div. Ma–column of Appendices 1–3; see be- boundaries of the tropics and could be justifi ably expanded to in- low). For ITS data, we used median values from Kay et al. (2006) clude vegetative regions that extend from amphitropical regions (calculated by us from their data) of 3.72 × 10−9 substitutions/site/ into strict tropical ones ( Fig. 1 ). Th ere are innumerable vegetation/ 1602 • AMERICAN JOURNAL OF BOTANY

FIGURE 1 Map of North and South America showing boundaries of strict tropical and amphitropical regions and Global Ecological Zones, redrawn from Davis and Holmgren (2001) with abbreviations after this system. Zone labels with an asterisk (*) are those within the tropical zone but included for (trans) AAD plants. Dotted lines indicate approximate boundaries of bipolar plants using the criteria of Moore and Chater (1971) . plant community systems (see, e.g., Josse et al., 2003 for Latin in Fig. 1). By this system (with their abbreviations), the tropics would America) that may serve as a basis for defi ning the amphitropical vs. be inclusive of tropical rain forest (TAr), tropical moist decidu- tropical regions. Here, we cite the Global Ecological Zoning for the ous forest (TAwa), tropical dry forest (TAwb), tropical shrub land Global Forest Resources conducted by the United Nations Food and (TBSh), tropical desert (TBWh), and tropical mountain systems Agriculture Organization (Davis and Holmgren, 2001; reproduced (TM) of NA and SA. Th e amphitropical region would include, for NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1603

FIGURE 2 Examples of American amphitropical disjunct (AAD) vascular plant distributions. (A) Amsinckia tessellata (), showing a typical AAD distribution in central western North and southern South America. (B) angustissima (), showing a “trans-NA” AAD distribution into Central America. (C) Lycurus phleoides (), showing a “trans-SA” AAD distribution into northwestern South America. (D) exigua (), showing a “trans-NASA” AAD distribution. (E) Eleocharis quinquefl ora , having a typical AAD distribution but with populations also occur- ring in Asia, Europe, and possibly Africa and Australia. (A–D), Distribution map data from GBIF (2017) , superposed on Global Ecological Zones map, redrawn from Davis and Holmgren (2001) .

SA, the subtropical steppe (SBSh), subtropical dry forest (SCs), and temperate mountain systems (TeM); for NA, amphitropical subtropical humid forest (SCf), subtropical mountain systems includes these same ecological zones plus the boreal mountain sys- (SM), temperate steppe (TeBSk), temperate oceanic forest (TeDo), tems (BM), boreal tundra woodland (Bb), boreal coniferous forest 1604 • AMERICAN JOURNAL OF BOTANY

(Ba), subtropical desert (SBWh), temperate desert (TeBWk), and comparisons, we are only considering AAD events that are not of temperate continental forest (TeDc) (see Fig. 1 and AAD biore- anthropogenic origin. However, native vs. adventive distributions gions section, below). We realize that these vegetation zones are are not always easy to discern, and mistakes have been made in the only a rough estimate of plant habitats, as microecological condi- past. For example, the sea fi g, Carpobrotus chilensis (Molina) N.E.Br. tions are also important in the establishment, survivorship, and (Aizoaceae), was not long ago considered to have a naturally occur- spread of plants. ring AAD distribution, but evidence points to its introduction by Some of the ecological zones outlined above extend continuously humans in both North and South America ( Bicknell and Mackey, from an amphitropical region to a tropical one. Th us, another option 1998 ; Vivrette, 2003). Nuttallanthus texanus (Scheele) D.A.Suttonis for relaxing a strict latitudinal requirement for designating an am- () is considered native to NA ( Preston and Wetherwax, phitropical distribution is to encompass all ecological zones exclusive 2012; USDA-NRCS, 2017) but is now thought introduced to SA of the wet tropical rain forest and tropical moist deciduous forest. We ( Zuloaga et al., 2008). elected to do this, including the tropical shrubland (TBSh) and tropi- A human introduction from one region to the other would cal mountain systems (TM) as AAD distributions. In NA, this expan- likely be characterized by extreme similarity between members of sion would extend the amphitropical zone into southern Mexico and the two intercontinental populations. Detailed molecular phyloge- the cordillera of Central America. In SA, this would extend the am- netic techniques (e.g., along the lines of Valliant et al., 2007 ) might phitropical zone into the Andean cordillera of , Ecuador, Co- be capable of discerning whether a long-distance dispersal event lombia, and even . Th ough this might seem excessive, occurred in historical times and might be human mediated. One doing so would permit the recognition of so-called stepwise (step- might also expect that with anthropogenic dispersals, considerably ping-stone) patterns (see below) for amphitropical plants that might less morphological or genetic variation would be present in the otherwise not be classifi ed as AADs. Scientists investigating AAD recipient (“sink”) region than in the source region because of a plants would have to evaluate whether a plant exhibiting such a pat- genetic bottleneck associated with the introduction. However, this tern should even be considered having an AAD distribution (vs. one prediction would also be expected in a recent natural AAD event, that is continuous), as these more extensive distributions, though but to less of an extreme. As an example of the latter, Peterson and interesting, might be the result of diff erent general processes. Here, Ortíz-Diaz (1998) , using enzyme electrophoresis, determined that we designate such examples as “trans-AADs”, either as “trans-NA”, in the conspecifi c AAD Muhlenbergia torreyi (Kunth) Hitchc. ex those with a distribution signifi cantly entering the tropical region of Bush (thought to be native to both continents), populations in SA NA [e.g., (Mill.) Britton & Rose, Fig. 2B]; are less variable, implying that dispersal likely occurred from NA “trans-SA”, those with a distribution signifi cantly entering the tropi- to SA. cal region of SA (e.g., Lycurus phleoides Kunth, Fig. 2C ); or “trans- Several AAD plants are known from historical records to have NASA”, those with a distribution signifi cantly entering the tropical been dispersed anthropogenically between the two western hemi- regions of both NA and SA [e.g., Eleocharis exigua (Kunth) Roem. & sphere continents. For example, the California poppy, Eschscholzia Schult., Fig. 2D]. Given that most AAD examples occur in western californica Cham., was dispersed by humans from the mediterra- NA and SA, we also tabulate “eastern-AADs”, those that occur in nean climatic region of the California Floristic Province of NA eastern NA or eastern SA. (See Appendices 1–3.) (Howell, 1957) and is now naturalized in similar climatic regions of Some plants normally identifi ed as having an AAD distribution and other South American countries, where it may be locally are also found on other continents [e.g., Eleocharis quinquefl ora common. In addition, it may be diffi cult to detect past introduc- (Hartmann) O.Schwarz, which also occurs in Europe, Asia, and tions by indigenous peoples during pre-European times with cer- northern Africa; Fig. 2E ]; these are designated in Appendices 1–3. tainty. A study of known anthropogenic AAD events is a separate Th is distribution pattern is true of most bipolar AAD plants (see topic, but might yield insight into the AAD phenomenon, particu- below). It is important to consider in these cases whether the NA larly with regard to morphological and reproductive features, and SA populations are each other’s closest relative. If so, then the mechanisms of establishment, and potential subsequent evolution- AAD distribution still can be explained as a unique “AAD event”. If ary or ecological change of these taxa. either North or South American populations are shown to be more closely related to those of other continents, they should be excluded AAD taxonomic categories and evolutionary divergence time— as AAD examples. Th eir attributes may not correlate with those po- Along with consideration of what constitutes an amphitropical dis- tentially associated with true AAD distributions, adding noise to tribution is the question of which taxonomic categories might be eff orts to discover such character associations, if not known. Of useful in making comparisons and inferences about AAD plants. course, these “false” AAD plants might be shown to have interesting Early AAD research, such as that of Raven (1963) , was based on the attributes of their own. identifi cation of mostly minimum-ranked taxa (species or infraspe- In conclusion, the defi nition of the term amphitropical may vary cies), using traditional comparative morphology and sometimes with diff erent authors and with diff erent systems of ecological or cytogenetics. However, more recent phylogenetic studies have re- vegetation zones. When there is doubt, it is best to explicitly state sulted in many transfers in rank and position of historically named the distributions involved and the defi nition of amphitropical used. taxa and new insights into the groups of comparison from the Allowing signifi cant deviation from the classic amphitropical defi ni- northern and southern hemispheres. Th ese phylogenetic studies tion may introduce diff erent parameters as to biogeographic history have also led in some cases to the recognition of clades as the prod- as well as obfuscate patterns in morphology or evolution that are uct of an AAD event. otherwise common using a stricter defi nition. Th ere are a number of examples of AAD plants in which taxo- nomic concepts have varied, resulting in rampant synonymy. Anthropogenic AAD plants— A distinction must be made between Continuing taxonomic research is critical to clarifying species and a “natural” AAD distribution and one due to human activity. In our infraspecies concepts of past classifications. For example, the NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1605

species philippianum Aellen [ C . carnosulum Moq. infraspecies on both continents, termed here “coninfraspecific” var. patagonicum (Phil.) Wahl], native to south-central Chile and AADs, or the intercontinental infraspecies can be diff erent, unique , was long considered present also in coastal California to one or both of the two continents. Additional infraspecies of that and perhaps Mexico, an example of an AAD plant species. How- species, other than those representing AADs, could also occur on ever, Benet-Pierce and Simpson (2010) concluded from morpho- either or both of the continents. We currently tabulate a total of 17 logical studies that these were diff erent taxa, naming the California infraspecifi c AAD examples, representing 7.2% of the total ( Table 1 ), populations a new species. (Note, however, that future phylogenetic separated into eight coninfraspecifi c examples and nine examples studies could demonstrate these now separate taxa are in fact AAD of diff erent infraspecies. species pairs.) In another example, the study of Collomia and Na- An example of a coninfraspecifi c AAD is maritima varretia () by Johnson et al. (2012) and Johnson and (Greene) Greene var. pilosa I.M.Johnst., Boraginaceae (Fig. 3D, E). Porter (2017 , in this issue) exemplify the need to address a compli- Th is variety occurs in both North and South America, but the other cated taxonomy with careful study of morphology from herbarium two recognized varieties [C. maritima var. maritima and C. mari- specimens. tima var. cedrosensis (Greene) I.M.Johnst.] are found only in NA. We currently tabulate a total of 237 examples of AAD vascular In this case, there is good evidence that the amphitropically distrib- plant events; see below. Of this total, the families with the most uted variety dispersed unidirectionally from North to South Amer- AAD representatives are the Poaceae with 51 examples, Boraginaceae ica ( Hasenstab-Lehman and Simpson, 2012 ; Guilliams et al., 2017 , (aft er Chacón et al., 2016 , excluding Ehretiaceae and Hydrophylla- in this issue), with an estimated time of divergence from molecular ceae) with 19 examples, with 16 examples, Fabaceae data of about 0.92 Ma (K.E. Hasenstab-Lehman, Santa Barbara Bo- with 16 examples, Cyperaceae with 15 examples, and Polemonia- tanic Garden, personal communication). One could speculate that ceae with 11 examples (Appendices 1–3). the species occurred in NA for some time before dispersal into SA, We use the following taxonomic categories for classifying AAD allowing time for its divergence into three varieties in NA, only one events. We realize that these categories are not strictly comparable of which subsequently dispersed to SA; however, the details of this as evolutionary units, yet feel they are useful in comparing the tem- complex have yet to be worked out. poral history of AAD events. For this purpose, we are relaxing the In another example in the Boraginaceae, Plagiobothrys collinus term “taxonomic category” to include not just named taxa at diff er- (Phil.) I.M.Johnst., as presently treated, contains fi ve varieties. Pla- ent ranks but also clades, which may or may not be formally named. giobothrys collinus var. collinus is restricted to SA, and the other (Ideally, all named taxa would correspond to clades, but we use the four varieties are found only in NA ( Fig. 3F ). Again, the evidence latter for a monophyletic group of two or more named species.) As points to a single, unidirectional dispersal from North to South summarized by Wen and Ickert-Bond (2009), the date of diver- America of a Plagiobothrys collinus propagule, with an estimated gence of AAD plants varies signifi cantly depending on the specifi c divergence time of 1.48 Ma ( Guilliams et al., 2017 ). In this particu- group. Here we tabulate the known divergence times of AAD lar example, the evidence shows that the North American popula- vascular plants relative to their taxonomic category, yielding some tions diverged into the four recognized varieties (as well as one insight as to their degree of divergence. We note that only 72 of the taxon at the species level that is phylogenetically nested in P. colli- 237 (about 30%) recognized vascular plant AAD examples have di- nus ) aft er this dispersal event, given that P. collinus var. collinus is vergence dates, including the nine calculated by us from published sister to the four North American varieties ( Guilliams, 2015 ). Th is data. pattern might imply that relative evolutionary stasis occurred in the SA population following the AAD dispersal event. Conspecifi c AADs— A starting point for AAD plants are those clas- Finally, pinnatifi da Ruiz & Pav. () is oft en rec- sifi ed as the same species occurring in both North and South Amer- ognized to have two varieties, with Acaena pinnatifi da var. califor- ica, termed here conspecifi c AADs. Conspecifi c AADs are the most nica (Bitter) Jeps. restricted to NA (Macmillan and Ertter, 2017) common category, with a total of 135 examples or 57% of all AADs and Acaena pinnatifi da var. pinnatifi da restricted to Chile and Ar- (Table 1). If infraspecifi c examples (below) are excluded, there are gentina (Fig. 3G). Although no divergence time estimates are 118 examples of conspecifi cs (almost 50% of the total). Th ree ex- known, this AAD event would be predicted to have occurred rela- amples of conspecifi c distributions (not involving infraspecies; see tively recently, but generally slightly older than conspecifi c AADs below) are illustrated in Fig. 2A–E and 3A–C . not having infraspecies. Th e relatively few studies that have dated the divergence times of It is expected that the average divergence time for infraspecifi c North and South American conspecifi cs indicate a relatively recent taxa would be similar to that of conspecifi c taxa, given that both age: a mean of about 0.63 Ma if intraspecifi c AADs (below) are in- represent morphologically indistinguishable populations in the cluded or 0.62 Ma if infraspecifi cs are excluded ( Table 1 ). Examples two continents. We found infraspecifi c examples (mean of 0.65 include two species of Sanicula (Apiaceae), S. crassicaulis Poepp. ex Ma) to be very slightly older than conspecifi c examples (mean of DC. and S. graveolens DC., both conspecifi c AADs, with divergence 0.62 Ma, not including infraspecifi cs); see Table 1. An older diver- times of ca. 1 Ma and 2 Ma, respectively (Vargas et al., 1998; Fig. gence time for diff erent infraspecifi cs than for coninfraspecifi cs 3A–C ). Conspecifi cs are generally thought to have arisen by unidi- might be expected, given that generally more time would be needed rectional dispersal in relatively recent times. Th e recency of disper- for evolutionary divergence into what are classifi ed as diff erent sal may be the primary explanation for the observed lack of taxa. Among infraspecifi c examples, the two examples of coninfra- morphological diff erences, with less time available for evolutionary specifi c taxon had a mean divergence time of 0.63 Ma, and that of changes between the isolated intercontinental populations. diff erent infraspecies is only slightly older, at 0.66 Ma ( Table 1 ).

Infraspecific AADs— Some conspecific AADs contain infraspe- Species pairs—A pair of species, each considered the closest relative cies (i.e., varieties or subspecies; Table 1 ). Th ese may be the same of the other, are the second most common taxonomic category of 1606 • AMERICAN JOURNAL OF BOTANY

FIGURE 3 (A) Phylogenetic of the genus Sanicula (Apiaceae), with arrows highlighting two conspecifi c AADs, average divergence times indicated. From Vargas et al. (1998 , p. 239), with permission; copyright 1998 National Academy of Sciences, USA. (B) Distribution map of Sanicula crassicaulis. (C) Distri- bution map of Sanicula graveolens . (D) Phylogenetic tree of the genus Cryptantha (Boragainceae), with arrows highlighting two infraspecifi c AADs of C. maritima , average divergence time indicated. From Hasenstab and Simpson (2012 , p. 743), with permission. (E) Distribution map of C. maritima infraspecies, three in North America, one (var. pilosa ) in both North and South America. (F) Distribution map of infraspecies of Plagiobothrys collinus (Boraginaceae), four in North America and a fi fth solely in South America. (G) Distribution map of two AAD infraspecies of Acaena pinnatifi da (Rosaceae). NA = North America; SA = South America. Distribution map data from GBIF (2017), superposed on Global Ecological Zones map, redrawn from Davis and Holmgren (2001) . NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1607

TABLE 1. Taxonomic categories of the 237 American amphitropical disjunct vascular plants, showing the two large South American clades (termed total number, percentage of the total, and mean time of evolutionary divergence (including range of the “Cryptantha / Geocarya ” and “Globulifera ” individual means) based on phylogenetic studies. [N ] = number of studies from which mean divergence clades; Fig. 4B ) are each sister to other time was calculated. See Appendices for sources of data. clades, with each clade representing species Mean divergence time diversifi cation following a unique AAD event Taxonomic category Total number Percent of total (Range), Ma [ N] (Mabry, 2015; Mabry and Simpson, in Conspecifi c (including infraspecies) 135 57.0 0.63 (0–2.45) [27] press; Guilliams et al., 2017; Simpson et al., Conspecifi c (excluding infraspecies) 118 49.8 0.62 (0–2.45) [22] 2017 ; Appendix 3). AAD events involving Infraspecifi c 17 7.2 0.65 (0.20–2.46) [5] clades (species-clade, clade-species, or clade- Coninfraspecifi c 8 3.4 0.63 (0.33–0.92) [2] clade events combined) are less commonly Diff erent infraspecies 9 3.8 0.66 (0.20–1.48) [3] Species-species pairs 54 22.8 3.14 (0–14.9) [21] known than conspecifi c or species pairs, Species-clade, clade-species, & clade-clade 48 20.3 6.29 (0.61–24.78) [24] with 48 examples, or about 20% of the total Species-clade & clade-species 21 8.9 4.51 (0.61–14.50) [13] ( Table 1 ). Species-clade 11 4.6 4.81 (0.61–14.50) [8] One would expect divergence times in- Clade-species 10 4.2 4.40 (1.37–5.53) [4] volving clades to be the oldest of the catego- Clade-clade 27 11.4 8.40 (0.98–24.78) [11] ries we have outlined, given that more time would be required for diversifi cation of a AAD plants. We cite a total of 54 AAD species pairs, about 23% of single taxon into multiple lineages/species within a clade. Th is is the total ( Table 1 ). An example is seen in the North American Lil- what the data show, with a pooled mean divergence time of 6.29 aeopsis occidentalis J.M.Coult. & Rose and the South American Ma, 10× the average of conspecifi cs ( Table 1 ). Also, as might be L. macloviana (Gand.) A.W.Hill (Apiaceae; Spalik et al., 2010) expected, species-clades and clade-species examples together have ( Fig. 4A ; Appendix 3). Some of these AAD species pairs have been a more recent average divergence time of about 4.51 Ma, with shown to be sister species from phylogenetic analyses; others are clade-clade examples having the oldest average divergence time, presumed to be from comparative studies, but lacked phylogenetic about 8.40 Ma, the latter over 13× that of conspecifi cs ( Table 1 ). evidence at the time. As an example of the latter, Lasthenia glaber- rima DC. of NA (Asteraceae) and L. kunthii (Less.) Hook. & Arn. of AAD events—An important insight from evaluating AAD taxo- Chile and were considered close relatives based on morphology and nomic categories is the consideration of the divergence of North taxonomy, being the only species of section Lasthenia ( Ornduff , and South American plant taxa to be the product of a unique “AAD 1963). Only relatively recently did a phylogenetic study (Emery et al., event”. Th e changes that occur in the two lineages following that 2012 ) confi rm that they are indeed sister species. event will be infl uenced by a number of factors, but the amount of Species pairs indicate enough change in one or both lineages elapsed time following the event is a predictor of the AAD taxo- following an AAD event (see below) that the two products of the nomic category, which is itself a proxy for the degree of diversifi ca- divergence are classifi ed as separate. Biosystematic studies (e.g., tion. As discussed above, if the event occurred in the distant past, Moore and Raven, 1970) have shown that the great majority of ar- enough diversifi cation could occur to form one or more clades tifi cial crosses between intercontinental AAD species pairs result in from one or both of the AAD descendant lineages. If it occurred in sterile hybrids, with observed chromosome structural changes in the recent past, there would be little genetic and morphological some cases. Th us, in most cases examined, reproductive isolation change in the AAD descendants, which would be classifi ed as the has occurred between the products of an AAD species pair. same species or perhaps infraspecies. A plot of divergence times for Th e average divergence time of species pairs would be expected each of the taxonomic categories shows the general trend of mean to be older than that of conspecifi c or infraspecifi c examples. Th is divergence time becoming progressively more recent in time, from prediction is supported by our data in that the average mean diver- clade-clades to species-clades or clade-species to species pairs to gence time for species pairs by our summary is 3.14 Ma, 5× that of infraspecies to conspecies alone ( Fig. 5A ); however, the diff erences conspecifi c AADs, including infraspecifi c AADs or not ( Table 1 ). among the last two categories are minor.

Clades—In addition to AADs that are conspecifi c or species pairs, AAD bioregions— A convenient and logical way to partition AAD phylogenetic studies provide examples of clades that represent spe- bioregions is into bipolar regions, temperate regions, and desert re- cies diversifi cation of one or both lineages following an AAD event. gions, as done by Raven (1963) . Although this is not always a clear- Th is diversifi cation could result in a clade that is sister to a single cut division, it yields insight into diff erent patterns and evolutionary species or sister to another clade. Note that we distinguish between mechanisms that vary among these regions without excessively a “species-clade”, in which diversifi cation into a clade occurred in fragmenting the landscape as would, for example, using the eco- the recipient region, and a “clade-species”, in which clade diversifi - logical zones mapped in Fig. 1 . cation occurred in the source region. An example of the former is seen in the study by Moore et al. (2006), in which the North Ameri- Bipolar AAD plants— Vascular plants with a bipolar AAD distribu- can species Tiquilia paronychioides (Phil.) A.Richardson of the tion have been defi ned in two general ways. Raven (1963) simply source region is sister to the recipient South American “Tiquilia defi ned bipolar AAD plants as those that “occur at high latitudes”, plicata” clade (Appendix 2). An example of the latter is seen in whereas Moore and Chater (1971) quantifi ed this defi nition by ( Levin et al., 2007 ), in which a clade of two source South considering taxa with a bipolar distribution as those whose popula- American Lycium species is sister to the North American L. califor- tions reached >55° N and >52 °S (dashed lines of Fig. 1). One thing nicum Nutt. ex A.Gray (Appendix 2). Finally, an example of sister to consider is whether bipolar AAD plants must only occur at these clades is exemplifi ed by the genus Cryptantha (Boraginaceae), in which higher latitudes or if only some populations must occur in these 1608 • AMERICAN JOURNAL OF BOTANY

FIGURE 4 (A) Distribution map of two sister AAD species, Lilaeopsis occidentalis and L. macloviana (Apiaceae). (B) Phylogenetic tree of the genus Cryptantha (Boraginaceae), showing two major South American (SA) clades nested within all North American taxa. Within the Eucryptantha /Geocarya clade, note the evolution of a perennial plant duration (P) from the ancestral annual plant duration (A, the latter found in all other Cryptantha species), the evolution of cleistogamy (C L) from the ancestral chasamogamy (C H, the latter found in all other Cryptantha species), the evolution of specialized cleistogenes ( CL *) among some of the cleistogamous members, and the evolution of hexaploids ( 6n ) from the ancestral diploid (2 n ), the latter found in all other Cryptantha, except one member of the Globuliferae clade, which has both diploid and hexaploid counts. Modifi ed from Mabry (2015) , with permission. (C) Cryptantha captitulifl ora , with a perennial rootstock. (D) Cryptantha glomerata , with cauline cleistogamous fl owers (arrow). (E) Cryptantha NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1609

FIGURE 5 (A) Plot of mean divergence time (Ma = millions of years before present) for all known examples relative to taxonomic category: clade-clade, species-clade & clade-species, species pairs, infraspecies (coninfraspecies and diff erent infraspecies pooled), and conspecifi c (these excluding infra- species values). Mean for each category indicated by red diamond symbol. Note general trend toward more recent divergence times. (B) Plot of mean divergence time for each of the three AAD bioregions. Symbols as in “A”.

regions with other populations located closer to the equator. Alter- [this issue]). One of two AAD examples of Botrychium (Ophioglos- natively, one might consider AAD plants to be bipolar if only one saceae) cited by Raven (1963) is rejected (Appendix 4) because of of the North American or South American populations meet these changes in taxonomic concepts ( Farrar and Stensvold, 2017 , in this distributional criteria, but not both. We have elected to require issue; Meza-Torres et al., 2017 ). We also reject as bipolar AAD that, to be designated bipolar, both NA and SA taxa must have pop- plants the species Honckenya peploides (L.) Ehrh (Caryophyllaceae), ulations occurring at high latitude but not exclusively, allowing for Lathyrus japonicus Willd. (Fabaceae), and Poa glauca Vahl. some distributions into more temperate zones. Using the ecological (Poaceae) (Appendix 4), all cited by Raven (1963) . Th e fi rst is no zone classifi cation of Davis and Holmgren (2001) , bipolar AAD longer considered to occur in SA (Chile) ( Wagner, 2005 ), and the plants may occur in the boreal mountain system (BM), most of the last two are now thought to be nonnative in SA ( Zuloaga et al., 2008 ). boreal tundra woodland (Bb), and the northern parts of the boreal Th e mean divergence time of bipolar AAD events was calculated coniferous forest (Ba) and temperate mountain system (TeM) of as 0.25 (range of means 0–0.69) Ma, considerably more recent in NA. South American bipolar plants are less easily delimited by veg- time than temperate or desert examples (Table 2). Th e only bipolar etation regions and are generally found in the extreme southern AAD shrub, spp., had a signifi cantly older mean diver- parts of the temperate oceanic forest (TeDo) and the temperate gence time of 0.69 Ma, the oldest of this bioregion. Th e generally steppe (TeBSk: extreme southern Patagonia) ( Fig. 1 ). late dispersal times of bipolar AADs agrees with Raven’s (1963) Our tabulation of bipolar AAD plants includes 27 examples, postulation that these plants attained their current distribution making up about 11% of the total (Appendix 1; Table 2), including relatively recently, primarily because their high latitude habitats two , 15 monocots, and 10 (Appendix 1). Th ree spe- formed late in geologic time. (See also Donoghue, 2011 .) This cies or species pairs that were not considered to be bipolar AAD recency of divergence of bipolar AADs is supported by the fact that plants by Moore and Chater (1971) are included by us (Appendix the great majority (21 examples, 77.8% of the total) are single spe- 1), as they occur in both bipolar regions of NA (>55° N) and SA cies, with the rest (6 examples, 22.2% of the total) being species- (>52 ° S), but also get well into temperate regions. With regard to species pairs; there are no bipolar clade examples (Appendix 1). plant families, Cyperaceae and Poaceae have the greatest number of Bipolar AAD plants are almost entirely (about 96%) perennial, and bipolar AADs with seven examples each. Th e genus has the all but one (Empetrum spp.) of these are or include perennial herbs greatest number of bipolar AADs of any genus, with six examples. (Table 2; see Character evolution section, below). Th e available phy- In our listing (Appendix 1), we clarify the taxonomy of species of logenetic studies indicate that all bipolar AAD events had a NA to Carex from recent studies ( Murray, 2002 ; Wheeler and Guaglia- SA dispersal direction, with one being equivocal ( Table 2 ; see Dis- none, 2003 ; Escudero et al., 2010; Villaverde et al., 2015a, b , 2017a persal direction section, below).

← aprica, showing a ground-level to subterranean cleistogene (arrow). (F, G) Examples of epizoochoric propagules. (F) Acaena pinnatifi da var. pinnatifi da (Rosaceae), in which a hardened, glochidiate hypanthium surrounding the seeds acts as an eff ective dispersal mechanism. (G) Cryptantha globulifera , in which the bristly calyx enclosing the fruits (nutlets, see inset) may function in attachment and subsequent dispersal. (C–G) Photographs by Michael G. Simpson. Distribution map data from GBIF (2017) , superposed on Global Ecological Zones map, redrawn from Davis and Holmgren (2001) . 1610 • AMERICAN JOURNAL OF BOTANY

TABLE 2. American amphitropical disjunct vascular plants, organized by general bioregions, listing total number of plant taxa, percentage of the total, mean divergence time (including range of individual means), percentage of perennials and annuals, and percentage of taxa inferred to have had a dispersal or migration from North American (NA) to South America (SA). [N ] = number of studies from which mean divergence time or direction is calculated. See Appendices for source of data. Bioregion Total (%) Mean (Range) divergence time, Ma [ N ] % Annuals % Perennials % NA→ SA [ N] Bipolar 27 (11.4) 0.25 (0–0.69) [6] 4.0 96.0 100 (1 equivocal) [7] Desert 52 (21.9) 5.96 (0–41.5) [16] 18.2 81.8 53.8 (2 equivocal) [26] Temperate 158 (66.7) 2.79 (0–17.11) [49] 54.5 45.5 90.5 (7 equivocal) [63]

Desert AAD plants —Desert AAD plants include those that occur in (SM) of NA and SA, which encompass the regions of Mediterra- the subtropical desert (SBWh), subtropical steppe (SBSh), tropical nean-type climates of the two continents ( Fig. 1 ; see Dallman, 1998 ; desert (TBWh), and temperate desert (TeBWk), using the ecologi- Moreira-Muñoz, 2011 ). Temperate plants also include the subtrop- cal zone classifi cation of Davis and Holmgren (2001) . Th ese ecore- ical humid forest (SCf: southeastern coniferous forest of the NA, gions are inclusive of the Great Basin and the Chihuahuan, Mohave, pampas of SA), temperate continental forest (TeDc: eastern decid- and Sonoran deserts of NA and the Atacama and Monte deserts of uous forest of NA), temperate mountain system (TeM: Appala- SA ( Fig. 1 ). Desert AADs are sometimes diffi cult to diff erentiate chian cordillera of NA, southern Andes of SA), part of the from those of temperate regions because of intergradation of these subtropical steppe (SBSh: Norte Chico of SA), and temperate steppe bioregions, especially in SA. For example, the subtropical steppe (TeBSk: Great Plains of NA). We note that some of the plants we Norte Chico of Chile is an interface region between the dry Atac- classifi ed as temperate may also occur in bipolar regions of either ama Desert (part of the tropical desert) and the mediterranean sub- NA or SA (but not both) and recall that many plants classifi ed as tropical dry forest (Davis and Holmgren, 2001), whereas this region bipolar also occur in more temperate regions. is considered part of mediterranean Chile in other classifi cations Temperate AAD plants include two ferns, 37 monocots, and (e.g., Josse et al., 2003 ). In addition, plants of some desert regions 119 eudicots. With regard to plant families, Poaceae have the actually occupy more mesic conditions. For example, within the greatest number of temperate AADs with 26 examples, followed Atacama Desert, coastal areas up to several hundred meters in ele- by Boraginaceae with 15 examples, Asteraceae with 14 examples, vation receive minimal annual precipitation levels measured in and Apiaceae, Fabaceae, and Polemoniaceae each with 9 examples millimeters, yet plants can thrive because of drip precipitation from (Appendix 3). Among the AAD temperate plants, a number are the “camanchaca”, or coastal fog ( Johnston, 1929 ; see Zuloaga et al., found in both western NA and western SA, but there are some that 2008 ). In general, we considered the subtropical and temperate range into eastern NA and/or, perhaps more commonly, into east- steppes (Patagonian and Monte deserts) and perhaps part of the ern SA. Th e mean divergence time of temperate AAD events was tropical dry forest (chaco) of Argentina to house desert plants, al- calculated at 2.79 (range of means 0–17.11) Ma, a little less than though a variety of habitats of varying moisture regimes occur in half that of desert examples and over 11× of bipolar regions (Table these regions. In addition, clades of species may have a mixture of 2). Th e majority (almost 55%) of temperate AADs are annuals, in AAD bioregions, e.g., the genus (). contrast to those of bipolar and desert regions. From available Despite these issues, we currently estimate a total of 52 desert phylogenetic studies, almost 91% of temperate AADs dispersed AAD plants, making up almost 22% of the total ( Table 2 ). Th ese from North to South America. ( Table 2 ; see Dispersal direction include no ferns, one Gnetales ( ), 18 monocots, and 33 eu- section, below.) dicots. With regard to plant families, Poaceae have the greatest number of desert AADs with 18 examples (all of the monocots), Divergence times vs. AAD bioregion —A plot of divergence times for followed by Fabaceae with seven examples (Appendix 2). Th e mean each of the AAD bioregions shows the general trend of very recent divergence time of desert AAD events was calculated at 5.96 (range divergence times in bipolar regions (mean = 0.25 Ma, with little of means 0–41.5) Ma, considerably older than bipolar examples variance), which, as discussed, is refl ective of the recent establish- and somewhat older than temperate ones ( Table 2 ; see below). Th e ment of those habitats. Mean divergence times of desert and tem- great majority (about 82%) of desert AADs are perennials, with perate regions are earlier, 5.96 vs. 2.79 Ma, respectively, both with about 61% of these herbs and 39% shrubs, subshrubs, or trees. considerably more variance ( Fig. 5B ). Why desert plants have a From available phylogenetic data, slightly over half (about 53.8%) generally older divergence time is unclear, but possibly related to of the desert AAD plants dispersed from North to South America, plant duration or dispersal mechanism (see below). a trend that contrasts with the other two bioregions. (See Dispersal direction section, below.) Extra-western hemisphere AADs—A total of 38 AAD examples have native distributions also occurring beyond the western hemi- Temperate AAD plants— Temperate plants comprise the largest sphere (Appendices 1–3). Most of these (22, about 58%) are bipolar group of AAD plants, with 158 examples, making up about 67% of plants, only one (about 3%) is a desert plant, and the remainder (15, the total ( Table 2 ). For our purposes, temperate plants occupy the about 39%) are temperate plants. Th eir preponderance in bipolar vegetation zones other than those of the bipolar and desert regions plants, and to a degree in temperate plants, may be indicative about (although intergradation with the latter can occur) and other than a more probable long-distance dispersal mechanism in these two the tropical rainforest (TAr), tropical moist deciduous forest bioregions (below). (TAwa), tropical dry forest (TAwb), and tropical shrubland (TBsh) (Davis and Holmgren, 2001; Fig. 1). Temperate regions include the Rejected AAD examples— We list a total of 22 taxa that had been subtropical dry forests (SCs) and subtropical mountain systems considered examples of AAD plants in the past but that are rejected NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1611

based on our analyses. All of these are no longer believed to be na- opportunity vs. propagule availability in annuals vs. perennials, or tive to either NA or SA (Appendix 4). diff erences in the ability to establish populations postdispersal in an environment where conditions likely fl uctuate with greater ampli- Dispersal direction— Evolutionary divergence occurs when a com- tude year to year compared to bipolar and temperate regions. mon ancestor gives rise to two, independent lineages. An AAD dis- In the great majority (about 92%) of AAD examples, plant dura- tribution pattern arises when the products of one lineage end up in tion of the source vs. recipient taxa undergo no change following amphitropical NA and those of the other in amphitropical SA. dispersal. However, a shift in plant duration is seen following a few What we are terming dispersal direction is the direction of geo- AAD events. In several cases, the shift occurs from annual to perennial graphic change of the spatially altered lineage relative to the com- duration. For example, in Cryptantha (Boraginaceae), many mem- mon ancestor, following this divergence event. Although dispersal bers of a relatively large SA clade (termed the Eucryptantha / Geocarya is not the only explanation for current AAD distributions, we elect clade, aft er Mabry, 2015; Mabry and Simpson, in press), which is to use this term given it is by far the most probable explanation (see the product of a single dispersal from North to South America, Mechanisms of AAD distribution section, below). evolved a perennial duration (Fig. 4B, C). All other members of Taxonomic studies have traditionally been used to assess the di- Cryptantha on both continents are annuals, the ancestral condition rection of intercontinental dispersal. However, dispersal direction for the genus, as currently defi ned. We can only speculate as to the is most rigorously inferred from phylogenetic studies, the primary possible adaptive signifi cance of this shift in plant duration. It may source of our comparative data (Appendices 1–3). As reviewed un- be related to the (at least initial) dearth of pollinators and selection der AAD bioregions , a NA to SA direction of dispersal is the most for iteroparity, permitting multiple sexual reproductive events over common of all AAD patterns, occurring in about 81% of all AAD a lifetime. However, some of these South American Cryptantha plants for which this is known. All bipolar AAD plants have the NA species occur at high altitude in the Andes Mountains, where the to SA pattern, with one case possibly equivocal (Table 2). Among selective pressure for a perennial plant duration may have helped to temperate AADs, the great majority, over 90%, are NA to SA ( Table survive the cold, alpine conditions ( Bliss, 1971 ). A similar shift 2 ). Both of these patterns have generally been explained by long- from annual to perennial plant duration is exemplifi ed in other distance dispersal by migratory birds, some of which can fl y long AAD examples. In the genus Plagiobothrys (Boraginaceae), most distances, e.g., along the Pacifi c Flyway (see below). However, as (seven of nine) of the perennial species occur only in SA ( Johnston, also concluded by Wen and Ickert-Bond (2009) , desert AAD plants 1927 , 1932 ); thus, a perennial duration is thought to be derived, show a diff erent pattern; about 46% by our calculations having a SA verified in part by Guilliams (2015) . In the genus to NA direction of dispersal/migration ( Table 2 ), exemplifi ed by (), all of the SA species are perennial; although we (Simpson et al., 2005; Fig. 6A) and Larrea ( Lia lack precise phylogenetic data, the perennial duration is presumed et al., 2001; Fig. 6B, C). Diff erent mechanisms of propagule move- to have been derived on that continent from an ancestral annual ment are likely involved for these desert plants (see Park, 2016 ; one. Finally, Drummond et al. (2012) showed a shift from annual to Schenk and Saunders, 2017, in this issue). Dispersal vectors likely perennial plant duration in clades of Lupinus (Fabaceae), one of show common patterns with regard to the AAD bioregion and tim- these before and the other aft er two independent dispersals from ing of divergence. North to South America (Fig. 6D). Th is change in plant duration corresponds with a shift from semelparity to iteroparity. Perennial Character evolution— Phenotypic and genotypic features in AAD plant duration is oft en cited as being the ancestral feature (John- plants are of great interest. We can fi rst consider features possessed ston, 1927 ; Raven, 1963), but in many AAD cases, it is clearly de- by AAD plants that may have facilitated their transportation, sur- rived, apparently in the majority of cases aft er long-distance vival, and reproduction in the novel habitat of another continent. transport from North to South America. Th ese features may be termed pre-AAD adaptations. We can also A contrasting shift from a perennial plant duration in the com- assess changes that occurred aft er transport to the new continent, mon ancestor of the source region to annual in the recipient region so-called post-AAD adaptations. Th e following are some of the is seen in other AAD events. For example, the desert grass genus more recognizable features of AAD plants that appear important as , there is a shift from perennial (characteristic of the North pre- or post-AAD adaptations. American M. pulchella (Kunth) Amarilla and all outgroups stud- ied) to annual (characteristic of all fi ve species of a clade sister to M. Plant duration— Th e duration of AAD plants is generally correlated pulchella ) following presumed long-distance dispersal to SA ( Amarilla with their AAD bioregion. As previously discussed, in bipolar AAD et al., 2015 ; Appendix 2). Interestingly, no change in plant duration plants, about 96% are perennials, all but one of these perennial occurred following a later back dispersal from South to North herbs. Th is predominant plant duration may be a function of their America in this fi ve species clade. habitat, as most plants that live in extreme altitudes are perennials, A comparison of plant duration and evolutionary divergence and most of these are herbs. Th is agrees with the general recogni- time shows some diff erences with respect to AAD bioregions. tion of a predominance of perennial plants in high latitude and When all bioregions are pooled, there is little diff erence in mean high altitude conditions (Bliss, 1971). In contrast, about 55% of divergence times between annuals (2.31 Ma) and perennials (2.77 temperate AAD plants are annuals and 45% perennials (Table 2). Ma; Table 3 ). As already discussed, AAD plants of bipolar regions Of the temperate perennial plants, almost all are perennial herbs, are predominantly perennial (about 96%), with a very recent mean with about 3% of the perennials being shrubs. Finally, the great ma- divergence time (0.25 Ma), no data being available for the single jority, about 82%, of desert AAD plants are perennials, with about annual species ( Table 3 ). Among desert AAD plants, perennials 40% of these being woody trees or shrubs and the remainder being have a somewhat older mean divergence time (6.07 Ma) than that perennial herbs. These differences in desert AADs may be in- of annuals (4.27 Ma; Table 3 ). Among temperate plants, the diver- dicative of a diff erent mechanism of dispersal, timing of dispersal gence times between annuals and perennials are more similar, 1.81 1612 • AMERICAN JOURNAL OF BOTANY

FIGURE 6 (A) Cladogram of Hoff mannseggia (Fabaceae), showing four dispersal events (arrows), all from South America (lineages/taxa in orange) to North America (NA; lineages/taxa in blue). Modifi ed from Simpson et al. (2005, p. 21), with permission. (B) Distribution map of Larrea (Zygophyllaceae), showing hypothesized dispersal from South to North America. Modifi ed from Hunter et al. (2001 , p. 525), with permission. (C) Distribution map of Larrea spp., showing North American 2 n , 4n , and 6n chromosome races. From Laport et al. (2012 , p. 155), with permission. (D) Cladogram of Lupinus (Fabaceae), showing evolutionary shift from annual (light yellow) to perennial (dark brown) habit, associated with a similar shift from semelparity to iteroparity, and two independent dispersals from North to South America (arrows). Stars indicate increases in species diversifi cation rates. Modifi ed from Drummond et al. (2012, p. 452), with permission. (E) Cladogram of (Fabaceae), showing shift of species diversifi cation rate correlated with two independent dispersals from North to South America (arrows). Modifi ed from Scherson et al. (2008 , p. 1034), with permission. vs. 2.31 Ma, respectively ( Table 3 ). However, we note that this in- plants, e.g., with respect to both bioregion and source and sink cludes only examples for which plant duration is unambiguous. habitats. In general, diff erences in divergence time between annuals and perennials between AAD bioregions seems signifi cant, but within Substrate preference—Virtually nothing is known about shift s in an AAD bioregion appears to be small. Further studies may pro- substrate preference in AAD plants. In a single known example, vide more insight into the evolution of plant duration in AAD Simpson et al. (2005) mention that the source South American NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1613

TABLE 3. American amphitropical vascular disjunct plants, comparison of & Pav. (Rosaceae; Marticorena, A. 2006). Cleistogamy in Collomia number, percentage, and mean divergence time (with range of individual and Polemonium can be considered a pre-AAD adaptation that means) of annual vs. perennial plants for all regions, biploar plants only, may have facilitated establishment in South American, while cleis- desert plants only, and temperate plants only. Only nonequivocal data listed. togamy in the SA Leptosiphon pusillus is not known among its Those taxa listed in the literature ambiguously as either annual or perennial North American sister species and appears to be a post-AAD adap- (or a combination with biennial) were omitted. [N ] = number of examples from which mean divergence time is calculated. — = no available data. See tation following dispersal (Johnson et al., 2012; Johnson and Por- Appendices for source of data. ter, 2017 , this issue). One notable example of cleistogamy among AAD plants are certain South American species of Cryptantha Mean divergence time, (Boraginaceae; Fig. 4D). Cleistogamy, like a perennial plant Plant duration Total number Percent of total Ma (Range) [ N] habit, is predominant among members of the aforementioned All regions Eucryptantha /Geocarya clade ( Mabry and Simpson, in press ; Fig. Annuals 82 40.6 2.31 (0–14.9) [29] Perennials 120 59.4 2.77 (0–24.78) [26] 4B). An interesting avenue of research will be investigation into a Bipolar only possible interaction between cleistogamy and a perennial duration Annuals 1 4.0 — in these taxa. Interestingly, among members of this clade are spe- Perennials 24 96.00.25 (0–0.69) [7] cies (of section Geocarya ; Johnston, 1927) that have evolved a spe- Desert only cialized type of cleistogamous fl ower, one that originates at ground Annuals 8 18.24.27 (0.03–14.42) [6] level and can, in fact, be pulled underground during development. Perennials 36 81.86.07 (0–24.78) [7] Temperate only Th ese geocarpic fruits, termed “cleistogenes”, are enlarged and Annuals 73 54.9 1.81 (0.26–14.90) [23] morphologically diff erent from the apical fruits that are the pro- Perennials 60 45.12.31 (0–7.69) [12] duce of chasmogamous fl owers ( Grau, 1983 ; Fig. 4E ), an intriguing example of a potential post-AAD adaptation.

Propagule morphology and physiology—If long-distance dispersal is species of Hoff mannseggia are limited to sandy or rocky soils, but invoked as a mechanism of intercontinental movement, then the the recipient North American species can occupy these plus clay propagules (diaspores) would need to be adapted for such trans- or calcareous soils. Th e implication in this observation was that a port, with specializations either for water (oceanic hydrochory, also shift in diversifi cation of substrate tolerance occurred following termed nautochory), wind (anemochory or chamaechory, the dispersal. “tumbleweed” mechanism), or animal (zoochory) dispersal. Th e propagule units of angiosperms are generally seeds or fruits/fruit Reproductive biology— Th e great majority of AAD plants are re- parts, though rarely whole plants or plant parts, as in the tumble- ported to be self-compatible (Chambers, 1963; Constance, 1963; weeds. If animal transport is invoked as a mechanism for disper- Heckard, 1963 ; Ornduff , 1963; Raven, 1963; Moore and Raven, sal, which many authors think most probable, the transport was 1970 ; not tabulated in our study). Self-compatibility and bisexuality likely by either endozoochory or epizoochory (see Mechanisms of (e.g., either a hermaphroditic or monoecious plant sex) are likely AAD distribution section, below). Endozoochory involves passing necessary conditions for survival aft er long-distance transport, through an animal’s gut unharmed, whereby fruits or seeds would given that this transport might involve a single propagule with an require a thick, resistant outer covering (pericarp and/or seed unlikely chance of cross-pollination (i.e., Baker’s Rule; Baker, 1955; coat) to survive. Epizoochory (also termed ectozoochory) requires see Carlquist, 1966 for an alternative viewpoint). However, long- attachment to the fur, feathers, or appendages of an animal. Fruits term vegetative propagation (not investigated here) could also al- or seeds that are relatively small, mucilaginous, or have hairs, vis- low persistence of a propagule in the recipient region following cid glands, barbs, or processes would have a higher probability dispersal. of remaining attached during long-distance transport (Carlquist, A specialized type of self-compatibility is cleistogamy, in which 1981 ). Because some migratory birds can travel great distances in the corolla remains closed as the and pistils mature. Th us, a single fl ight, bird migration has been invoked as the most prob- cleistogamous fl owers are self-compatible and self-pollinating able mechanism of long-distance dispersal (see Lewis et al., 2014a within a single fl ower, ensuring propagule production in the total for evidence of bird epizoochory). Size and sculpturing of seeds absence of pollinators. Th e ability to produce cleistogamous fl owers or fruits may also correlate with their ability to be transported by might be under selective pressure following dispersal to a novel en- epizoochory. vironment, and some of the AAD plants are known to have cleis- A good example of epizoochory is seen in Acaena pinnatifi da , in togamous fl owers. Among AAD plants, cleistogamy is reported in which the glochidiate processes of the fruit very eff ectively attach to Cryptantha spp., sections Cryptantha and Geocarya (Boragina- the fur or features of a passing animal (Fig. 4F). Similarly, the bris- ceae); Dichondra (); Epilobium campestre (Jeps.) tly calyces enclosing the nutlets of several members of the subtribe Hoch & W.L.Wagner (); Nuttallanthus texanus (Plan- Amsinckiinae (Boraginaceae, after Chacón et al., 2016 ) may taginaceae); berteroanus Colla, Deschampsia danthonioides provide an eff ective animal transport mechanism (Fig. 4G; see (Trin.) Benth., D. monandra Parodi, octofl ora Walt., Guilliams et al., 2017). Phacelia (Hydrophyllaceae) shows variation Phalaris angusta Nees ex Trin., and possibly Phalaris lemmonii in propagule morphology, with most South American members Vasey and P. platensis Henrard ex Heukels (Poaceae); Collomia having relatively nonadherent seeds released from the capsule at grandifl ora Douglas ex Lindl., C. soehrensii Phil., Leptosiphon pusil- maturity. However, in some members of the P. magellanica com- lus (Benth.) J.M.Porter & L.A.Johnson, and Polemonium mi- plex, presumed to have been dispersed from North to South Amer- cranthum Benth. (Polemoniaceae; Johnston, 1927; Raven, 1963; ica by long-distance dispersal, the seeds are retained within the Johnson and Porter, 2017, this issue), and Acaena pinnatifi da Ruiz capsule and surrounded by a bristly calyx, making attachment to an 1614 • AMERICAN JOURNAL OF BOTANY

animal more probable ( Heckard, 1963 ). Temperate Polemoniaceae following hybridization between two South American species, af- have small seeds that either remain unchanged when wetted or that ter long-distance transport to SA. Th e recipient South American produce mucilage/spiricles from the seed coat when wetted; yet, all crassifolia Benth. has both tetraploid and octoploid popula- AAD exemplars in this family involve species with mucilaginous tions (2n = 36, 72), while its most likely source North American seeds, likely more easily dispersed via epizoochory (Johnson and relatives, either G. salticola Eastw. or G. clokeyi H.Mason are Porter, 2017 , this issue). Guilliams (2015), in a comparative phylo- diploid (2 n = 18; Morrell et al., 2000; Johnson and Porter, 2017, genetic study of the fruits (nutlets) of members of the subtribe this issue). Several members of the recipient South American Amsinckiinae (Boraginaceae), showed a positive correlation with Eucryptantha/ Geocarya clade of the genus Cryptantha are hexa- regard to a rough sculpturing and a negative correlation with re- ploid (Fig. 4B), whereas all others in the genus are diploid, except spect to size in members of the subtribe occurring in SA. Here, all for one sample of a single member of the South American Glob- South American taxa or clades were inferred to be the product of uliferae clade, other members of which are diploid (Fig. 4B; see NA to SA dispersal events. In this case, taxa possessing propagules Appendix 3). with putative adaptations for long-distance transport by birds seem Adaptive features of polyploids, especially allopolyploids, in- more likely to be present in South America. clude amelioration of inbreeding depression, increased ecological Schenk and Saunders (2017, this issue) tabulate propagule mor- tolerance, and increased chance of genetic novelties ( Mummenhoff phology of AAD plants and evaluate the mechanisms of possible and Franzke, 2007 ). All of these may have enhanced the survival propagule dispersal. and reproduction of AAD plants dispersed to a new continent. Th e possibility that the derivation of polyploidy in recipient AAD taxa Chromosome number and polyploidy— Few trends in chromosome may be somehow correlated with or causative of other morphologi- number changes can be recognized in AAD plants because of the cal and reproductive features, such as the perennial plant duration paucity of chromosome counts, especially of South American taxa and cleistogamy in certain Cryptantha (above), will be interesting or populations. In our tabulation, where counts are available, not to investigate. ambiguous (e.g., without multiple, overlapping numbers reported), and show changes in number associated with an AAD event, most Genetic divergence— Th e study of genetic divergence following the examples point to polyploidy evolving in the recipient (sink) popu- establishment of a taxon in a new region might give insight as to the lations. It is not always clear, however, whether the chromosomal genetic mechanisms following introduction of a single propagule to shift occurred prior to or aft er dispersal. a new environment. For example, van Houten et al. (1994) exam- Among bipolar AAD plants, shift s in chromosome number in- ined the genotypic variation in coastal vs. inland populations of the clude the source North American Botrychium spathulatum (2 n = Chilean annual Microseris pygmaea, which was presumed to have 90, 2 x ) vs. the recipient South American Botrychium dusenii (re- become established in SA following long-distance dispersal from ported as 4x ; Appendix 1). In addition, the conspecifi c Anemone NA (see Lohwasser et al., 2004 ). By studying molecular markers in multifi da Poir. () is thought to be of origin, the F2 population resulting from crosses of two individuals of the the possible parents all from NA. Th is species is polyploid (4x ) in most ecologically diverse populations, the authors identifi ed sig- NA, but recipient populations in SA show more variation, being nifi cant genetic variation between the two populations (including 2 x , 4x , or 6 x (Appendix 1). Its hybrid nature is hypothesized to be the identifi cation of 18 quantitative trait loci), which they surmised correlated with its variability and the diversity of habitats occupied may represent radiation of an AAD plants following a presumed in NA and SA (Meyer et al., 2010; Hoot et al., 2012). (See Appendix 1.) single colonization. Among desert AAD plants, Yuan and Olmstead (2008) showed a shift from diploidy to polyploidy in the recipient North American Species diversifi cation rate— A few phylogenetic studies have dem- members of (Verbenaceae) relative to the source onstrated an increase in species diversifi cation rate following an members in SA. All members of the recipient South American AAD event. Hughes and Eastwood (2006) demonstrated a high clade (“Blue-fl owered group”) of Tiquilia spp. (Ehretiaceae), de- species diversifi cation rate in an AAD recipient clade of Andean rived via a NA to SA long distance dispersal, are tetraploid, whereas Lupinus (81 spp.) of 2.49–3.72 species per million years, with the their sister species, the North American source species T. palmeri diversifi cation rate increase occurring aft er the uplift of the north- (A.Gray) A.T.Richardson, is diploid ( Moore et al., 2006 ; see also ern Andes. Th ey hypothesized the formation of diverse island-like Soltis et al., 2014 ). Th e genus Larrea (Zygophyllaceae) is thought to montane habitats following the Andean uplift as the driving fac- have been dispersed from SA to NA ( Lia et al., 2001 ; Fig. 6B ), with tor for this high species diversifi cation rate. Scherson et al. (2008) the subsequent postdispersal evolution of polyploidy (tetraploidy and inferred two separate AAD clades of South American Astragalus hexaploidy) only in some North American populations (Laport et al., species (Fig. 6E), each with high rates of species diversifi cation 2012 ; Fig. 6C ). (See Appendix 2.) (2.01 and 2.07 species/million years). Both of these studies dem- Among temperate AAD plants a shift occurred relative to the onstrate a probable adaptive radiation event following the intro- source North American Primula alcalina Cholewa & Douglass duction of a propagule into a novel habitat, potentially driven M.Hend. + P. specuicola Rydb. clade (2n = 18, 2x ) vs. the recipient by new niche availability, reduced competition, and/or reduced South American P. magellanica Lehm. (2n = 72, 8x ). Ornduff predation. (1963) speculated that the Chilean chilense Less. (2 n = 32) arose following an allopolyploidy event within a North Phylogeography — Although there are very few published exam- American Blennosperma species complex (2n = 14, 18). In a more ples, phylogeographic methods (e.g., Matzke, 2013 ) are now avail- detailed study, Johnson et al. (2012) hypothesized that the South able to infer the source and sink areas of an AAD event in terms of American (Patagonian) tetraploid Collomia bifl ora (Ruiz & Pav.) present day ecoregions. For example, assignment of current bio- Brand (Polemoniaceae) originated via an allopolyploid event geographic regions to taxa in an phylogeographic analysis of the NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1615

genus Cryptantha ( Mabry, 2015 ; Mabry and Simpson, in press ) in- American Biotic Interchange (e.g., Woodburne, 2010). A stepwise dicates that the common ancestors of each of the two major South distribution pattern, showing “trans” populations along the cor- American clades were the products of single long-distance disper- dillera of Central America or northern SA (e.g., as seen in Fig. sals, from a Mediterranean-type climate region of NA to a Mediter- 2B–D) might be indicative of this type of movement. One could ranean-type climate region of Chile in SA, with later dispersals to argue that most AAD plants must have been dispersed long dis- the subtropical mountain system of the Andes or subtropical steppe tance because they cannot survive or persist in the wet tropics, or desert (Fig. 7). Of course, these phylogeographic studies trace although it is certainly possible that they did survive in tropical the history of plant lineages in terms of the current ecoregions oc- regions for a time, in a stepwise migration, but later went extinct cupied. Knowledge of the past climate, geology, and vegetation of there, making this hypothesis virtually untestable. Fine-scale mo- source and sink regions of AAD plants are needed to fully under- lecular studies may be capable of diff erentiating between a long- stand the history of an AAD event, as current ecoregions may distance vs. stepwise dispersal hypotheses. For example, Lewis et be different from those present at the time of the dispersal or al. (2014b) determined from phylogenetic studies that the moss migration. Tetraplodon attained its current AAD distribution by direct long- distance dispersal from NA to SA, probably in a single fl ight by a Mechanisms of AAD distribution— Diff erent mechanisms have migratory bird. In this case, putative stepwise populations were been proposed to explain the distribution of AAD plants. One early refuted as the mechanism of AAD distribution, because the spa- hypothesis is that a given AAD plant distribution arose by vicari- tially intermediate neotropical populations of this taxon were ance, via the splitting of an ancestrally continuous range, such as by found to be more distantly related to the sister amphitropical the formation of the wet tropical region. It is also possible that a populations of North and South America. common ancestor restricted in distribution to a currently interme- Our tabulations of deviations from a typical AAD distribution diate region (e.g., ancestrally within what is now the neotropics) yielded the following summaries. A total of 38 AAD examples have could have given rise to lineages to the north and to the south, with distributions also outside the western hemisphere. Most of these these intermediate populations going extinct. Both of these hypoth- (22) are in bipolar regions, one is a desert plant, and 15 are in tem- eses could be tested with study of intermediate populations. How- perate regions. All but three of these otherwise have a typical AAD ever, given that, by defi nition, AAD plants lack such tropical distribution occurring in western NA or western to southern SA. A intermediates, no fossil evidence of geographic intermediates has total of 20 AAD examples deviate signifi cantly in east–west range been described, and events that may have led to vicariance are gen- from a typical AAD distribution, these fairly evenly split between erally not correlated with AAD divergence time estimates, these desert and temperate plants. Six AAD examples have representa- hypotheses are not widely accepted. tives occurring in eastern NA (one desert, fi ve temperate), six in A general assumption in evaluating AAD distributions is that both eastern and western NA (all temperate), two in eastern SA the products of the spatially disjunct lineage (relative to the com- (one desert, one temperate), and six in both eastern NA and SA mon ancestor) were transferred to a region diff erent from the com- (three desert, three temperate) (Appendices 2, 3). Finally, a total of mon ancestor by a dispersal event. Th e most accepted hypothesis 38 examples of the general desert and temperate bioregions have is that the great majority of AAD taxa acquired their current distributions that we deemed to encroach well beyond the amphi- ranges via long-distance dispersal. Direct dispersal, in a single, rela- tropical zone, into Central America and northern SA. Four of these tively rapid event, is generally accepted as the primary means of occur in what we termed “trans-NA” (three desert, one temperate), long-distance dispersal between the continents. Birds are consid- 15 occur in “trans-SA” (seven desert, eight temperate), and 19 oc- ered the most likely vector of this direct dispersal. (See Schenk and cur in “trans NA-SA” (four desert, 15 temperate). Saunders, 2017 , this issue.) A number of migratory bird species, Aside from the fact that most bipolar AADs are also found with combined annual numbers likely in the millions, fl y between outside of NA and SA, no clear trends or correlations were noted western NA and Chile/Argentina ( Collins, 1974 ; Carlquist, 1983 ) in these distribution deviations. However, these examples might along the well-known Pacifi c Flyway. As mentioned earlier, propa- be scrutinized for mechanisms of dispersal in attaining their gule dissemination by birds may have occurred by endozoochory current distribution, including possible stepwise long-distance or epizoochory. Th ere are empirical studies demonstrating the oc- dispersal. currence of seeds in the gut contents of migratory birds, some of these retained there for many days (see Carlquist, 1983 and refer- ences therein). And, as previously alluded to, Lewis et al. (2014a) CONCLUSIONS demonstrated the presence of plant fragments on the outer bodies of migratory birds, indicating the possibility of epizoochory for Evaluating what constitutes an amphitropical distribution is im- long-distance dispersal. Th e distribution of AAD plants well within portant in discriminating among diff erent types of biogeographic the amphitropical zone, e.g., in western NA and western or south- patterns, with potentially diff erent mechanisms at play by which ern SA (as in Fig. 2A ), is thought to support the long-distance dis- current distributions became established. Consideration of an- persal hypothesis, likely by migratory birds given the great distance thropogenic AAD introductions is critical, and study of known between intercontinental populations. examples of human introductions may give insight into the mecha- Another hypothesis of long-distance dispersal is that at least nisms, patterns, and levels of variation of naturally distributed some AAD plants attained their current distribution by a slower, AADs. Continuing taxonomic research is critical to verifying spe- more gradual stepwise or stepping-stone dispersal process across cifi c AAD plant distribution hypotheses. Consideration of taxo- Central America and the northern Andes of SA. In addition to nomic category—conspecifi c, infraspecifi c, species pairs, and clade birds, other , including mammals, could be the vector of relationships—is valuable in giving insight into the amount of evo- transport in this scenario, e.g., perhaps associated with the Great lutionary divergence that has taken place in diff erent groups. It is 1616 • AMERICAN JOURNAL OF BOTANY

can yield insight into mechanisms of AAD events, elucidating the range and habitats of common ancestors and their descendants. However, phylogenetic and phylogeographic studies of AAD plants are still few in number. More are needed to more fully evaluate po- tentially common patterns of divergence re- sulting in an AAD distribution in concert with knowledge of climatic and geologic his- tory of AAD regions. Th ough long-distance dispersal is thought to be a rare, chance event, occurring at vari- ous times during biogeographic history, the great majority of AAD plants likely attained their current distributions by relatively rapid, direct long-distance dispersal, most likely by migratory birds. However, stepwise long-dis- tance dispersal hypotheses may be viable al- ternatives in some cases, especially those with “trans” incursions into the tropical zone.

Future directions— Continued research on AAD plants is needed to accumulate suffi - cient data to evaluate whether the events that have lead to current patterns of distribution show common patterns and to elucidate cor- relations between these patterns and past geological or climatic events that shaped the survival and evolution of plants in novel habi- tats. Future directions will include refi ning our current tabulation of AAD plants to stim- FIGURE 7 Phylogeographic graphical output using BioGeoBEARS (Matzke, 2013), showing the ulate needed research. Continued phyloge- most likely ancestral range for Cryptantha , highlighting the two major South American groups: netic studies will give us additional and more the Globulifera clade and the Eucryptantha /Geocarya clade. From Mabry (2015) , with permission. precise estimates of divergence times (e.g., Legend for ecological zones (modifi ed from Davis and Holmgren, 2001 ): red = North America with fossil calibration) and species diversifi - subtropical dry forest and mountain system; green = North America temperate desert; blue = cation rates, both still grossly undocumented. South America tropical desert; purple = South America subtropical steppe and dry forest. Th ese studies are likely to provide even more examples of clade-level AADs, which are likely underreported by us, having been diffi - best to view the split between NA an SA plant lineages as a unique cult to demonstrate with the earlier focus on minimum-ranked AAD event, which in some cases is followed by at least one lineage taxa. resulting in diversifi cation into a clade of species. Classifying AAD To facilitate continued research in this fi eld, we have established plants by bioregion—bipolar, desert, and temperate—is useful, as an American Amphitropical Disjunction Working Group ( https:// these comparisons may point out diff erent dispersal mechanisms fi gshare.com/projects/American_Amphitropical_Disjunctions_AAD_ and diff erent processes of evolutionary divergence. Working_Group/25510 ), for which our objective is to continuously Evaluating character evolution with respect to plant duration, update both the list of AADs ( http://dx.doi.org/10.6084/m9. substrate preference, aspects of reproductive biology, propagule figshare.5479822) and the data associated with them, including the features, chromosome number changes, and genetic divergence features listed in Appendices 1–3 here and additional features, such helps to understand AAD adaptations, both before (pre-AAD) and as propagule morphology and other documented features of repro- aft er (post-AAD) dispersal. Additional studies detailing other fea- ductive biology. Critical to this listing is a clarifi cation of the tax- tures, such as the molecular evolutionary changes causative for onomy of each AAD example and its precise distribution based on shift s in such features as a perennial duration, polyploidy, or cleis- data from georeferenced herbarium specimens. Th e value of her- togamy, will constitute intriguing, new avenues of research. baria as repositories of the taxa of study, and the importance of Phylogenetic studies can more clearly establish the timing and specimen annotations by experts cannot be overstated. Our most direction of dispersal in an AAD event, especially if associated with ambitious plan is to link each AAD example with one or more dis- bioregion or plant characteristics. Th ese phylogenetic methods can tribution maps, ideally with layers of vegetation regions, topogra- also provide precise information on species diversifi cation rate, this phy, climate data, and even soils. Our desire is to stimulate and sometimes increasing following an AAD event, signaling a rapid encourage ongoing discussion among the members of the scientifi c radiation. Detailed phylogeographic studies, combined with knowl- community to facilitate updates, keep these lists current, and pro- edge of climatic and geologic changes in source and sink regions, vide a resource to the botanical community at large. NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1617

ACKNOWLEDGEMENTS Bothmer , R. von , and N. Jacobsen . 1989 . Interspecifi c hybridization with guatemalense. Genetica 79 : 147 – 151 . Th e authors thank two reviewers whose comments greatly improved Bothmer , R. von , N. Jacobsen , and R. B. Jorgensen . 1985 . Two new American this paper. We thank Lee M. Simpson, who prepared the ecoregion species of Hordeum (Poaceae). Willdenowia 15 : 85 – 90 . and distribution maps of several fi gures. We thank Drs. Charles Bell Bothmer , R. von , N. Jacobsen , and E. Nicora . 1980 . Revision of Hordeum sect. and Robert Soreng for providing useful data for this project. We are Anisolepis Nevski. Botaniska Notiser 133 : 539 – 554 . grateful to the American Society of Plant Taxonomists, Botanical Bothmer , R. von , and N. C. Subrahmanyam . 1988 . Assessment of chromosome Society of America, John Wiley and Sons, National Academy of associations in haploids and their parental accessions in Hordeum. Sciences, and Oxford University Press for granting permission to 30 : 204 – 210 . reprint fi gures. Bray , W. L. 1898 . On the relation of the fl ora of lower Sonoran zone in North America to the fl ora of the arid zones of Chili and Argentine. Botanical Gazette (Chicago, Ill.) 26 : 121 – 147 . LITERATURE CITED Bray , W. L. 1900 . Th e relationships of the North American fl ora to that of South America. Science 12 : 709 – 716 . Acosta , M. C. , G. Bernardello , M. Guerra , and E. A. Moscone . 2005 . Karyotype Carlquist , S. 1966 . Th e biota of long-distance dispersal. I. Principles of disper- analysis in several South American species of Solanum and Lycianthes ran- sal and evolution. Th e Quarterly Review of Biology 41 : 247 – 270 . tonnei (Solanaceae). Taxon 54 : 713 – 723 . Carlquist , S. 1981 . Chance dispersal: Long-distance dispersal of organisms, Allred , K. W. , and F. W. Gould . 1983 . Systematics of the Bothriochloa saccha- widely accepted as a major cause of distribution patterns, poses challenging roides complex (Poaceae: Andropogoneae). Systematic Botany 8 : 168 – 184 . problems of analysis. American Scientist 69 : 509 – 516 . Amarilla , L. D. , J. O. Chiapella , V. Sosa , N. C. Moreno , and A. M. Anton . 2015 . Carlquist , S. 1983 . Intercontinental dispersal. Sonderbände Naturwissenschaft en A tale of North and South America: Time and mode of dispersal of the am- Vereins Hamburg 7 : 37 – 47 . phitropical genus Munroa (Poaceae, ). Botanical Journal of Carrique , M. C. , and A. J. Martínez . 1984 . Números de cromosómas de the Linnean Society 179 : 110 – 125 . Cruciferae 1. Parodiana 3 : 113 – 128 . Bachmann , K. A. , and H. J. Price . 1977 . Repetitive DNA in Cichoricae Casas , J. F. 1981 . Recuentos cromosomáticos de algunas angiospermas de (Compositae). Chromosoma 61 : 267 – 275 . Bolivia y Perú. Saussurea 12 : 157 – 164 . Bacon , J. 1984 . Chromosome numbers and taxonomic notes in the genus Cave , M. S., and L. Constance . 1942 . Chromosome numbers in the Hydrophyllaceae Nama (Hydrophyllaceae). Sida 10 : 269 – 275 . University of California Publications in Botany 18 : 205 – 216 . Baden , C. , and R. Bothmer . 1994 . A taxonomic revision of Hordeum sect. Cave , M. S. , and L. Constance . 1944 . Chromosome numbers in the Hydro- Critesion. Nordic Journal of Botany 14 : 117 – 136 . phyllaceae. University of California Publications in Botany 18 : 293 – 298 . Baker , H. G. 1955 . Self-compatibility and establishment aft er “long-distance” Cave , M. S. , and L. Constance . 1947 . Chromosome numbers in the Hydro- dispersal. Evolution 9 : 347 – 348 . phyllaceae . University of California Publications in Botany 18. Beier , B.-A. , J. A. A. Nylander , M. W. Chase , and M. Th ulin . 2004 . Phylogenetic Cave , M. S. , and L. Constance . 1950 . Chromosome numbers in the Hydro- relationships and biogeography of the desert plant genus Fagonia phyllaceae. University of California Publications in Botany 23 : 363 – 382 . (Zygophyllaceae), inferred by parsimony and Bayesian model averaging. Cave , M. S. , and L. Constance . 1959 . Chromosome numbers in the Hydro- Molecular Phylogenetics and Evolution 33 : 91 – 108 . phyllaceae. University of California Publications in Botany 30 : 233 – 258 . Bell , C. D. , and M. J. Donoghue . 2005 . Phylogeny and biogeography of Chacón , J. , F. Luebert , H. H. Hilger , S. Ovcinnikova , F. Selvi , L. Cecchi , C. Valerianaceae (Dipsacales) with special reference to the South American M. Guilliams , K. Hasenstab-Lehman , K. Sutorý , M. G. Simpson , and M. valerians. Organisms, Diversity & Evolution 5 : 147 – 159 . Weigend . 2016 . Th e borage family (Boraginaceae s.str.): A revised infrafa- Bell , C. D. , A. Kutschker , and M. T. K. Arroyo . 2012 . Phylogeny and diver- milial classifi cation based on new phylogenetic evidence, with emphasis on sifi cation of Valerianaceae (Dipsacales) in the southern Andes. Molecular the placement of some enigmatic genera. Taxon 65 : 523 – 546 . Phylogenetics and Evolution 63 : 724 – 737 . Chambers , K. L. 1963 . Amphitropical species pairs in Microseris and Bell , C. D., and R. W. Patterson . 2000 . Molecular phylogeny and biogeog- (Compositae: ). Th e Quarterly Review of Biology 38 : 124 – 140 . raphy of Linanthus (Polemoniaceae). American Journal of Botany 8 7 : Chaw , S.-M. , C.-I. Peng , and M.-T. Kao . 1986 . Verbena bonariensis L. (Verbenaceae): 1857 – 1870 . A newly naturalized plant in Taiwan. Journal of Taiwan Museum 39 : 123 – 126 . Bell , C. R. 1954 . Th e Sanicula crassicaulis complex (Umbelliferae), a study of Chiang , F. 1982 . Estudios cromosomicos en Lycium (Solanaceae) de variation and polyploidy. University of California Publications in Botany 27 : Norteamerica. Boletín de la Sociedad Botánica de México 43 : 9 – 23 . 133 – 230 . Chinnappa , C. C. , and J. G. Chmielewski . 1987 . Documented plant chromo- Bell , C. R. , and L. Constance . 1957 . Chromosome numbers in Umbelliferae. some numbers 1987: 1. Miscellaneous counts from western North America. American Journal of Botany 44 : 565 – 572 . Sida 12 : 409 – 417 . Benet-Pierce , N. , and M. G. Simpson . 2010 . Chenopodium littoreum Chmielewski , J. G. , and C. C. Chinnappa . 1988 . Th e genus Antennaria (Chenopodiaceae): A new goosefoot from dunes of south-central coastal (Asteraceae: Inuleae) in western North America. II. Additional chromo- California. Madrono 57 : 64 – 72 . some counts. Rhodora 90 : 133 – 137 . Bernardello , L. 1982 . Estudios en Lycium (Solanaceae) II. Recuentos cro- Chouhdry , A. S. 1984 . Karyomorphological and cytological studies in Ephedra. mosómicos en entidades . Hickenia 1 : 321 – 328 . Journal of Science, Hiroshima University, B 19 : 57 – 109 . Bernardello , L. M. , L. B. Stiefk ens , and M. A. Piovano . 1990 . Números cro- Chuang , T. I. , and L. R. Heckard . 1982 . Chromosome numbers of Orthocarpus mosómicos en dicotiledóneas Argentinas. Boletín de la Sociedad Argentina and related monotypic genera (Scrophulariaceae: Subtribe Castillejinae). de Botánica 26 : 149 – 157 . Brittonia 34 : 89 – 101 . Bicknell , S. H. , and E. M. Mackey . 1998 . Mysterious nativity of California’s sea Chuang , T. I. , and L. R. Heckard . 1993 . Chromosome numbers of neotropical fi g. Fremontia 26 : 3 – 11 . Castilleja (Scrophulariaceae: tribe Pediculareae) and their taxonomic impli- Blattner , F. R. 2006 . Multiple intercontinental dispersals shaped the distribu- cations. Annals of the Missouri Botanical Garden 80 : 974 – 986 . tion area of Hordeum (Poaceae). Th e New Phytologist 169 : 603 – 614 . Collins , R. S. 1974 . Mechanisms for long-distance dispersal in some amphi- Bleeker , W. , C. Weber-Sparenberg , and H. Hurka . 2002 . Chloroplast DNA tropically disjunct plant species. M.A. thesis, Claremont Graduate School, variation and biogeography in the genus Rorippa Scop. (). Plant Claremont, California, USA. Biology 4 : 104 – 111 . Constance , L. 1963 . Amphitropical relationships in the herbaceous fl ora of the Bliss , L. C. 1971 . Arctic and alpine plant life cycles. Annual Review of Ecology Pacifi c coast of North and South America: A symposium. Introduction and and Systematics 2 : 405 – 438 . historical review. Th e Quarterly Review of Biology 38 : 109 – 116 . 1618 • AMERICAN JOURNAL OF BOTANY

Constance , L. , T.-I. Chuang , and C. R. Bell . 1976 . Chromosome numbers in Flora del Cono Sur. 2017 [continuously updated]. Flora del Cono Sur. Catálogo Umbelliferae. V. American Journal of Botany 63 : 608 – 625 . de las Plantas Vasculares del Cono Sur [online]. Website http://www.darwin. Covas , G. , and B. Schnack . 1946 . Numero de cromosomas en Autofi tas de la edu.ar/Proyectos/FloraArgentina/Familias.asp [accessed April–October region de Cuyo (Republica Argentina). Revista de Argentina Agronomía 13 : 2017]. 153 – 166 . Flores-Olvera , H. , and P. Mercado-Ruaro . 1997 . Chromosome numbers of Cruden , R. 1966 . Birds as agents of long-distance dispersal for disjunct plant species of section Obinoe (Chenopodiaceae) and their relation to groups of the temperate western hemisphere. Evolution 20 : 517 – 532 . taxonomy. Cytologia 62 : 157 – 162 . Dalgaard , V. 1988 . Chromosome numbers in some vascular plants from the Flory , W. S. 1937 . Chromosome numbers in the Polemoniaceae . Cytologia Disko Bugt area (west Greenland). Willdenowia 18 : 243 – 252 . FujiiJubilaei : 171 – 180 . Dallman , P. R. 1998 . Plant life in the world’s Mediterranean climates: Freeman , C. C. , and R. E. Brooks . 1988 . Documented plant chromosome num- California, Chile, South Africa, Australia, and the Mediterranean Basin . bers 1988: 1. Chromosome counts for North American plants–I. Sida 13 : University of California Press, Berkeley, California, USA. 241 – 250 . Dauphin , B. , J. Grant , and P. Mráz . 2016 . Ploidy level and genome size varia- Friend , D. A. 1982 . Chromosome number in a Victorian population of tion in the homosporous ferns Botrychium s.l. (Ophioglossaceae). Plant Amsinckia calycina. Australian Weeds 1 : 7 – 8 . Systematics and Evolution 302 : 575 – 584 . Fritsch , P. W. , L. Lu , C. M. Bush , B. C. Cruz , K. A. Kron , and D.-Z. Li . 2011 . Davis , R. , and P. Holmgren . 2001 . FRA 2000: Global ecological zoning for Phylogenetic analysis of the wintergreen group () based on six the global forest resources assessment 2000, fi nal report. Forest Resources genic regions. Systematic Botany 36 : 990 – 1003 . Assessment Programme, Working Paper, vol. 56. Food and Agriculture Frost , L. A. , S. M. Tyson , P. Lu-Irving , N. O’Leary , and R. G. Olmstead . 2017 . Organization, Rome, Italy. Origins of North American arid-land Verbenaceae: More than one way to Dawe , J. C. , and D. F. Murray . 1981 . Chromosome numbers of selected Alaskan skin a cat. American Journal of Botany 104 : 1708 – 1716 . vascular plants. Canadian Journal of Botany 59 : 1373 – 1381 . Garrido-Benavent , I. , and S. Pérez-Ortega . 2017 . Past, present, and future Del Pero Martínez , M. A. , A. Martínez , and M. E. Múlgura . 2002 . Biosistemática research in bipolar lichen-forming fungi and their photobionts. American en especies argentinas del género Atriplex (Chenopodiaceae). Parodiana 12 : Journal of Botany 104 : 1690 – 1674 . 75 – 89 . Gastony , G. J. , and D. E. Soltis . 1977 . Chromosome studies of Parnassia and Di Fulvio , T. E. 1976 . Chromosomas somaticos de Lilaeopsis carolinensis Lepuropetalon (Saxifragaceae) from the eastern . A new base Coult. & Rose (Umbelliferae). Kurtziana 9 : 141 . number for Parnassia. Rhodora 79 : 573 – 578 . Diers , L. 1961 . Der Anteil an Polyploiden in den Vegetationsgürteln der Gaut , B. S. 1998 . Molecular clocks and nucleotide substitution rates in higher Westkordillere Perus. Zeitschrift für Botanik 49 : 437 – 488 . plants. Evolutionary Biology 30 : 93 – 120 . Donoghue , M. J. 2011 . Bipolar biogeography. Proceedings of the National GBIF . 2017 . Global Biodiversity Information Facility. Website http://www. Academy of Sciences, USA 108 : 6341 – 6342 . gbif.org [accessed April–October 2017]. Dopchiz , L. P. , E. Gomez-Sosa , and L. Poggio . 1995 . Karyotype and nuclear DNA Gervais , C. , M. Parent , R. Trahan , and S. Plante . 1997 . IOPB chromosome data 12. content of six species of Astragalus (Leguminosae). Cytologia 60 : 329 – 335 . Newsletter International Organization of Plant Biosystematists (Oslo) 28 : 16 – 18 . Drew , B. T. , S. Liu , J. M. Bonifacino , and K. J. Sytsma . 2017 . Amphitropical Gill , L. S. 1981 . Chromosomal evolution and incidence of polyploidy in the disjunctions in New World Menthinae: Th ree Pliocene dispersals to South Canadian Labiatae. Revue de Cytologie et de Biologie Végétales, le Botaniste America following late Miocene dispersal to North America from the Old 4 : 331 – 339 . World. American Journal of Botany 104 : 1695 – 1707 . Goldblatt , P. 1977 . New or noteworthy chromosome records in the angio- Drummond , C. S. , R. J. Eastwood , S. T. S. Miotto , and C. E. Hughes . 2012 . sperms. Annals of the Missouri Botanical Garden 63 : 889 – 895 . Multiple continental radiations and correlates of diversifi cation in Lupinus Goldblatt , P. , and D. E. Johnson [eds.]. 1979 – present . Index to plant chromo- (Leguminosae): Testing for key innovation with incomplete taxon sampling. some numbers . Missouri Botanical Garden, St. Louis. Website http://www. Systematic Biology 61 : 443 – 460 . tropicos.org/Project/IPCN [accessed April-October 2017]. Du Rietz , G. E. 1940 . Problems of bipolar plant distribution. Acta Grant , W. F. 1997 . Karyotypes and idiograms of some western North American Phytogeographica Suecica 13 : 215 – 282 . species of Lotus (Fabaceae). Aliso 16 : 73 – 80 . Dunford , M. P. 1985 . A statistical analysis of morphological variation in cyto- Grau , J. 1971 . Cytologische Untersuchungen an Boraginaceae II . Mitteilungen types of Atriplex canescens (Chenopodiaceae). Th e Southwestern Naturalist der Botanischen Staatssammlung München 9 : 177 – 194 . 30 : 377 – 384 . Grau , J. 1983 . Life form, reproductive biology and distribution of the Emery , N. C. , E. J. Forrestel , G. Jui , M. S. Park , B. G. Baldwin , and D. D. Ackerly . Californian/Chilean genus Cryptantha . In K. Kubitski [ed.], Sonderbände 2012 . Niche evolution across spatial scales: Climate and habitat specializa- des Naturwissenshaft lichen Vereins in Hamburg, vol. 7, 231–240. P. Pary, tion in California Lasthenia (Asteraceae). Ecology 93 ( sp8 ): S151 – S166 . Hamburg, Germany. Encyclopedia of life . 2017 . Available at website http://www.eol.org [accessed Grau , J. 1988 . Chromosomenzahlen Chilenischer Boraginaceae . Mitteilungen April–October 2017]. der Botanischen Staatssammlung München 27 : 29 – 32 . Engel , K. 1976 . Birtrage zur Systematik der Valerianaceae unter besonderes Gray , A. , and J. D. Hooker . 1880 . Th e vegetation of the Rocky Mountain region Berucksichtigung cytosystematischer Ergebnisse. dissertation, Giessen 1976: and a comparison with that of other parts of the world. U. S. Geological and 1–196. Geographical Survey of the Territories Bulletin 6 : 1 – 77 . Engelskjon , T. 1979 . Chromosome numbers in vascular plants from Norway, Guggisberg , A. , G. Mansion , and E. Conti . 2009 . Disentangling reticulate evo- including Svalbard. Opera Botanica 52 : 1 – 38 . lution in an arctic–alpine polyploid complex. Systematic Biology 58 : 55 – 73 . Ertter , B. 1980 . A revision of the genus Oxytheca Nutt. (Polygonaceae). Guilliams , C. M. 2015 . Diversifi cation, biogeography, and classifi cation of Brittonia 32 : 70 – 102 . the Amsinckiinae (Boraginaceae), with an emphasis on the popcorn fl ow- Escudero , M. , V. Valcárcel , P. Vargas , and M. Luceño . 2010 . Bipolar disjunc- ers (Plagiobothrys ). Ph.D. dissertation, University of California, Berkeley, tions in Carex: Long-distance dispersal, vicariance, or parallel evolution? Berkeley, California, USA. Flora 205 : 118 – 127 . Guilliams , M. C. , K. Hasenstab-Lehman , M. Mabry , and M. G. Simpson . 2017 . Farrar , D. R. , and M. C. Stensvold . 2017 . Observations on bipolar disjunctions Memoirs of a frequent fl ier: Phylogenomics reveals 18 long-distance dis- of moonwort ferns (Botrychium , Ophioglossaceae). American Journal of persals between North America and South America in the popcorn fl owers Botany 104 : 1675 – 1679 . (Amsinckiinae). American Journal of Botany 104 : 1717 – 1728 . Flora of North America Editorial Committee . 1993 +. Flora of North America Hansen , D. R. , G. S. Spicer , and R. Patterson . 2009 . Phylogenetic relation- north of Mexico. Oxford University Press, New York, New York, USA. ships between and within Phacelia sections Whitlavia and Gymnobythus Website http://fl oranorthamerica.org [accessed April–October 2017]. (Boraginaceae). Systematic Botany 34 : 737 – 746 . NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1619

Hanson , L. , A. Boyd , M. A. T. Johnson , and M. D. Bennett . 2005 . First nuclear Keil , D. J. , M. A. Luckow , and D. J. Pinkava . 1988 . Chromosome studies in DNA C-values for 18 eudicot families. Annals of Botany 96 : 1315 – 1320 . Asteraceae from the United States, Mexico, the , and South Hardham , C. B. 1989 . Chromosome numbers of some annual species of America. American Journal of Botany 75 : 652 – 668 . Chorizanthe and related genera (Polygonaceae: Eriogonoideae). Phytologia Kempton , E. A. 2012 . Systematics of Eriogonoideae s. s. (Polygonaceae). 66 : 89 – 94 . Systematic Botany 37 : 723 – 737 . Hasenstab-Lehman , K. E. , and M. G. Simpson . 2012 . Cat’s eyes and pop- Kiehn , M. , M. Jodl , and G. Jakubowsky . 2005 . Chromosome numbers of angio- corn fl owers: Phylogenetic systematics of the genus Cryptantha s.l. sperms from the Juan Fernández Islands, the Archipelago, (Boraginaceae). Systematic Botany 37 : 738 – 757 . and from mainland Chile. Pacifi c Science 59 : 453 – 460 . Heckard , L. R. 1963 . Th e Hydrophyllaceae. Th e Quarterly Review of Biology Koch , M. , and I. A. Al-Shehbaz . 2004 . Taxonomic and phylogenetic evaluation 38 : 117 – 123 . of the American “Th laspi” species: Identity and relationship to the Eurasian Hersey , R. , and S. P. V. Kloet . 1976 . In IOPB chromosome number reports LII. genus Noccaea (Brassicaceae). Systematic Botany 29 : 375 – 384 . Taxon 25 : 341 – 346 . Krogulevich , R. E. 1976 . Rol poliploidii v genesise fl ory Putorana. In L. I. Malyshev Holmgren , P. K. 1971 . A biosystematic study of North American Th laspi mon- [ed.], 1976 Flora Putorana: Materali k Poznaniiu Osobennostei Sostava i tanum and its allies. Memoirs of the New York Botanical Garden 21 : 1 – 106 . Genezisia Gornykh Subarkticheskikh Flor Sibir.. Nauka, Novosibirsk, . Hoot , S. B. , K. M. Meyer , and J. C. Manning . 2012 . Phylogeny and reclassifi - Kumar , P. , and B. Dutt . 1989 . Cytogenetic basis of breeding system in some cation of Anemone (Ranunculaceae), with an emphasis on Austral species. verbenaceous species. Cytologia 54 : 347 – 353 . Systematic Botany 37 : 139 – 152 . Laport , R. G. , R. L. Minckley , and J. Ramsey . 2012 . Phylogeny and cyto- Horn , N. 2000 . Revision der Gattungen Plagiobothrys und Pectocarya in Chile geography of the North American creosote bush ( , und den angrenzenden Gebieten, Universität München, München, Germany. Zygophyllaceae). Systematic Botany 37 : 153 – 164 . Howell , J. T. 1957 . Th e California fl ora and its province. Leafl ets of Western Las Peñas , M. L. 2003 . Estudios cromosómicos de dos especies argentinas de Botany 8 : 133 – 138 . Cryptantha (Boraginaceae). Kurtziana 30 : 77 – 79 . Hughes , C. , and R. Eastwood . 2006 . Island radiation on a continental Las Peñas , M. L. 2005 . Números cromosómicos de Cryptantha diff usa y C. scale: Exceptional rates of plant diversifi cation aft er uplift of the Andes. maritima (Boraginaceae). Bulletin of the Botanical Society of Argentina 40 : Proceedings of the National Academy of Sciences, USA 103 : 10334 – 10339 . 283 – 284 . Hunter , K. L. , J. L. Betancourt , B. R. Riddle , T. R. V. Devender , K. L. Cole , and Leitch , I. J. , L. Hanson , M. Winfi eld , J. Parker , and M. D. Bennett . 2001 . W. G. Spaulding . 2001 . Ploidy race distributions since the Last Glacial Nuclear DNA C-values complete familial representation in . Maximum in the North American desert shrub, Larrea tridentata. Global Annals of Botany 88 : 843 – 849 . Ecology and Biogeography 10 : 521 – 533 . Levin , R. A. , J. R. Shak , J. S. Miller, G. Bernardello , and A. M. Venter . 2007 . Ickert-Bond , S. M. , C. Rydin , and S. S. Renner . 2009 . A fossil-calibrated relaxed Evolutionary relationships in tribe Lycieae (Solanaceae). Acta Horticulturae clock for Ephedra indicates an Oligocene age for the divergence of Asian and 745 : 225 – 240 . New World clades and Miocene dispersal into South America. Journal of Lewis , L. R. , E. Behling , H. Gousse , E. Qian , C. S. Elphick , J.-F. Lamarre , J. Bety , Systematics and Evolution 47 : 444 – 456 . et al. 2014a . First evidence of bryophyte diaspores in the plumage of tran- Irving , R. S. 1980 . A chromosome count for Juniperus ashe (Cupressaceae) and sequatorial migrant birds. PeerJ 2 : e424 . additional chromosome numbers for Hedeoma (Labiatae) . Sida 8 : 312 – 313 . Lewis , L. R. , E. M. Biersma , S. B. Carey , K. Holsinger , S. F. McDaniel , R. Rozzi , Jansen , R. K. , and T. F. Stuessy . 1980 . Chromosome counts of Compositae and B. Goffi net . 2017 . Resolving the northern hemisphere source region for from Latin America. American Journal of Botany 67 : 585 – 594 . the long-distance dispersal event that gave rise to the South American en- Jepson Flora Project [eds.]. 2017 . Jepson eFlora. Website http://ucjeps.berke- demic dung moss Tetraplodon fuegianus . American Journal of Botany 104 : ley.edu/IJM.html [accessed April–October 2017]. 1651 – 1659 . Johnson , L. A. , L. M. Chan , R. Pozner , and L. D. Glazier . 2012 . Allotetraploids Lewis , L. R. , R. Rozzi , and B. Goffi net . 2014b . Direct long-distance dispersal in Patagonia with affi nities to western North American diploids: Did disper- shapes a New World amphitropical disjunction in the dispersal-limited sal or genome doubling occur fi rst? Botanical Review 78 : 288 – 306 . dung moss Tetraplodon (Bryopsida: Splachnaceae). Journal of Biogeography Johnson , L. A. , and J. M. Porter . 2017 . Fates of angiosperm species following 41 : 2385 – 2395 . long-distance dispersal: Examples from American amphitropical Polemoni- Lia , V. V. , V. A. Confalonieri , C. I. Comas , and J. H. Hunziker . 2001 . Molecular aceae. American Journal of Botany 104 : 1729 – 1744 . phylogeny of Larrea and its allies (Zygophyllaceae): reticulate evolution and Johnston , I. M. 1927 . Studies in the Boraginaceae VI. A revision of the South the probable time of creosote bush arrival to North America. Molecular American Boraginoideae. Contributions from the Gray Herbarium of Phylogenetics and Evolution 21 : 309 – 320 . Harvard University 78 : 1 – 118 . Linde-Laursen , I. , R. n. Bothmer , and N. Jacobsen . 1989 . Giemsa C-banded Johnston , I. M. 1929 . I. Papers on the fl ora of northern Chile. Contributions karyotypes of South American Hordeum (Poaceae) I. 14 diploid taxa. from the Gray Herbarium of Harvard University 85 : 1 – 172 . Hereditas; Genetiskt Arkiv 110 : 289 – 305 . Johnston , I. M. 1932 . Th e Allocarya section of Plagiobothrys in the western United Lohwasser , U. , A. Granda , and F. R. Blattner . 2004 . Phylogenetic analysis of States. Contributions from the Gray Herbarium of Harvard University 3 : 5 – 82 . Microseris (Asteraceae), including a newly discovered Andean population Jørgensen , P. M. , M. H. Nee , and S. G. Beck [eds.]. 2014 . Catálogo de las from Peru. Systematic Botany 29 : 774 – 780 . plantas vasculares de Bolivia. Missouri Botanical Garden Press, St. Louis, Löve , Á. 1981a . Chromosome number reports LXXI. Taxon 30 : 506 – 517 . Missouri, USA. Website http://www.tropicos.org/Project/BC . [accessed Löve , Á. 1981b . Chromosome number reports LXXII. Taxon 30 : 694 – 708 . April–October 2017]. Löve , Á. 1981c . Chromosome number reports LXXIII. Taxon 30 : 829 – 861 . Josse , C. , G. Navarro , P. Comer , R. Evans , D. Faber-Langendoen , M. Fellows , G. Kittel , Löve , Á. 1982a . IOPB chromosome number reports LXXIV. Taxon 31 : 120 – 126 . et al . 2003 . Ecological systems of Latin America and the Caribbean: A working Löve , Á. 1982b . IOPB chromosome number reports LXXV. Taxon 31 : 342 – 368 . classifi cation of terrestrial systems. NatureServe, Arlington, Virginia, USA. Löve , Á. 1982c . IOPB chromosome number reports LXXVI. Taxon 31 : 574 – 598 . Kadereit , G. , E. V. Mavrodiev , E. H. Zacharias , and A. P. Sukhorukov . 2010 . Löve , Á. 1985 . Chromosome Number Reports LXXXVI. Taxon 34 : 159 – 164 . Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): Löve , Á. 1986a . Chromosome Number Reports XCI. Taxon 35 : 404 – 410 . Implications for systematics, biogeography, fl ower and fruit evolution, and Löve , Á. 1986b . Chromosome Number Reports XCIII. Taxon 35 : 897 – 903 .

the origin of C4 photosynthesis. American Journal of Botany 97 : 1664 – 1687 . Lu-Irving , P. , N. O’Leary , A. O’Brien , and R. G. Olmstead . 2014 . Resolving the Kay , K. M. , J. B. Whittall , and S. A. Hodges . 2006 . A survey of nuclear ribo- genera Aloysia and Acantholippia within tribe Lantaneae (Verbenaceae), us- somal internal transcribed spacer substitution rates across angiosperms: An ing chloroplast and nuclear sequences. Systematic Botany 39 : 644 – 655 . approximate molecular clock with life history eff ects. BMC Evolutionary Mabry , M. E. 2015 . Evaluating the monophyly and biogeography of Cryptantha Biology 6 : 36 – 45 . (Boraginaceae). M.S., San Diego State University, San Diego, California, USA. 1620 • AMERICAN JOURNAL OF BOTANY

Mabry , M. E. , and M. G. Simpson . In press . Evaluating the monophyly and bio- Muse , S. V. 2000 . Examining rates and patterns of nucleotide substitution in geography of Cryptantha (Boraginaceae). Systematic Botany . plants. Plant Molecular Biology 42 : 25 – 43 . Macmillan , B. H. , and B. Ertter . 2017 . Acaena. Jepson Flora Project [eds.], Nakata , M. , and K. Oginuma . 1989 . Cytological studies on phanerogams in Jepson eFlora. Website http://ucjeps.berkeley.edu/eflora/eflora_display. southern Peru, II. Chromosomes of Tetraglochin strictum (Rosaceae) and php?tid=10042 [accessed 17 July 2017]. Ephedra americana (Ephedraceae) . Bulletin of the National Science Museum, Malakha , E. V. 1990 . Chromosome numbers in some species of the genera Tokyo, B 15 : 63 – 66 . Ranunculus and Batrachium (Ranunculaceae) from the flora of the Soviet Njuguna , W. , A. Liston , R. Cronn , T.-L. Ashman , and N. Bassil . 2013 . far east. Botanicheskii Zhurnal (Moscow & Leningrad) 75 : 121 – 122 . Insights into phylogeny, sex function and age of Fragaria based on whole Marhold , K. 2006 . IAPT/IOPB chromosome data 1. Taxon 55 : 443 – 445 . chloroplast genome sequencing. Molecular Phylogenetics and Evolution Márquez-Corro , J. I. , M. Escudero , S. Martín-Bravo , T. Villaverde , and M. 66 : 17 – 29 . Luceño . 2017 . Long-distance dispersal explains the bipolar disjunction in Nobs , M. A. 1975 . Chromosome numbers in Atriplex. Carnegie Institution of Carex macloviana. American Journal of Botany 104 : 663 – 673 . Year Book 74 : 762 – 765 . Marticorena , A. 2006 . Revisión del género Acaena (Rosaceae) en Chile. Annals Nobs , M. A. 1978 . Chromosomal numbers in Atriplex. Carnegie Institution of of the Missouri Botanical Garden 93 : 412 – 454 . Washington Year Book 77 : 240 – 241 . Mathew , K. , and P. H. Raven . 1962 . A new species of Cryptantha (sec- Ohri , D. , and T. N. Khoshoo . 1986 . Genome size in gymnosperms. Plant tion Circumscissae ) from California and two recombinations (section Systematics and Evolution 153 : 119 – 132 . Circumscissae and Angustifoliae ). Madroño 16 : 168 – 171 . Ørgaard , M. 1994 . Intergeneric hybridization between species of Leymus, Matzke , N. J. 2013 . BioGeoBEARS: BioGeography with Bayesian (and likeli- Psathyrostachys and Hordeum (Poaceae, Triticeae). Annals of Botany 73 : hood) evolutionary analysis in R Scripts . University of California, Berkeley, 471 – 479 . Berkeley, California, USA. Website https://cran.r-project.org/web/packages/ Ornduff , R. 1963 . Experimental studies in two genera of Helenieae (Compositae): BioGeoBEARS/index.html [accessed April 2017]. Blennosperma and Lasthenia. Th e Quarterly Review of Biology 38 : 141 – 150 . McMahon , M. 2005 . Phylogenetic relationships and fl oral evolution in the pa- Oud , J. L. , F. Schuring , and C. Berg . 1988 . Th e karyotypes of Microseris bi- pilionoid legume clade . Brittonia 57 : 397 – 411 . gelovii, M. douglasii, and M. pygmaea (Asteraceae). Plant Systematics and Meyer , K. M. , S. B. Hoot , and M. T. K. Arroyo . 2010 . Phylogenetic affi nities Evolution 159 : 249 – 256 . of South American Anemone (Ranunculaceae), including the endemic seg- Park , M. S. 2016 . Plant dispersal bias from North to South America facili- regate genera, Barneoudia and Oreithales. International Journal of Plant tated by shorebird migration routes. Botany 2016: Annual meeting of the Sciences 171 : 323 – 331 . Botanical Society of America, Savannah, Georgia, USA. Abstract avail- Meza-Torres , E. I. , M. C. Stensvold , D. R. Farrar , and M. S. Ferrucci . able at http://2016.botanyconference.org/engine/search/index.php?func= 2017 . Circumscription of the South American moonwort Botrychium detail&aid=882. (Ophioglossaceae) . Plant Biosystems—An International Journal Dealing Paun , O. , C. Lehnebach , J. T. Johansson , P. Lockhart , and E. Hörandl . 2005 . with all Aspects of Plant Biology 151 : 258 – 268 . Phylogenetic relationships and biogeography of Ranunculus and allied gen- Middleton , D. J. , and C. C. Wilcock . 1990 . Chromosome counts in Gaultheria era (Ranunculaceae) in the Mediterranean region and in the European al- and related genera. Edinburgh Journal of Botany 47 : 303 – 313 . pine system . Taxon 54 : 911 – 930 . Mishima , M. , N. Ohmido , K. Fukui , and T. Yahara . 2002 . Trends in site- Peterson , P. M. 1988 . Chromosome numbers in the annual Muhlenbergia number change of rDNA loci during polyploid evolution in Sanguisorba (Poaceae). Madrono 35 : 320 – 324 . (Rosaceae). Chromosoma 110 : 550 – 558 . Peterson , P. M. , and C. R. Annable . 1991 . Systematics of the annual species Molnar , S. J. , and G. Fedak . 1989 . Polymorphism in ribosomal DNA repeat of Muhlenbergia (Poaceae–Eragrostideae). Systematic Botany Monographs units of 12 Hordeum species. Genome 32 : 1124 – 1127 . 31 : 1 – 109 . Moore , A. J. , A. Bartoli , R. D. Tortosa , and B. G. Baldwin . 2012 . Phylogeny, Peterson , P. M. , and J. J. Ortíz-Diaz . 1998 . Allelic variation in the amphitropi- biogeography, and chromosome evolution of the amphitropical genus cal disjunct Muhlenbergia torreyi (Poaceae: Muhlenbergiinae). Brittonia 50 : Grindelia (Asteraceae) inferred from nuclear ribosomal and chloroplast se- 381 – 391 . quence data. Taxon 61 : 211 – 230 . Peterson , P. M. , K. Romaschenko , and G. Johnson . 2010 . A phylogeny and clas- Moore , D. M. 1981 . Chromosome numbers of Fuegian angiosperms. Boletim sifi cation of the Muhlenbergiinae (Poaceae: Chloridoideae: ) da Sociedade Broteriana 53 : 995 – 1012 . based on plastid and nuclear DNA sequences. American Journal of Botany Moore , D. M. , and A. O. Chater . 1971 . Studies of bipolar disjunct species I. 97 : 1532 – 1554 . Carex . Botaniska Notiser 124 : 317 – 334 . Pinkava , D. J. , M. A. Baker , R. A. Johnson , N. Trushell , G. A. Ruff ner , R. S. Moore , D. M. , and P. H. Raven . 1970 . Cytogenetics, distribution, and amphitropi- Felger , and R. K. V. Devender . 1992 . Additions, notes and chromosome cal affi nities of South American Camissonia (Onagraceae). Evolution 24 : 816 – 823 . numbers for the fl ora of vascular plants of Organ Pipe Cactus National Moore , M. J. , A. Tye , and R. K. Jansen . 2006 . Patterns of long-distance disper- Monument, . Journal of the Arizona- Academy of Science sal in Tiquilia subg. Tiquilia (Boraginaceae): Implications for the origins of 24–25 : 13 – 18 . amphitropical disjuncts and Galapagos Islands endemics. American Journal Popp , M. , V. Mirré , and C. Brochmann . 2011 . A single Mid-Pleistocene long- of Botany 93 : 1163 – 1177 . distance dispersal by a bird can explain the extreme bipolar disjunction in Moreira-Muñoz , A. 2011 . Plant geography of Chile. Springer, Dordrecht, crowberries (Empetrum ). Proceedings of the National Academy of Sciences, Netherlands. USA 108 : 6520 – 6525 . Morrell , P. L. , J. M. Porter , and E. A. Friar . 2000 . Intercontinental dispersal: Porter , J. M. 1996 . Phylogeny of Polemoniaceae based on nuclear ribosomal Th e origin of the widespread South American plant species Gilia laciniata internal transcribed spacer DNA sequences. Aliso 15 : 57 – 77 . (Polemoniaceae) from a rare California and Oregon coastal endemic. Plant Porter , J. M. 2012 . Gilia . In B. G. Baldwin, D. H. Goldman, D. J. Keil, R. Systematics and Evolution 224 : 13 – 32 . Patterson, T. J. Rosatti, and D. H. Wilken [eds.], Th e Jepson manual: Moscone , E. A. 1992 . Estudios de cromosomas meióticos en Solanaceae de Vascular plants of California, 2nd ed., 1043–1052. University of California Argentina. Darwiniana 31 : 261 – 297 . Press, Berkeley, California, USA. Mummenhoff , K. , and A. Franzke . 2007 . Gone with the bird: Late Tertiary and Porter , J. M. , L. A. Johnson , and D. Wilken . 2010 . Phylogenetic systematics Quaternary intercontinental long-distance dispersal and allopolyploidiza- of Ipomopsis (Polemoniaceae): Relationships and divergence times esti- tion in plants. Systematics and Biodiversity 5 : 255 – 260 . mated from chloroplast and nuclear DNA sequences. Systematic Botany 35 : Murray , D. F. 2002 . Carex, section Capituligerae (Cyperaceae) . In Flora of North 181 – 200 . America Editorial Committee [eds.], Flora of North America north of Mexico, Powell , A. M. 1968 . Chromosome numbers in Perityle and related genera vol. 23, 569–570. Oxford University Press, New York, New York, USA. (Peritylanae-Compositae). American Journal of Botany 55 : 820 – 828 . NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1621

Powell , A. M. , and J. F. Weedin . 2005 . Documented chromosome numbers Soltis , D. E. , M. C. Segovia-Salcedo , I. Jordon-Th aden , L. Majure , N. M. Miles , 2005: 2. Counts from western , mostly trans-Pecos cacti. Sida 21 : E. V. Mavrodiev , and W. Mei . 2014 . Are polyploids really evolutionary 1665 – 1668 . dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). Th e New Preston , R. E. , and M. Wetherwax . 2012 . Nuttallanthus . In B. G. Baldwin, D. Phytologist 202 : 1105 – 1117 . H. Goldman, D. J. Keil, R. Patterson, T. J. Rosatti, and D. H. Wilken [eds.], Soltis , P. S. , D. E. Soltis , P. G. Wolf , and J. M. Riley . 1989 . Electrophoretic evidence Th e Jepson manual: Vascular plants of California, 2nd ed., 1016–1017. for interspecifi c hybridization in Polystichum. American Journal 79 : 7 – 13 . University of California Press, Berkeley, California, USA. Soreng , R. 1991 . Systematics of the Epiles group of Poa (Poaceae). Systematic Rattenbury , J. A. 1959 . Documented chromosome numbers of plants. Madroño Botany 16 : 507 – 528 . 15 : 49 – 52 . Spalik , K. , M. Piwczyński , C. A. Danderson , R. Kurzyna-Młynik , T. S. Bone , and Raven , P. H. 1963 . Amphitropical relationships in the fl oras of North and S. R. Downie . 2010 . Amphitropic amphiantarctic disjunctions in Apiaceae South America. Th e Quarterly Review of Biology 38 : 151 – 177 . subfamily Apioideae. Journal of Biogeography 37 : 1977 – 1994 . Raven , P. H. , and W. L. Tai . 1979 . Observations of chromosomes in Ludwigia Spellenberg , R. 1976 . Chromosome numbers and their cytotaxonomic signifi - (Onagraceae). Annals of the Missouri Botanical Garden 66 : 862 – 879 . cance for North American Astragalus (Fabaceae). Taxon 25 : 463 – 472 . Ray , P. M. , and H. F. Chisaki . 1957 . Studies on Amsinckia . II. Relationships Staudt , G. 1962 . Taxonomic studies in the genus Fragaria : Typifi cation of among the primitive species. American Journal of Botany 44 : 537 – 544 . Fragaria species known at the time of Linnaeus. Canadian Journal of Botany Rebman , J. P. , J. Gibson , and K. Rich . 2016 . Annotated checklist of the vascular 40 : 869 – 886 . plants of Baja California, Mexico. Proceedings of the San Diego Society of Stensvold , M. C. , and D. R. Farrar . 2017 . Genetic diversity in the worldwide Natural History 45 : 1 – 352 . Botrychium lunaria (Ophioglossaeae) complex, with new species and new Reeder , J. , and C. Reeder . 1973 . , an anomalous eragrostoid combinations . Brittonia 69 : 148 – 175 . grass. Journal of the - Academy of Science 7 : 29 . Stiefk ens , L. , and B. Bernardello . 2002 . Karyotypic studies in Lycium section Reveal , J. L. , and R. Moran . 1977 . Miscellaneous chromosome counts of west- Mesocope (Solanaceae) from South America. Caryologia 55 : 199 – 206 . ern American plants—IV. Madroño 24 : 227 – 235 . Stiefk ens, L. , and G. Bernardello . 2000 . Karyotypes and DNA content in dip- Roalson , E. H. 2008 . A synopsis of chromosome number variation in the loid and polyploid Lycium (Solanaceae). Boletín de la Sociedad Argentina de Cyperaceae. Botanical Review 74 : 209 – 393 . Botánica 35 : 237 – 244 . Robinson , H. , A. M. Powell , R. King , and J. F. Weedin . 1981 . Chromosome Stoeva , M. P. 1987 . Chromosome numbers of Bulgarian angiosperms. numbers in Compositae, XII: Heliantheae. Smithsonian Contributions to Fitologija 33 : 65 – 66 . Botany 52 : 1 – 28 . Strother , J. L. 1976 . Chromosome studies in Compositae. American Journal of Ruas , C. F. , P. M. Ruas , H. C. Stutz , and D. J. Fairbanks . 2001 . Cytogenetic Botany 63 : 247 – 250 . studies in the genus Atriplex (Chenopodiaceae). Caryologia 54 : 129 – 145 . Sugiura , T. 1936 . Studies on the chromosome numbers in higher plants, with Salomon , B. , and R. Bothmer . 1998 . Th e ancestry of Hordeum depressum special reference to cytokinesis, I. Cytologia 7 : 544 – 595 . (Poaceae, Triticeae). Nordic Journal of Botany 18 : 257 – 265 . Tank , D. C. , and R. G. Olmstead . 2009 . Th e evolutionary origin of a second Sánchez Vilas, J. 2007 . Sexual dimorphism in ecological and physiological radiation of annual Castilleja (Orobanchaceae) species in South America: traits in the subdioecious dune plant Honckenya peploides (L.) Ehrh. Ph.D. Th e role of long distance dispersal and allopolyploidy. American Journal of dissertation, Universidade de de Compostela, Santiago, Chile. Botany 96 : 1907 – 1921 . Sanders , R. W. , T. F. Stuessy , and R. Rodriguez . 1983 . Chromosome numbers Th orne , R. F. 1972 . Major disjunctions in the geographic ranges of seed plants. from the fl ora of the Juan Fernandez Islands. American Journal of Botany Th e Quarterly Review of Biology 47 : 365 – 411 . 70 : 799 – 810 . Turner , B. L. 1994 . Taxonomic overview of Gilia , sect. Giliastrum (Polemoniaceae) Schenk , J. J. , and L. Huff ord. 2011 . Phylogeny and taxonomy of Mentzelia sec- in Texas and Mexico. Phytologia 76 : 52 – 68 . tion Bartonia (Loasaceae). Systematic Botany 36 : 711 – 720 . Turner , B. L. , J. Bacon , L. Urbatsch , and B. Simpson . 1979 . Chromosome Schenk , J. J. , and K. Saunders . 2017 . Inferring long-distance dispersal modes numbers in South American Compositae. American Journal of Botany 66 : in American amphitropically disjunct species through adaptive dispersal 173 – 178 . structures. American Journal of Botany 104 : 1756 – 1764 . Turner , B. L., and A. M. Powell . 2001 . Documented chromosome numbers Scherson , R. A. , R. Vidal , and M. J. Sanderson . 2008 . Phylogeny, biogeography, 2001: 1. Chromosome number of Lupinus havardii (Fabaceae). Sida 1 9 : and rates of diversifi cation of New World Astragalus (Leguminosae) with 643 . an emphasis on South American radiations. American Journal of Botany 95 : Turner , B. L. , and A. M. Powell . 2005 . Chromosome numbers of Glandularia 1030 – 1039 . (Verbenaceae) from central and Trans-Pecos, Texas. Sida 21 : 1657 – 1661 . Sharma , N. , P. Koul , and A. K. Koul . 1990 . Reproductive biology of Plantago Umber , R. E. 1979 . Th e genus Glandularia (Verbenaceae) in North America. 1. Breeding and meiotic systems of Plantago patagonica Jacq. Proceedings Systematic Botany 4 : 72 – 102 . of the Indian National Science Academy. Part B, Biological Sciences 5 6 : USDA-NRCS [U. S. Department of Agriculture–Natural Resources 199 – 204 . Conservation Service] . 2017 . Th e PLANTS database. National Plant Data Sharma , N. , P. Koul , and A. K. Koul . 1992 . Genetic systems of six species of Team, Greensboro, North Carolina, USA. Website http://plants.usda.gov Plantago (Plantaginaceae). Plant Systematics and Evolution 181 : 1 – 9 . [accessed April–October, 2017]. Shelly , J. S. 1989 . Biosystematic studies of Phacelia capitata (Hydrophyllaceae), Valliant , M. T. , R. N. Mack , and S. J. Novak . 2007 . Introduction history and a species endemic to serpentine soils in southwestern Oregon. Madrono 36 : population genetics of the invasive grass Bromus tectorum (Poaceae) in 232 – 247 . Canada. American Journal of Botany 94 : 1156 – 1169 . Simpson , B. B. , J. A. Tate , and A. Weeks . 2005 . Th e biogeography of van Houten , W. , L. Raamsdonk , and K. Bachmann . 1994 . Intraspecifi c evo- Hoff mannseggia (Leguminosae, , ): A tale of lution of Microseris pygmaea (Asteraceae, Lactuceae) analyzed by cosegre- many travels. Journal of Biogeography 32 : 15 – 27 . gation of phenotypic characters (QTLs) and molecular markers (RAPDs). Simpson , M. G. , C. M. Guilliams , K. E. Hasenstab-Lehman , M. E. Mabry , Plant Systematics and Evolution 190 : 49 – 67 . and L. Ripma . (In press). Phylogeny of the popcorn fl owers: Use of ge- Vargas , P. , B. G. Baldwin , and L. Constance . 1998 . Nuclear ribosomal DNA nome skimming to evaluate monophyly and interrelationships in subtribe evidence for a western North American origin of Hawaiian and South Amsinckiinae (Boraginaceae). Taxon . American species of Sanicula (Apiaceae). Proceedings of the National Sivinski , R. C. 1993 . Chromosome numbers for some North American Academy of Sciences, USA 95 : 235 – 240 . Cryptantha. Phytologia 74 : 459 – 463 . Veno , B. A. 1979 . A revision of the genus Pectocarya (Boraginaceae) including Snogerup , S. 1993 . A revision of Juncus subgen. Juncus (Junaceae). Willdenowia reduction to synonymy of the genus Harpagonella (Boraginaceae). Doctoral 23 : 23 – 73 . dissertation, University of California, Los Angeles. 1622 • AMERICAN JOURNAL OF BOTANY

Villaseñor , J. L. 2016 . Checklist of the native vascular plants of Mexico, Ward , D. E. 1983 . Chromosome counts from and southern Catálogo de las plantas vasculares nativas de México. Revista Mexicana de Colorado. Phytologia 54 : 302 – 309 . Biodiversidad 87 : 559 – 902 . Ward , D. E. 1984 . Chromosome counts from New Mexico and Mexico. Villaverde , T. , M. Escudero , M. Luceño , and S. Martín-Bravo . 2015b . Long- Phytologia 56 : 55 – 60 . distance dispersal during the middle–late Pleistocene explains the bipolar Ward , D. E. , and R. Spellenberg . 1988 . Chromosome counts of angiosperms disjunction of Carex maritima (Cyperaceae). Journal of Biogeography 42 : from New Mexico and adjacent areas. Phytologia 64 : 390 – 398 . 1820 – 1831 . Wen , J. , and S. M. Ickert-Bond . 2009 . Evolution of the Madrean–Tethyan dis- Villaverde , T. , M. Escudero , S. Martín-Bravo , L. P. Bruederle , M. Luceño , and junctions and the North and South American amphitropical disjunctions in J. R. Starr . 2015a . Direct long-distance dispersal best explains the bipolar plants. Journal of Systematics and Evolution 47 : 331 – 348 . distribution of Carex arctogena (Carex sect. Capituligerae , Cyperaceae). Wen , J. , P. P. L. Ii , J. L. Walck , and K.-O. Yoo . 2002 . Phylogenetic and bio- Journal of Biogeography 42 : 1514 – 1525 . geographic diversifi cation in Osmorhiza (Apiaceae). Annals of the Missouri Villaverde , T. , M. Escudero , S. Martín-Bravo , P. Jiménez-Mejías , I. Sanmartín , Botanical Garden 89 : 414 – 428 . P. Vargas , and M. Luceño . 2017a . Bipolar distributions in vascular plants: Wheeler , G. A. , and E. R. Guaglianone . 2003 . Notes on South American Carex : A review . American Journal of Botany 104 : 1680 – 1694 . C. camptoglochin and C. microglochin. Darwiniana 41 : 193 – 206 . Villaverde , T. , M. Escudero , S. Martín-Bravo , and M. Luceño . 2017b . Two in- Windham , M. D. , and G. Yatskievych . 2003 . Chromosome studies of cheilan- dependent dispersals to the Southern Hemisphere to become the most wide- thoid ferns (: ) from the western United States spread bipolar Carex species: biogeography of C. canescens (Cyperaceae). and Mexico. American Journal of Botany 90 : 1788 – 1800 . Botanical Journal of the Linnean Society 183 : 360 – 372 . Woodburne , M. O. 2010 . Th e Great American Biotic Interchange: Dispersals, Vivrette , N. J. 2003 . Carpobrotus N.E. Brown. In Flora of North America tectonics, climate, sea level and holding pens , vol. 4. Springer US, Boston, Editorial Committee [eds.], Flora of North America north of Mexico, vol. 4. Massachusetts, USA. Oxford University Press, New York, New York, USA. Xena de Enrech , N. 1993 . Contribución al estudio del género Valeriana L. Voshell , S. M. , R. M. Baldini , R. Kumar , N. Tatalovich , and K. W. Hilu . 2011 . en Venezuela: Distribución geográfi ca, caracteres morfoanatómicos, cari- Canary grasses ( Phalaris, Poaceae): Molecular phylogenetics, polyploidy ológicos y palinológicos de interés taxonómico y evolutivo. Acta Botanica and fl oret evolution. Taxon 60 : 1306 – 1316 . Venezuelica 16 : 105 – 136 . Wagner , W. L. 2005 . Honckenya (Caryophyllaceae) . In Flora of North America Yuan , Y.-W. , and R. G. Olmstead . 2008 . A species-level phylogenetic study of Editorial Committee [eds.], Flora of North America north of Mexico, vol. 5. the Verbena complex (Verbenaceae) indicates two independent intergeneric Oxford University Press, New York, New York, USA. chloroplast transfers. Molecular Phylogenetics and Evolution 48 : 23 – 33 . Wahlert , G. A. , F. Chiarini , and L. Bohs . 2014 . Phylogeny of the Carolinense Zanin , A. , and M. Cangiano . 2001 . El cariotipo de Hoff mannseggia glauca clade of Solanum (Solanaceae) inferred from nuclear and plastid DNA se- (Fabaceae). Darwiniana 39 : 11 – 13 . quences. Systematic Botany 39 : 1208 – 1216 . Zhukova , P. G. 1980 . Chromosome numbers of some southern Chukotka plant Wahlert , G. A. , F. E. Chiarini , and L. Bohs . 2015 . A revision of Solanum sec- species. Botanicheskii Zhurnal 65 : 51 – 59 . tion Lathyrocarpum (the Carolinense clade, Solanaceae). Systematic Botany Zhukova , P. G. 1982 . Chromosome numbers of some plant species of north- 40 : 853 – 887 . eastern Asia. Botanicheskii Zhurnal 67 : 360 – 365 . Walden , G. K. , L. M. Garrison , G. S. Spicer , F. W. Cipriano , and R. Patterson . Ziman , S. N. , C. S. Keener , Y. Kadota , E. V. Bulakh , and O. N. Tsarenko . 2006 . 2014 . Phylogenies and chromosome evolution of Phacelia (Boraginaceae: A revision of Anemone L. (Ranunculaceae) from the southern hemisphere. Hydrophylloideae) inferred from nuclear ribosomal and chloroplast se- Journal of Japanese Botany 81 : 193 – 224 . quence data. Madrono 61 : 16 – 47 . Zuloaga , F. O. , O. Morrone , and M. J. Belgrano . 2008 . Catálogo de las plan- Walsh , B. M. , D. Adhikary , P. J. Maughan , E. Emshwiller , and E. N. Jellen . 2015 . tas vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1 ) ). Monographs in Systematic Botany from the Missouri Botanical data. American Journal of Botany 102 : 533 – 543 . Garden 107. Missouri Botanical Garden Press, St. Louis, Missouri, USA. NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1623 g = P continued = biennial, = biennial, in cs) occurring = chromosome = chromosome B C#-SA Meza-Torres et al., 2017 et al., Meza-Torres Márquez-Corro et al., 2017 Márquez-Corro et al., either sister species, erent = annual, = annual, Farrar and Stensvold, 2017 ; 2017 and Stensvold, Farrar Escudero et al., 2010 ; 2010 et al., Escudero Escudero et al., 2010 et al., Escudero Villaverde et al., 2017b et al., Villaverde Villaverde et al., 2017b et al., Villaverde Escudero et al., 2010 et al., Escudero A = two diff = two = direction of dispersal from source source = direction of dispersal from

Div. Ma Ma Div. Sp-Sp = single species (conspecifi 2015a et al., Villaverde 0.27 (0.09–0.48) (Mean range) Lit. source 0 0.05 (0–0.17) 0.23 (0.03–0.51) 0.2 (0–0.39) = mean time of divergence (mean ranges in = mean time of divergence Disp. dir. Disp. Sp = plant duration, S S S S Div. Ma Div. → → → → Dur.-Hab.

= American amphitropical disjunct = American amphitropical distribution generally well P-H P-H P-H P-H P-H P-H P-H Equiv P-H P-H P-H P-H P-H P-H N P-H P-H N P-H P-H N P-H P-H N = equivocal. = equivocal. AAD Equiv = chromosome number of North = chromosome American taxon; = taxonomic unit of comparison: unit of comparison: = taxonomic — — C#-NA {10} P-H P-H {10} = distribution: ] Tax. x [4 (SA to NA), or NA), (SA to N (Dist.) →

S erences between NA and SA indicated by “/”. “/”. by NA and SA indicated between erences

Lam. dusenii Christ chilensis magellanica var. var. (NA to SA), SA), (NA to S → Botrychium lunaria Cryptogramma (Christ) Alston [ var. (L.) Sw. fumariifolia [ crispa (Christ) Looser] Christ] subsp. subsp. N Botrychium dusenii Cryptogramma Carex magellanica Carex " —

in both NA and SA; infraspecies (varieties or subspecies) occurring erent " —

{8} {2} = source for chromosome counts (key at bottom of table). (key at bottom counts chromosome for = source {9} {9} ] " — " — " — x { } {8} {9} {9} —" — —" — = two diff = two .: = 90 [2 = 24 = ca. 136 = 54, 56 = 86 = ca. 60 = 60 n n n n n n n = shrub, or a combination, with diff or a combination, = shrub, 2 B. l 2 2 2 S = Source of phylogenetic or pertinent taxonomic studies, including those citing direction or time of divergence. “—” = missin “—” including those citing direction or pertinent or time of divergence. studies, of phylogenetic = Source taxonomic Sp-InD

= herb, = herb,

H Lit. source Lit. Botrychium Lightf.]

Wahlenb. — " — L. 2 Lam. D’Urv. 2 × (R.Br.) Botrychium (Wahlenb.) L. — " — Eleocharis L., s.l. L., s.l. 2 Gunnerus, Phil.] Vahl] W.H.Wagner & Alopecurus irrigua (L.) Sw. (L.) Sw. = native distribution also occurring outside the western hemisphere. hemisphere. outside the western distribution also occurring = native Alopecurus alpinus * Cryptogramma crispa Cryptogramma Carex incurva Carex Eleocharis paucifl ora Eleocharis paucifl J.E.Sm., J.E.Sm., antarcticus Lam. [ R.Br. [ R.Br. (L.) R.Br. ex Hook. var. ex Hook. var. (L.) R.Br. acrostichoides C.B.Clarke] campestre Farrar] W.H.Wagner [ W.H.Wagner lunaria subsp. subsp. (Hartmann) O.Schwarz s.l.** s.l.** (Hartmann) O.Schwarz [ Link, (Lightf.) atacamensis Hiitonen s.l. [ Alopecurus magellanicus Carex arctogena Carex Cryptogramma acrostichoides Cryptogramma Carex magellanica Carex Eleocharis quinquefl ora Eleocharis quinquefl palustris Triglochin Botrychium spathulatum Carex canescens Carex Carex macloviana Carex Carex microglochin Carex Carex maritima Carex

) Sp Sp Sp Sp Sp Sp Sp Sp (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp (AAD* Sp-InD (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*)

number of South American taxon, number in curly brackets number of South American taxon, outside of tropical regions; regions; outside of tropical perennial, or a combination; plant habit, or a combination; perennial, or closely related, occurring in NA and SA. Taxa names in square brackets [ ] names in square = synonym(s). Taxa in NA and SA. occurring or closely related, area to recipient area as determined from phylogenetic studies, either studies, phylogenetic from as determined area recipient to area parentheses) of NA and SA taxa/clades. of NA and SA taxa/clades. parentheses) information. ** = not considered bipolar by Moore and Chater (1971) . (1971) and Chater Moore bipolar by ** = not considered information. both North and South America (SA); America (NA) List of vascular plants with a native, bipolar American amphitropical disjunct (AAD) distribution. disjunct bipolar American amphitropical (AAD) List of vascular plants with a native,

Alopecurus Carex Cryptogramma Eleocharis Triglochin Botrychium Poaceae Cyperaceae Pteridaceae Juncaginaceae GROUP / GenusFamily/ Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

MONOCOTS

APPENDIX 1 1 APPENDIX

FERNS Ophioglossaceae 1624 • AMERICAN JOURNAL OF BOTANY = Roalson, = {9} = Raven, 1963 ; Raven, 1963 = Hoot et al., 2012 Hoot et al., {8} Paun et al., 2005 et al., Paun Meyer et al., 2010 ; 2010 Meyer et al., Popp et al., 2011 et al., Popp = Moore, 1981 ; 1981 Moore, =

Div. Ma Ma Div. {7} 0.81 (0.45–1.35) (Mean range) Lit. source S S S? → → → = Malakha, 1990 ; Malakha, 1990 = {6}

P-S P-S N P-H P-H P-H P-H P-H N P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H A-H A-H BP-H BP-H ABP-H ABP-H ], = Löve, 1982a ; 1982a Löve, = x {5} {7,13} ] {7} P-H N {7} P-H P-H {7} x — — — = 48 = 16, 32 [4 = 28 64 [6 n n n 2

= Krogulevich, 1976 ; Krogulevich, 1976 =

Lam. — Vahl {4} cymbalaria

Speg.** Speg.** (Pursh) Greene] (Pursh) ex Willd. ex Willd. (G.Forst.) DC. (G.Forst.) Halerpestes Ranunculus fuegianus [ Empetrum rubrum Cardamine glacialis Cardamine magellanica Draba = Engelskjon, 1979 ; Engelskjon, 1979 = " 2 " {3} " — " — {5} {8} ] " 2 " " — " — " — x {13} {5,3,6, {1} {8} {8} {8}

—" —" —" — —" — — " = Ziman et al., 2006 . 2006 Ziman et al., = = 14 = 32 = 32 [4 = 26, 28 = 28 = 20 = 28 = 18 {13} n n n n n n n n 11,12} 2 2 2 2 2 = Dauphin, et al., 2016 ; 2016 Dauphin, et al., =

{2}

L. subsp. L. subsp. (Mill.)

L. —

= Zhukova, 1982 ; Zhukova, 1982 = Poir.** 2 L. Haenke — " — L. — L. 2 Deschampsia (Mill.) Willd. Calamagrostis Calamagrostis (L.) L. 2 L. — " — californica (Wahlenb.) {12} L. — (Lam.) Hulten] (Ehrh.) P.Gaertn., (Ehrh.) P.Gaertn., (L.) Trin.] Deschampsia = Dalgaard, 1988 ; 1988 Dalgaard, = {1} Plantago maritima Plantago Armeria maritima (Wahlenb.) Fr. [ (Wahlenb.) Fr. atropurpurea Scheele] [ juncoides Rottb.** Rottb.** (L.) P.Beauv. (L.) P.Beauv. (L.) Beauv. (L.) Beauv. (Timm.) Koel. [ neglecta & Schreb.] B.Mey. Drejer [ Drejer exuosa fl (Boiss.) A.E.Porsild] (Boiss.) [ subsp. Willd. Plantago maritima Plantago Ranunculus hyperboreus Vahlodea atropurpurea Vahlodea vulgaris Anemone multifi da Anemone multifi Deschampsia caespitosa alpinum Phleum prostrata Empetrum nigrum Catabrosa aquatica Catabrosa Calamagrostis stricta Calamagrostis Draba incana Draba Koenigia islandica Avenella fl exuosa fl Avenella Cardamine pratensis Cardamine Armeria maritima = Zhukova, 1980 ; Zhukova, 1980 = {11}

) Sp Sp Sp Sp Sp Sp Sp Sp Sp Sp Sp Sp (AAD) (AAD) Sp-Sp Sp-Sp Sp-Sp Sp-Sp (AAD* (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*)

Continued

= Stensvold and Farrar, 2017 ; 2017 and Farrar, = Stensvold {10} Plantago Ranunculus Vahlodea Hippuris Anemone Deschampsia Phleum Empetrum Gentiana Catabrosa Calamagrostis Draba Armeria Koenigia Avenella Cardamine Plumbaginaceae Plumbaginaceae Plantaginaceae Plantaginaceae Ranunculaceae Ranunculaceae Ericaceae Ericaceae Gentianceae Polygonaceae Polygonaceae Brassicaceae Brassicaceae GROUP / GenusFamily/ Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

2008; APPENDIX 1, 1, APPENDIX numbers: citations of chromosome Key literature to EUDICOTS NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1625

= tNS tN rature rature continued (NA to SA), SA), (NA to S → = a clade sister = a clade sister in cs) occurring N Cl-Cl = source for chromosome chromosome for = source g information. g information. Allred and Gould, 1983 and Gould, Allred Amarilla et al., 2015 Amarilla et al., 1983 and Gould, Allred { } = tree, or a combination, with or a combination, = tree, infraspecies (varieties or erent T = two diff = two = shrub, = shrub, S (8.84–41.53) Ickert-Bond 2009 et al., Div. Ma Ma Div. = single species (conspecifi (mean range) Phyl./Tax. Lit. source Sp Sp-InD = a single species in the source region sister to a to sister region = a single species in the source = herb, = herb, zone; Southcantly entering American tropical H S 1.2 S Sp-Cl → = native distribution also occurring outside the western outside the western distribution also occurring = native * P-S P-S Equiv 24.78 P-H P-H P-H P-H = AAD distribution in eastern North = AAD distribution in eastern South America; America and eastern in both NA and SA; cs) occurring = taxonomic unit of comparison: unit of comparison: = taxonomic {7; eNS — {7; 17} {7; 23} {7} {27} P-H N Tax. = 14, 28 = 28 = 14 = 28 = 14 17; 22} = American amphitropical disjunct distribution generally well outside of tropical regions; regions; disjunct outside of tropical = American amphitropical distribution generally well n n n n n 2 2 2 = trans-South America, distribution signifi AAD tS = perennial, or a combination; plant habit, or a combination; = perennial, P

C.A.Mey. 2 Miers, — Miers, — Benth., — C.Presl, 2 = chromosome number of South American taxon, number in curly brackets number of South American taxon, = chromosome F.A.Roig, — Tul., — Hitchc. Poepp. Phil., — Phil. — Ephedra Ephedra "— "— = biennial, = biennial, B = distribution: C.Presl], C#-SA (Dist.) Humb. & Bonpl. ex Willd., Willd., ex & Bonpl. Humb. ex C.A.Mey. [ ex C.A.Mey. chilensis Ephedra multifl ora multifl Ephedra Phil. ex Stapf, ex Stapf, Phil. benthamiana Ephedra americana Ephedra = annual, = annual, Ephedra breana Ephedra Ephedra boelckei Ephedra Ephedra andina Ephedra Ephedra frustillata Ephedra Two SA CLADES: Two Ephedra ochreata Ephedra Ephedra rupestris Ephedra triandra Ephedra tweediana Ephedra Ephedra chilensis Ephedra Ephedra gracilis Ephedra Blepharidachne A = a clade (of two or more species) in the source region sister to a single species in the recipient region; region; a single species in the recipient to sister region species) in the source or more = a clade (of two in NA and SA; occurring or closely related, either sister species, erent = direction of dispersal from source area to recipient area as determined from phylogenetic studies, either studies, phylogenetic from as determined area recipient to area source = direction of dispersal from = the same two infraspecies (coninfraspecifi = the same two {1} {1} {27} Cl-Sp Northcantly entering zones; American and South American tropical = AAD distribution in eastern South America; = AAD distribution in eastern — —+ —+ — — — — — — Sp-InC eS = 60 = 28 = 60 = 14 {7} Disp. dir. Disp. = two diff = two = mean time of divergence (mean ranges in parentheses) of NA and SA taxa/clades, either stated in or calculated from (*) lite from in or calculated either stated of NA and SA taxa/clades, (mean ranges in parentheses) = mean time of divergence n n n n 2 2 2 2

= plant duration, Sp-Sp

Div. Ma Div.

Northcantly entering zone; American tropical

Rose, —

Ephedra Ephedra Coville & Coville Torr. Engelm. Peebles, — Coville — S.Watson, Dur.-Hab. E.L.Reed, —

= source of phylogenetic or pertinent taxonomic studies, including those citing direction or time of divergence. “—“ = missin including those citing direction or pertinent or time of divergence. studies, of phylogenetic taxonomic = source = equivocal. = equivocal. Andropogon exaristatus S.Watson, S.Watson, Berland. ex C.A.Mey., ex C.A.Mey., Berland. ex S.Watson, ex S.Watson, (DC.) Herter subsp. laguroides nevadensis Engelm. ex S.Watson, Engelm. ex S.Watson, S.Watson, S.Watson, ex S.Watson, ex S.Watson, A.Nelson, C.V.Morton C.V.Morton (Nash) Henrard (Nash) Henrard [ (Nash) Hitchc.] (S.Watson) Hack. (S.Watson) Ephedra antisyphilitica Ephedra Equiv = chromosome number of North = chromosome American taxon;

Ephedra californica Ephedra compacta Ephedra + Ephedra aspera Ephedra Ephedra cutleri Ephedra Bothriochloa laguroides Two NA CLADES: Two Ephedra pedunculata Ephedra Ephedra torreyana Ephedra Ephedra trifurca Ephedra viridis Ephedra Ephedra coryi Ephedra Ephedra fasciculata Ephedra Ephedra funerea Ephedra Bothriochloa exaristata C#-NA (tS) Cl-Cl (eNS) (AAD) (AAD) Sp-InC Phyl./Tax. Lit. Source Lit. Phyl./Tax. (eNS/tN) (SA to NA), or NA), (SA to N Sp-Sp = AAD distribution in eastern North = AAD distribution in eastern America; erences between NA and SA indicated by “/”. “/”. by NA and SA indicated between erences → Sp S soures. counts (key at bottom of table). (key at bottom counts diff = trans-North and South America, distribution signifi hemisphere. eN trans-North America, distribution signifi to another clade. Taxa names in square brackets [ ] = synonym(s). brackets [ ] = synonym(s). names in square Taxa another clade. to subspecies) occurring in both NA and SA; subspecies) occurring both North and South America (SA); America (NA) region; species) in the recipient or more clade (of two List of vascular plants with a native, desert distribution. disjunctList of vascular plants with a native, American amphitropical (AAD)

Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

Genus Bothriochloa Ephedra Blepharidachne Ephedraceae Ephedraceae Poaceae Poaceae GROUP / Family/

GNETALES GNETALES APPENDIX 2 2 APPENDIX MONOCOTS MONOCOTS 1626 • AMERICAN JOURNAL OF BOTANY continued Allred and Gould, 1983 and Gould, Allred Div. Ma Ma Div. (6.5–8.2) 2015 Amarilla et al., (mean range) Phyl./Tax. Lit. source S 7.2 S → ? P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H A-H A-H AP-H AP-H {2} {2} {2} {2} P-H/ A-H N = 16 = 16 = 16 = 16 n n n n 2 Phil., 2 Phil., 2 Griseb., 2

"— Munroa Phil., mendocina decumbens argentina

andina Munroa Munroa Munroa CLADE of {1} {2} —" — —" — — " — —" — —" — — " — —" — —" — = 60 = 16 n n 2 2

Poa Poa (Parodi) Lag.

Kunth

(Griseb.) Griseb., Lycurus Lycurus var. var. (Hack.) (Parodi) (Steud.) (Kunth) Leptochloa Leptochloa (Nutt.) (J.Presl) Kunth] (J.Presl) Erioneuron Erioneuron Erioneuron (Kunth) Nees] kurtzianum Chondrosum simplex Chondrosum Muhlenbergia Muhlenbergia p. Erioneuron avenaceum Erioneuron avenaceum ume longifl Anton, avenaceum pygmaeum Anton] [ Kunth] (Lag.) (DC.) Herter subsp. torreyana & Gould Allred [ phleoides J.T.Columbus] Kunth alopecuroides & P.M.Peterson [ Columbus alopecuroides L. setosus C.Reeder] (Kunth) Amarilla [ (Kunth) Willd. ex Rydb.] (Kunth) P.M.Peterson & (Kunth) P.M.Peterson N.Snow [ dubia [ Hitchc. (J.Presl) calycina P.Beauv. (Kunth) Tateoka (Kunth) Tateoka [ var. Anton, Bouteloua simplex Bothriochloa laguroides Lycurus phleoides Lycurus Cottea pappophoroides Cottea Muhlenbergia Muhlenbergia Munroa pulchella Munroa Disakisperma dubium Dissanthelium calycinum Enneapogon desvauxii Erioneuron avenaceum Erioneuron Sp Sp Sp Sp Sp Sp Sp Sp (tS) (tS) (tS) Sp-Cl (eNS) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-InC (AAD*) (AAD*)

Continued

Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

Genus Bouteloua Lycurus Cottea Muhlenbergia Disakisperma Dissanthelium Munroa Enneapogon Erioneuron GROUP / Family/

APPENDIX 2, 2, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1627 continued Hasenstab-Lehman, Hasenstab-Lehman, personal communication Moore et al., 2012 et al., Moore Guilliams et al., 2017 ; 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., Div. Ma Ma Div. (0.8–2) 2015 Amarilla et al., (mean range) Phyl./Tax. Lit. source S 0.92 S S 5.53 S S 2.45 S S 6.01 S N 1.8 N S? → → → → → → P-H P-H P-H P-H P-H P-H P-H P-H A-H A-H N A-H A-H N A-H/ A-H/ P-H N AP-H/P-HS AP-H/P-HS N , x {34; 29} A-H {21} — — {2} A-H S {2} {16} A-H N {15} ] x , 6 x = 16 = 16 = 12, 24, 36 [2 = 20 = 22, 24 = 36 4 n n n n n n 2 2 2

Phil. 2 var. Cryptantha (Phil.) Reiche] (Phil.) Parodi squarrosa Cryptantha

(Phil.) Reiche (Phil.) Grindelia species Willbleibia stolonifera (Nutt.) Torr. (Phil.) Reiche (Phil.) 17 SA stolonifera [ hispida (Parodi) Herter] (Parodi) (Phil.) Hasenstab & (Phil.) M.G.Simpson [ diplotricha Munroa Johnstonella diplotricha Munroa mendocina Munroa + Cryptantha subamplexicaulis CLADE of at least Willkommia texana Willkommia {21} ] {2} x —" — —"2 —"2 —"2 —"2 —" — — — —" — —" — — — CLADE of —+ , 4 x = 16 = 12, 24 [2 n n 2 2

Nees] Grindelia

maritima texana

Buckley (Greene) Cryptantha Cryptantha (Kunth) I.M.Johnst. Pappophorum Pappophorum Schkuhria multifl ora Schkuhria multifl vaginatum [ mucronulatum (Hook. & Arn.) B.G.Baldwin [ Hook. & Arn.] (Nutt.) Torr. Phil. pilosa maritima var. Greene echinosepala (J.F.Macbride) Hasenstab & M.G.Simpson (Kunth) I.M.Johnst. species of NA E.Fourn. I.M.Johnst. albida I.M.Johnst. Hitchc. var. var. Hitchc. (Greene) Greene var. var. Greene (Greene) Johnstonella C. mexicana Pappophorum Pappophorum Picradeniopsis multifl ora multifl Picradeniopsis Munroa squarrosa Munroa Scleropogon brevifolius CLADE of + CLADE of at least 31 Trichloris plurifl ora plurifl Trichloris Cryptantha albida CLADE of + Willkommia texana Willkommia Cryptantha maritima Sp Sp Sp Sp Sp Cl-Cl Cl-Cl (tNS) Cl-Sp (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-InC Sp-InD (eS/tNS)

Continued

Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

Genus Pappophorum Picradeniopsis Scleropogon Trichloris Cryptantha Willkommia Grindelia Boraginaceae Boraginaceae Asteraceae Asteraceae GROUP / Family/

APPENDIX 2, 2, APPENDIX

EUDICOTS EUDICOTS 1628 • AMERICAN JOURNAL OF BOTANY continued Moore et al., 2006 et al., Moore Div. Ma Ma Div. (3–6) 2006 et al., Moore (3–6) 2006 et al., Moore (mean range) Phyl./Tax. Lit. source S 4.5 S S 0.003 S S 4.5 S → → → P-H P-H P-H P-H N A-H A-H N — — — — — {8} P-S P-S {8} {4} P-H P-H {4} {20; 30} {20; 30} {20; 30} {20; 30} {20; 30} {20; 30} {20; 30} {20; 30} P-H N ] ] ] ] ] ] ] ] = 16 = 28 x x x x x x x x n n [4 [4 [4 [4 [4 [4 [4 [4

(Phil.)

(Rusby)

(Phil.) (Phil.) "2 "2 Tiquilia Tiquilia (Hook.f.) Tiquilia darwinii Tiquilia (Ruiz & Pav.) Pers., Pers., (Ruiz & Pav.) A.T.Richardson, A.T.Richardson, A.T.Richardson, A.T.Richardson (I.M.Johnst.) A.T.Richardson, (I.M.Johnst.) A.T.Richardson, (Phil.) A.T.Richardson (Phil.) of group”) atacamensis A.T.Richardson, A.T.Richardson, A.T.Richardson, (Hook.f.) A.T.Richardson, A.T.Richardson, (Hook.f.) A.T.Richardson, A.T.Richardson, (J.T.Howell) A.T.Richardson, (J.T.Howell) Tiquilia tacnensis Tiquilia Tiquilia paronychioides Tiquilia Tiquilia dichotoma Tiquilia elongata Tiquilia ferreyrae Tiquilia ora grandifl Tiquilia litoralis Tiquilia + Tiquilia conspicua Tiquilia CLADE (“Blue-fl owered owered CLADE (“Blue-fl + Tiquilia fusca Tiquilia galapagoa Tiquilia nesiotica Tiquilia {24} — "2 — "2 — " — — " — — CLADE of {20} = 16 n [2x] 2

Kuntze] Capparis Capparis Coldenia nuttallii Coldenia (A.Gray) (A.Gray) A.T.Richardson Griseb. Miers ex Hook. & Arn. [ atamisquea A.Gray (Benth. ex Hook.) A.T.Richardson [ Benth. ex Hook.] (I.M.Johnst.) A.T.Richardson Tiquilia palmeri Tiquilia nudicaulis Cressa Atamisquea emarginata arizonicus Evolvulus Tiquilia nuttallii Tiquilia Tiquilia cuspidata Tiquilia Sp Sp Sp Sp (tS) Sp-Cl Sp-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Continued

Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

Genus Cressa Atamisquea Evolvulus Tiquilia Capparaceae Capparaceae Ehretiaceae Ehretiaceae GROUP / Family/ Convolvulaceae Convolvulaceae

APPENDIX 2, 2, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1629 continued McMahon, 2005 Simpson et al., 2005 Simpson et al., Simpson et al., 2005 Simpson et al., 2005 Simpson et al., Simpson et al., 2005 Simpson et al., Div. Ma Ma Div. (mean range) Phyl./Tax. Lit. source N N N N → → → → P-T P-T P-S P-S P-S P-S S P-H P-H S P-H P-H P-SSu P-SSu S — — — — — — — — {40} P-HSu S = 24 n

Gillies Torr. & mannseggia mannseggia DC. Sandwith, Hoff Hoff (Griseb.) mannseggia mannseggia mannseggia viscosa mannseggia mannseggia pumilio mannseggia Prosopis globosa pumilio (Clos) I.M.Johnst. Hook. & Arn., pumilio B.B.Simpson, miranda (Hook. & Arn.) Burkart [ ex Hook. & Arn.] (Griseb.) B.B.Simpson B.B.Simpson (Griseb.) [ Griseb.] drummondii (NA) A.Gray prostrata Hoff Hoff Errazurizia multifoliolata Errazurizia Hoff Prosopidastrum globosum Prosopidastrum Hoff {28} —"2 — —"2 — — —+ —+ —+ — CLADE of: — CLADE of — —" — — — — — = 28 n 2

A.Gray, ] Torr. & & (Torr.

(Dressler) Torr., (Brandegee) Dressler] angustissima A.Gray, Prosopis Prosopis (Fisher) Rose (Fisher) Brandegee, Gillies Caesalpinia Caesalpinia Errazurizia Errazurizia (M.Martens & mannseggia mannseggia mannseggia mannseggia mannseggia mannseggia mannseggia glauca mannseggia mannseggia mannseggia repens mannseggia mannseggia tenella mannseggia angustissima Acacia (S.Watson) I.M.Johnst. (S.Watson) (Ortega) Eifert microphylla humilis Galeotti) Hemsl., peninsularis (Britton & Rose) Wiggins intricata globosa ex Hook. & Arn. var. mexicana benthamii I.M.Johnst. (Mill.) Britton & Rose var. [ var. (Mill.) Kuntze angustissima drummondii A.Gray [ A.Gray drummondii Fisher] A.Gray) oxycarpa (Eastw.) Cockerell, (Eastw.) Tharp & L.O.Williams, Hoff drepanocarpa Hoff mexicanum Burkart [ watsonii Errazurizia megacarpa Errazurizia Hoff Hoff + Hoff + Hoff Hoff CLADE of Acaciella angustissima Acaciella Hoff Hoff Hoff CLADE of CLADE of Prosopidastrum Prosopidastrum Hoff + Sp Sp (tS) (tN) Cl-Cl Cl-Cl Cl-Sp (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp

Continued

Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

Genus mannseggia Hoff Acaciella Errazurizia Prosopidastrum Fabaceae Fabaceae GROUP / Family/

APPENDIX 2, 2, APPENDIX

1630 • AMERICAN JOURNAL OF BOTANY continued ord, 2011 ord, et al., 2017 , this issue 2017 et al., Johnson and Porter, Johnson and Porter, 2017 Lu-Irving et al., 2014 ; Frost Frost ; Lu-Irving 2014 et al., Levin et al., 2007 et al., Levin Levin et al., 2007 et al., Levin Levin et al., 2007 et al., Levin Schenk and Huff (12.84–16.41) in cited and Cuéller, Porter Div. Ma Ma Div. (4.8–19.4) 2017 Johnson and Porter, (mean range) Phyl./Tax. Lit. source S 14.5 S S 0 S S 14.42 S N N N → → → → → → P-S P-S S P-S P-S Equiv P-H P-H N P-H P-H N P-H P-H A-H A-H N P-ST P-ST — — — — — {31} {3} {3} P-S S {12} {3; 32} P-S S = 24 = 24 = 24 = 18 = 24 n n n n n 2 2 2 2

,

Gilia

(Gillies Aloysia

Bryantiella Miers 2 Miers — Dun. (Phil.) Jacq. J.M.Porter Gilia glutinosa (Phil.) J.M.Porter] (Phil.) Lycium Lycium Lycium Lycium Lycium nodosum Lycium Giliastrum Gillies ex Benth.] Bryantiella glutinosa Gilia castellanosii common ancestor SA common ancestor Miers americanum rachidocladum ex Benth.) J.M.Porter [ ex Benth.) J.M.Porter foetida (J.M.Porter) V.E.Grant] castellanosii [ Miers W.C.Holmes, K.L.Yip & W.C.Holmes, A.E.Rushing J.M.Porter [ J.M.Porter Phil., (Phil.) J.M.Porter; J.M.Porter; (Phil.) glutinosa Lycium infaustum Lycium Lycium tenuispinosum Lycium Lycium vimineum Lycium Giliastrum foetidum + + CLADE of CLADE of CLADE of + + CLADE of Koeberlinia holacantha Dayia glutinosa {6} {10} {6} {6} {6} {6} {6} {35} {25} {6} — of CLADE of 19 spp. —" — —" — {6} = 24, = 24 = 24, = 24 = 24 = 24 = 96, = 24 = 18 = 44, = 18 48 36, 48 120 ca.88 n n n n n n n n n n n 2 2 2 2 2 2 2 2

(Torr.)

A.Gray, 2 Correll, — A.Gray 2 A.Gray, 2 Gilia scabra Benth.] Dun. (Brandegee) A.Heller — — Benth. Aloysia Aloysia Lycium Lycium Lycium Lycium Gilia incisa macrostachya Moldenke A.Gray, Walter Nutt. ex A.Gray berlandieri brevipes (Benth.) J.M.Porter (Benth.) J.M.Porter [ Zucc. (Gillies ex Arn.) Griseb. (Benth.) Decne. J.M.Porter [ J.M.Porter Brandegee] A. wrightii Lycium carolinianum Lycium Lycium torreyi Lycium Lycium fremontii Lycium CLADE of + Lycium exsertum Lycium + Lycium californicum Lycium CLADE of Lycium texanum Lycium + CLADE of Lycium parishii Lycium Koeberlinia spinosa Mentzelia albescens Mentzelia Proboscidea althaeifolia Proboscidea Dayia scabra Giliastrum incisum Sp Sp (tS) (eN) Cl-Cl Cl-Cl Cl-Cl (tNS) Cl-Sp Sp-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp (AAD?) (AAD?) Continued

Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

Genus Aloysia Lycium Koeberlinia Mentzelia Proboscidea Giliastrum Dayia Verbenaceae Verbenaceae Solanaceae Solanaceae Koeberliniaceae Koeberliniaceae Loasaceae Loasaceae Martyniaceae Polemoniaceae Polemoniaceae GROUP / Family/

APPENDIX 2, 2, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1631 continued et al., 2017 , this issue 2017 et al., Lu-Irving et al., 2014 ; Frost Frost ; Lu-Irving 2014 et al., , this issue 2017 et al., Frost Frost et al., 2017 , this issue 2017 et al., Frost Div. Ma Ma Div. (mean range) Phyl./Tax. Lit. source N N N → → → P-S P-S S ABP-H ABP-H S — — — — {39} {39} {39} AP-H S {39} {39} {39} {39} {39} ] ] ] ] ] ] ] ] = 12, 14, 28 {5; 13} x x x x x x x x n 2 [2 [2 [2 [2 [2 [2 [2 [2

L.,

Covas & Covas

Kunth, —

(Speg.) Botta, (Speg.) Verbena Verbena alata Verbena Glandularia Cham., Juniella tridactylites Gillies & Hook. ex Hook., (Lag.) Moldenke](Lag.) Moldenke, Ruiz & Pav., (Kunth) Cabrera, (Kunth) Cabrera, (Phil.) Botta, (Phil.) (Gillies & Hook.) Schnack & Covas, aurantiaca Schnack, (Moldenke) Botta species: Otto or ex Sweet alata V. [ (D.Don) Schnack & Covas, (D.Don) Cabrera, (Spreng.) Glandularia venturii Verbena intermedia Verbena Verbena demissa Verbena glabrata Verbena hispida Verbena CLADE of 11 Glandularia microphylla Glandularia araucana ava Glandularia fl CLADE of Glandularia sulphurea Glandularia parodii Verbena bonariensis Verbena Glandularia tenera + ] ] ] ] x x x x {18} {18; {33} — — — " — — = 14 = 20 [4 = 20 [4 = 20 [4 = 14 = 20 [4 = 30 38} {33} {36} {26} {33} n n n n n n n 2 2 2 2 2 2

L., 2 Medik., (Nutt.) var.

Small, — , ciliata (L.M.Perry) Glandularia Cham.] Glandularia Aloysia Aloysia . [ g Stylodon carneus Glandularia Kunth, [ (Medik.) Moldenke] Nutt. var. Nutt. var. (A.Gray) Umber (A.Gray) [ da bipinnatifi (Gillies & Hook. Tronc. ex Hook.) var. lycioides Umber, (Briq.) Solbrig var. Solbrig(Briq.) var. gooddingii Umber [ da bipinnatifi latilobata B.L.Turner], Verbena bracteata Verbena & Rodr., ex Lag. Cav. (Benth.) B.L.Turner] Moldenke, bipinnatifi da bipinnatifi (Schauer) Nutt., Glandularia wrightii Verbena canescens Verbena carnea Verbena halei Verbena + Aloysia gratissima Aloysia Glandularia verecunda Glandularia chiricahensis CLADE of 15 NA species: Verbena californica Verbena CLADE of (tN) Cl-Cl Cl-Cl (tNS) (AAD) (AAD) Sp-InC Continued

Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

Genus Verbena Glandularia GROUP / Family/ APPENDIX 2, 2, APPENDIX

1632 • AMERICAN JOURNAL OF BOTANY = {34} = Leitch Leitch = {17} = Covas and Covas = = Rattenbury, {8} {26} = Las Peñas, 2005 ; 2005 Las Peñas, = = Turner and Powell, 2005 ; 2005 and Powell, Turner = = Porter, 1996 ; {16} = Chouhdry, 1984 ; 1984 Chouhdry, = {33} {25} {7} Div. Ma Ma Div. 2004 Beier et al., (4.2–8.4) 2001 Lia et al.,

* (mean range) Phyl./Tax. Lit. source = Las Peñas, 2003 ; 2003 Las Peñas, = = Chiang, 1982 ; 1982 Chiang, = {6} {15} = Pinkava et al., 1992 ; 1992 et al., Pinkava = S 1.22 S N 6.3 N {24} → → = Stiefkens and Bernardello, 2002 ; 2002 Stiefkens and Bernardello, = {32} P-S P-S N = Chaw et al., 1986 ; 1986 et al., Chaw = = Laport et al., 2012 ; Laport 2012 et al., = {5} {14} = Zanin and Cangiano, 2001 . 2001 Zanin and Cangiano, = {40} = Ohri and Khoshoo, 1986 ; Ohri 1986 and Khoshoo, = {14} P-S S ] {23} x — — — — {11} = 42 = 26 [2 n n = Kumar and Dutt, 1989 ; Kumar and Dutt, 1989 = = Bernardello, et al., 1990 ; 1990 et al., Bernardello, = = Stiefkens and Bernardello, 2000 ; 2000 Stiefkens and Bernardello, = {4} {13} {31}

= Yuan and Olmstead, 2008 ; 2008 and Olmstead, Yuan = Kunth] {39} Moldenke

Cav. 2 Kunth, — Vahl, Spreng., 2 = Nakata and Oginuma, 1989 ; Nakata 1989 and Oginuma, = Spreng.] {22} = Bernardello, 1982 ; 1982 Bernardello, = = Soltis et al., 2014 ; 2014 Soltis et al., = = Ward, 1984 ; {3} {30} V. rigida V. Verbena litoralis Verbena [ [ Hook. & Arn. Spreng., Spreng., Verbena sedula Verbena {38} = Johnson and Porter, 2017 ; 2017 Johnson and Porter, = Verbena scabra Verbena + Verbena rigida Verbena divaricata Larrea Fagonia chilensis Fagonia Verbena montevidensis Verbena Verbena litoralis Verbena {12} , {9} x , 4 {37} {38} x {14} — — — — — — = Moore et al., 2012 ; 2012 et al., Moore = ] x = 14, 28 = 14, 16 = 14 = 26, 52, = 14 {19} 6 78 [2 {21} n n n n n = Amarilla et al., 2015 ; 2015 Amarilla et al., = 2 2 2 = Robinson et al., 1981 ; 1981 Robinson et al., = {2}

{29}

= Hanson et al., 2005 ; 2005 Hanson et al., =

L., 2 L., 2 = Ward and Spellenberg, 1988 ; 1988 and Spellenberg, Ward =

{11} (DC.) Kunth

orcuttiana {37} V. simplex V. cinalis = Moore et al., 2006 ; 2006 et al., Moore = L.M.Perry] {20} V. neomexicana V. Benth., L.M.Perry [ Lehm. var. var. Lehm. D.M.Porter valerianoides (L.M.Perry) G.L.Nesom, [ var. Briq. (A.Gray) hirtella Link, A.Heller, A.Heller, (L.M.Perry) N.O’Leary] Coville Wooton, Wooton, Verbena Verbena = Allred and Gould, 1983 ; 1983 and Gould, Allred = Verbena offi Verbena Verbena menthifolia Verbena orcuttiana Verbena Fagonia villosa Fagonia + Verbena hirtella Verbena lasiostachys Verbena macdougalii Verbena urticifolia Verbena Larrea tridentata Larrea Verbena perennis Verbena = Goldblatt, 1977 ; Goldblatt, 1977 = {1} = Umber, 1979 ; 1979 Umber, = = Reveal and Moran, 1977 ; and Moran,Reveal 1977 = {10} {36} {28} = Löve, 1982c ; 1982c Löve, = {19} (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp = Turner, 1994 ; Continued

{35} = Gervais et al., 1997 ; Gervais 1997 et al., = Tax./(Dist.) AAD Taxon/Clade-NA C#-NA AAD Taxon/Clade-SA C#-SA Dur.-Hab. Disp. dir.

= Löve, 1982b ; {9}

{18} Genus = Reeder and Reeder, 1973 ; 1973 Reeder and Reeder, = {27} Larrea Fagonia Zygophyllaceae Zygophyllaceae GROUP / Family/ Turner et al., 1979 ; 1979 et al., Turner 1959 ; et al., 2001 ; 2001 et al., Schnack, 1946 ; Schnack, 1946 APPENDIX 2, 2, APPENDIX numbers: Key citations of chromosome to

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1633

S = = * eN = AAD continued = herb, = herb, H ewN = a clade sister = a clade sister cs) occurring in cs) occurring Cl-Cl infraspecies (varieties or erent = trans-South America, distribution tS = two diff = two = single species (conspecifi Sp Sp-InD = a single species in the source region sister to a to sister region = a single species in the source = chromosome number of South American taxon. number of South American taxon. = chromosome Sp-Cl = perennial, or a combination; plant habit, or a combination; = perennial, P C#-SA P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H P-H = biennial, = biennial, B Northcantly entering zones; American and South American tropical = direction of dispersal from source area to recipient area as determined as determined area recipient to area source = direction of dispersal from — — — = annual, = annual, taxonomic unit of comparison: unit of comparison: taxonomic in both NA and SA; cs) occurring A Disp. dir. Disp.

= mean time of divergence (mean ranges in parentheses) of NA and SA taxa/clades, of NA and SA taxa/clades, (mean ranges in parentheses) = mean time of divergence

= AAD distribution in eastern North = AAD distribution in eastern South America; America and eastern Northcantly entering zone; American tropical Tax. = Tax. eNS Mett. Div. Ma Div. (A.Nelson) "— "— "— "— = American amphitropical disjunct distribution generally well outside of tropical regions; regions; disjunct outside of tropical = American amphitropical distribution generally well = plant duration, AAD = Literature source of phylogenetic or pertinent taxonomic studies, including those citing direction or pertinent or studies, of phylogenetic taxonomic source = Literature (L.) Palla subsp. subsp. (L.) Palla paludosus T.Koyama (Bory) Presl ex Kuhn = equivocal. = equivocal. Bolboschoenus maritimus Polystichum mohrioides Polystichum Pellaea myrtillifolia Pellaea = chromosome number of North = chromosome American taxon; Dur.-Hab. Equiv C#-NA {56} = distribution: {56} {56} {96} {101} {97} {110} —"— —"— —"— —"— = a clade (of two or more species) in the source region sister to a single species in the recipient region; region; a single species in the recipient to sister region species) in the source or more = a clade (of two (Dist.) = 104 = 60 = 66 = 48 = 42 = 82 = 58 n n n n n n n in NA and SA; occurring or closely related, either sister- species, erent = the same two infraspecies (coninfraspecifi = the same two = trans-North and South America, distribution signifi 2 2 2 (SA to NA), or NA), (SA to Phyl./Tax. Lit. source Lit. Phyl./Tax. N = trans-North America, distribution signifi Cl-Sp erences between NA and SA indicated by “/”. “/”. by NA and SA indicated between erences tNS → tN S Sp-InC L.] (L.) = two diff = two

= AAD distribution in eastern South America; = AAD distribution in eastern Vahl.] (Kaulf.) É.Desv. — " — Underw. 2 Torr. & S.Watson] Juncus L. 2 eS Eleocharis (C.C.Gmel.) Sp-Sp W.Boott 2 (Kunth) (NA to SA), SA), (NA to Bol. [ Bol. S L. 2 → (A.Dietr.) Kunth] (A.Dietr.) N Bol., orth. Bol., var.] Scirpus maritimus Scirpus validus Scirpus nevadensis Palla [ Palla lescurii (S.Watson) Oteng-Yeb. Oteng-Yeb. (S.Watson) [ Fée tabernaemontani [ Palla Roem. & Schult. [ radicans Hook. Carex praegracilis Carex pseudocyperus Carex Pellaea andromedifolia Pellaea Bolboschoenus maritimus Juncus acutus Juncus lesueurii Polystichum lemmonii Polystichum Amphiscirpus nevadensis Schoenoplectus Eleocharis exigua Eleocharis pachycarpa Cyperus cephalanthus Cyperus = vine, or a combination, with diff or a combination, = vine, V Sp Sp Sp Sp Sp Sp Sp Sp Sp (tS) (eN) (tNS) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp (tNS*) (tNS*) Sp-InD (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) = tree, = tree, T Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. zone; Southcantly entering American tropical

= literature citation for chromosome counts (key at bottom of table). (key at bottom counts chromosome citation for = literature Genus

either stated in or calculated from (*) literature soures. soures. (*) literature from in or calculated either stated = missing information. “—” time of divergence. signifi native distribution also occurring outside the western hemisphere. hemisphere. outside the western distribution also occurring native either studies, phylogenetic from { } distribution in eastern and western North and western distribution in eastern America; = shrub, = shrub, AAD distribution in eastern NorthAAD distribution in eastern America; to another clade. Taxa in square brackets [ ] in square = synonym(s). Taxa another clade. to clade (of two or more species) in the recipient region; region; species) in the recipient or more clade (of two subspecies) occurring in both NA and SA; subspecies) occurring both North and South America (SA); America (NA) Vascular plants with a native, temperate American amphitropical disjunct (AAD) distribution. disjunct American amphitropical (AAD) temperate plants with a native, Vascular

Carex Juncus Polystichum Amphiscirpus Bolboschoenus Cyperus Pellaea Schoenoplectus Eleocharis Juncaceae Juncaceae Cyperaceae Cyperaceae Pteridaceae Pteridaceae GROUP / Family / GROUP / Family

MONOCOTS APPENDIX 3 3 APPENDIX FERNS

1634 • AMERICAN JOURNAL OF BOTANY continued Blattner, Blattner, 2006 Blattner, Blattner, 2006 Blattner, Blattner, 2006

(2.53–5.25) (0.42–1.60) (0.40–3.07) S 3.73 S N 1.00 N N 1.27 N → → → P-H P-H P-H P-H P-H P-H P-H P-H A-H A-H S A-H A-H S A-H/ A-H/ P-H {87} A-H A-H {87} {9} P-H N {4} {10} {55} {9; 55} {69} {55} {69} {90} {87} A-H A-H {87} {55; 69} — — = 14 = 14 = 14 = 14 = 14 = 14 = 14 = 14 = 14 = 14 = 14 = 42 = 14 {8; 9} {55; 69} {10; 55} = 14, 28 = 14 n n n n n n n n n n n n n n n 2 2 2 2 2 2 2 2 2 2 2

Steud., 2 J.Presl, 2 (Phil.) " "2 "2 "— "2 "2 "— Roem. & D. glauca D. Hordeum Hordeum deserticola chilense Schult., J.Presl, Bothmer, Parodi [ Parodi hom. Parodi, (E.Desv.) illeg.] Bothmer, Steud., (Hauman) Covas, Hook.f., Nevski (NA), Nutt. (NA) Steud. var. var. J.T.Howell] Bothmer, N.Jacobsen & Bothmer, R.B.Jørg. Hordeum pusillum Hordeum Triglochin concinna Triglochin CLADE of Hordeum erectifolium Hordeum Hordeum comosum Hordeum cordobense Hordeum Deschampsia monandra Hordeum euclaston Hordeum exuosum fl Hordeum muticum Hordeum patagonicum Hordeum orum pubifl Hordeum + Hordeum euclaston Hordeum [ erectifolium Hordeum {87} {87} ] ] x x {7; 76} {87} {76; 90} {58} {76; 90} {87} — = 14 = 26 [4 = 14 = 48 = 14 = 41 = 36 [6 n n n n n n n 2n = 28 2 2 2 2 2 ]

t.

Vulpia

(Hook.)

Triglochin Triglochin Bol. Nevski 2 Colla Danthonia Nash. — " — L. [ Nutt. 2 Walter [ debilis É.Desv. var. var. É.Desv. americana Phil., nom. illeg.] Phil., Triglochin Triglochin Burtt Davy var. Burtt Davy var. , var. (Walter) Rydb.] Danthonia californica Bromus trinii Bromus Nevski (Trin.) Benth. concinna concinna concinna ex Benth. Munro octofl ora octofl (M.E.Jones) J.T.Howell] Boland. var. var. Boland. [ [ (Scribn.) Hitchc; ora grandifl Hordeum brachyantherum Hordeum Deschampsia danthonioides Deschampsia elongata Hordeum intercedens Hordeum Festuca octofl ora octofl Festuca Triglochin maritima Triglochin Hordeum pusillum Hordeum Danthonia californica Agrostis idahoensis Agrostis berteroanus Bromus Sp Sp Sp Sp Sp Sp-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (ewN) (ewN) (ewN) (ewN) Sp-Sp Sp-Sp Sp-Sp (AAD*) (AAD*) Sp AAD) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus

Continued

Hordeum Triglochin Festuca Agrostis Danthonia Bromus Deschampsia Juncaginaceae Juncaginaceae Poaceae Poaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1635 continued Ortíz-Diaz, 1998 ; Ortíz-Diaz, 1998 2010 et al., Peterson Ortíz-Diaz, 1998 Ortíz-Diaz, 1998 ; Ortíz-Diaz, 1998 2010 et al., Peterson Ortíz-Diaz, 1998 ; Ortíz-Diaz, 1998 2010 et al., Peterson Ortíz-Diaz, 1998 Ortíz-Diaz, 1998 ; Ortíz-Diaz, 1998 2010 et al., Peterson ; Ortíz-Diaz, 1998 2010 et al., Peterson Ortíz-Diaz, 1998 ; Ortíz-Diaz, 1998 2010 et al., Peterson Ortíz-Diaz, 1998 ; Ortíz-Diaz, 1998 2010 et al., Peterson Peterson Peterson and Voshell et al., 2011 et al., Voshell 2011 et al., Voshell Peterson Peterson and Peterson Peterson and Peterson Peterson and Peterson Peterson and Peterson Peterson and Peterson and Peterson Peterson and Peterson Peterson and

* (0.27–0.33) S S S S S S S S S → → → → → → → → → P-H P-H P-H N P-H P-H N P-H P-H N P-H P-H P-H P-H P-H P-H P-H N P-H P-H N P-H N P-H P-H N P-H P-H A-H A-H Equiv AP-H AP-H N P-H/ P-H/ A-H N {87} A-H Equiv 0.3 — — — — — — = 14 = 14, 56 {87} n n 2

Hack. —

(Parodi) Grignon & Grignon Trin. — Torr.] " "— "2 "2 "— "— Chaboissaea (J.Presl) Henrard (J.Presl) Henrard ex Heukels Henrard caxamarcensis & Laegaard Sánchez Vega gracillima Laegaard & Laegaard Sánchez Vega palmirensis Laegaard Parodi [ Parodi atacamensis & P.M.Peterson Annable] (J.Presl) Kunth (J.Presl) Muhlenbergia Muhlenbergia Muhlenbergia fastigiata Muhlenbergia Phippsia wilczekii Phippsia cumingii Poa Phalaris platensis Phalaris Muhlenbergia Muhlenbergia [ Muhlenbergia maxima Muhlenbergia Muhlenbergia Muhlenbergia atacamensis Muhlenbergia Muhlenbergia angustata Muhlenbergia {80} {79; 81} {57} {87} {87} {57} {87} {87} {98} {79; 81} —"— — — — — = 40 = 30 = 14 = 20 = 28 = 14 = 42 = 18 = 20, 21 n n n n n n n n n 2 2 2 2 2 2 2n = 18

(Nutt.)

Hitchc. (E.Fourn.) (Kunth)

Chaboissaea Vasey 2 Nees (Sol.) R.Br. (Sol.) 2 (Kunth) Hitchc. — Schedonnardus Trin. — " — villosa (Nutt.) Trel.; Nees — J.Presl 2 (Thurb.) Rydb. Muhlenbergia Muhlenbergia Muhlenbergia dubia Muhlenbergia E.Fourn.] Muhlenbergia villifl ora villifl Muhlenbergia (Trin.) Rydb. (Nutt.) P.M.Peterson] ex Trin. (Nees & Mey.) Parodi (Nees & Mey.) J.F.Gmel. fi liformis fi Hitchc. ex Bush Hitchc. Swallen (Swallen) Morden] Swallen Scribn. & Merr. [ Scribn. & Merr. ligulata [ var. Hitchc. E.Fourn., Columbus [ Columbus paniculatus paniculata Muhlenbergia Muhlenbergia vaginata Muhlenbergia M. macroura Muhlenbergia richardsonis Muhlenbergia Phalaris angusta Phalaris Muhlenbergia asperifolia Muhlenbergia Muhlenbergia schreberi Muhlenbergia Phippsia algida Phippsia Phalaris lemmonii Phalaris douglasii Poa secunda Poa stenantha Poa CLADE of Muhlenbergia torreyi Muhlenbergia + Muhlenbergia versicolor Muhlenbergia Muhlenbergia ligulata Muhlenbergia Muhlenbergia villifl ora villifl Muhlenbergia CLADE of + paniculata Muhlenbergia Sp Sp Sp Sp Sp Sp Sp (tS) (eS) (tNS) (tNS) (tNS) Cl-Sp Cl-Sp (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (ewN) (ewN) Sp-Sp Sp-Sp Sp-Sp Sp-Sp Sp-Sp Sp-Sp Sp-Sp (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (ewN/tS) (ewN/tS) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax.

Genus Continued

Muhlenbergia Phippsia Poa Phalaris GROUP / Family / GROUP / Family APPENDIX 3, 3, APPENDIX

1636 • AMERICAN JOURNAL OF BOTANY continued , 1963 , et al., 2002 et al., et al., 2002 et al., Spalik et al., 2010 Spalik et al., Spalik et al., 2010 Spalik et al., 2010 Spalik et al., Ornduff Constance, Constance, 1963 Constance, Constance, 1963 ; Wen Constance, Constance, 1963 ; Wen Vargas et al., 1998 et al., Vargas 1998 et al., Vargas 2002 et al., Wen *

S 0 S S 0 S S 1.59 S S 1 S 2 S N → → → → → → P-H P-H 0.65 P-H P-H P-H P-H N A-H A-H S A-H A-H A-H PB-H PB-H N N ] ] x x {26} P-H 0.4 {23} A-H 1.5 {87} P-H P-H {87} {87} P-H P-H {87} {77} A-H A-H {77} {23} P-H N {23; 71} P-H N — = 22 = 22 = 56 [4 = 36 = 66 = 32 [4x] = 32 = 18 [2 = 22 = 22 {87} {87} {18} n n n n n n n n n n 2 2 2 2 2

Phil. —

Sch.-Bip.] " "2 "2 "2 "2 "— "2 "2 "— "— Less. Antennaria chilense (Gand.) A.W.Hill (Gand.) Remy [ Remy magellanica J.M.Coult. & Rose] J.M.Coult. (d'Urv.) K.L.Chambers(d'Urv.) (J.M.Coult. & Rose) (J.M.Coult. Fernald] Bowlesia septentrionalis Bowlesia Osmorhiza obtusa Blennosperma Lilaeopsis macloviana Antennaria chilensis [ Agoseris coronopifolia Agoseris Osmorhiza glabrata

[ = {6} n ] x ], 48 ], 2 x {18} {87} x ] ] {77} {23} {77} {5; 23} {87} {87} {60} {87} {20} x x —"2 —"2 — —"2 — —"2 ], 64 [6 x = 18 = 44 = 14 = 28, 56 = 22 = 22 = 36 = 16 = 44 = 60, 62, = 32 [2 = 16 (A.u.) (A.u.) 36 [4 68 [6 [4 = 18 [2 n n n n n n n n n n n n 2 2 2 2 2 2 2

Rydb. 2 Fern.] Phil. 2

(Less.)

Lilaeopsis (Nutt.) Poepp. DC. 2 DC. (Trin. & Rupr.) (Trin. & Rupr.) Osmorhiza Ruiz & Pav. — " Michx. 2 (Less.) Nutt.] (Less.) Hook. & Arn.] Trin. & Rupr. & Rupr. Trin. Blennosperma (Hook. & Arn.) Pappostipa speciosa Pappostipa (Greene) R.J.Bayer R.J.Bayer (Greene) (Hook.) S.F.Blake 2 Franseria Franseria Antennaria rosea Heiser O. chilensis O. Achnatherum speciosum Achnatherum Antennaria straminea J.M.Coult. & Rose J.M.Coult. J.M.Coult. & Rose [ J.M.Coult. attenuata Fernald] parents of parents bakeri (D.C.Eaton) Greene subsp. subsp. Greene (D.C.Eaton) pulvinata [ Greene [ Greene da bipinnatifi Hook. & Arn. of mostly NA species [ [ (Trin. & Rupr.) Barkworth;(Trin. & Rupr.) speciosa Jarava Peñailillo; Romaschenko] (Trin. & Rupr.) ex DC. Greene Antennaria umbrinella B. nanum B. Lilaeopsis occidentalis Lilaeopsis carolinensis + CLADE or possible hybrid CLADE of Daucus pusillus Bowlesia incana Bowlesia + Amblyopappus pusillus Ambrosia chamissonis Two polytomous CLADES polytomous Two Osmorhiza berteroi Osmorhiza depauperata Stipa speciosa Sanicula crassicaulis Agoseris heterophylla Agoseris Sanicula graveolens Sp Sp Sp Sp Sp Sp Sp Sp (tS) Cl-Sp Cl-Sp Cl-Sp (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp Sp eN) (AAD?) (AAD?) Sp AAD) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax.

Genus Continued

Lilaeopsis Blennosperma Antennaria Bowlesia Amblyopappus Ambrosia Daucus Osmorhiza Stipa Sanicula Agoseris Asteraceae Asteraceae GROUP / Family / GROUP / Family

EUDICOTS EUDICOTS Apiaceae

APPENDIX 3, 3, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1637 continued Guilliams, Guilliams, 2015 Emery 2012 et al., Guilliams et al., 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., 2004 et al., Lohwasser *

S 0.31 S S 1.00 S S 2.45 S S 17.11 S → → → → P-H P-H A-H A-H A-H A-H A-H A-H A-H N A-H A-H A-H A-H N A-H A-H A-H/ A-H/ P-H N {48} A-H A-H {48} {77} A-H A-H {77} {78} A-H/ AP-H N {40} {40} — — — — — = 22 = 32 = 10 = 18 = ca. = 64 {87; 105} 120 n n n n n n 2 2 2 2 2

and

(Less.) var. Less.] Psilocarphus Psilocarphus

Cryptantha globiferus " "— "— "2 "2 : alyssoides aspera calycotricha (Phil.)

(Phil.) Phil.] Microseris Perityle emoryiPerityle Cryptantha I.M.Johnst.] Cryptantha (Torr. ex Torr.) Torr.) ex (Torr. elata Nutt. var. Nutt. var. (Bertero ex DC.) [ eld Morefi berteri scabiosoides I.M.Johnst.] var. var. nuda A.Gray, I.M.Johnst. Hook. & Arn. [ D.Don brevipes CLADE of at least 10 of spp. secs. secs. Geocarya alfalfalis I.M.Johnst., (DC.) Reiche, (DC.) Reiche, Grau, (Phil.) I.M.Johnst., Thelesperma Perityle emoryiPerityle Psilocarphus tenellus Psilocarphus " [ [ Cryptantha mendocina Lasthenia kunthii Microseris pygmaea Eucryptantha/Geocarya Cryptantha Cryptantha Cryptantha {88} {87} {87} {2; 78} {87} — —"— {40; 54} = 24 = 22, 44 = 14 = 14 = 108 = 10 = 18 = 32 = 14, 20, 24, {51; 102; 109} (102–112) {85; 102} 56 n n n n n n n n 2 2 2

Nutt. — " —

A.Gray 2

sec. DC. 2 Nutt. var. Nutt. var. A.Gray 2 Ryd. — (A.Gray) Torr. 2 Mol. 2 , at least 16 NA Fernald, Psilocarphus Psilocarphus Cryptantha Nutt.] [ Gamochaeta falcata (Spreng.) Kuntze (Spreng.) tenellus tenellus (I.M.Johnst.) Anderb. (I.M.Johnst.) Anderb. [ Sch.Bip., (Lam.) Cabrera, (Lam.) Cabrera, calviceps Gnaphalium stagnalis (I.M.Johnst.) Anderb.] Krynitzkia plus at least 4 SA spp. spp. CLADE) (the Globulifera Amsinckia tessellata Thelesperma megapotamicum Psilocarphus brevissimus Psilocarphus tenellus Psilocarphus Microseris bigelovii Malacothrix clevelandii Malacothrix Gamochaeta stagnalis Perityle emoryi Perityle Cryptantha minima Lasthenia glaberrima Madia sativa CLADE of Sp Sp Sp Sp Sp Sp Cl-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp Sp-Sp Sp-InD (ewN*) (ewN*) (AAD*) (AAD*) Sp AAD) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus

Continued

Amsinckia Thelesperma Psilocarphus Microseris Malacothrix Perityle Gamochaeta Cryptantha Lasthenia Madia Boraginaceae Boraginaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

1638 • AMERICAN JOURNAL OF BOTANY continued Guilliams et al., 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., Guilliams, Guilliams, 2015 S 7.39 S S 0.33 S S 3.38 S S S 0.59 S S 0.72 S → → → → → → A-H A-H N A-H A-H N A-H A-H N A-H A-H N A-H A-H N ; ] ] {54} x x {40} {53} {40} {40} {40} P-H/ A-H N {40} — — — — — — = 56 n = 24 [4 = 14 = 64 = 62 = 14 = 72 [6 = 64, = 20 2 {87} {41; 47; 106} 120 n n n n n n n n 2 2 2 2 2 2

,

(Phil.) sec.

kingii

Cryptantha : " "2 "2 "2 "2 "— capitulifl ora capitulifl glomerata phaceloides globulifera peruviana glomerulifera

glomerata (Phil.) Cryptantha usa cynoglossoides I.M.Johnst., ex G.Don Lehmann subsp. Krynitzkia diff I.M.Johnst., (Clos) Reiche, (Clos) Reiche, Reiche (Phil.) of at least 4 spp. SA (Clos) Reiche (Clos) Reiche, (Clos) Reiche, I.M.Johnst., (Speg.) MaCloskie](Speg.) (Phil.) I.M.Johnst., (Phil.) gnaphalioides Reiche, (A.DC.) (Phil.) Hasenstab & (Phil.) M.G.Simpson Lappula patagonica Cryptantha Cryptantha Cryptantha Cryptantha Cryptantha Cryptantha [ Cryptantha + Cryptantha Cryptantha Johnstonella parvifl ora Johnstonella parvifl , x {61} {95} {106} {106} — CLADE of Globulifera — — — {66; 87} ] x = 24, 36 [4 = 48 = 18 = 48 = 24 6 n n n n n 2 2 2 2 2 :

ferocula Krynitzkia (Ruiz & (Hornem.) (A. DC.) (A.

hispidissima nemaclada sec. sec.

juniperensis leiocarpa

Pectocarya ferocula Pectocarya Cryptantha Cryptantha Greene, (Hook. & Arn.) Rydberg var. (Hook. & Arn.) Rydberg var. circumscissa Greene R.B.Kelley & M.G.Simpson, R.B.Kelley Greene, & C.A.Mey.) (Fisch. Greene (I.M.Johnst.) Hasenstab & M.G.Simpson Pav.) DC. subsp. DC. subsp. Pav.) (I.M.Johnst.) Thorne [ ined.] (I.M.Johnst.) Veno, A.Gray Cryptantha CLADE of at least 4 spp. of NA CLADE of at least 4 spp.

Johnstonella angelica Greeneocharis circumscissa Greeneocharis + Cryptantha Cryptantha Lappula redowskii

Pectocarya linearis Pectocarya Pectocarya pusilla Pectocarya Sp Sp Sp Cl-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-InC Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax.

Genus

Continued

Johnstonella Greeneocharis Lappula Pectocarya GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1639 continued 2004 Guilliams et al., 2017 Guilliams et al., Guilliams, Guilliams, 2015 Guilliams et al., 2017 Guilliams et al., Guilliams, Guilliams, 2015 , 2017 Guilliams et al., 2017 Guilliams et al., Guilliams et al., 2017 Guilliams et al., Bleeker 2002 et al.,

*

(0.038–0.66) Koch and Al-Shehbaz,

* S 1.48 S S 0.72 S S 0.3 S S 0.97 S → → → → A-H A-H N A-H A-H N A-H A-H A-H A-H N A-H A-H A-H A-H BP-H BP-H 0 ] ] x x {41; 47} A-H N {41; {41; 47} A-H Equiv 1.37 {11} A-H Equiv 0.5 {47} {47} A-H 1.45 — — = 24 = 14 [2 = 24 = 24 = 44 = 36 [3 = 24 = 24 47} {41; 47} {24; 46} {47} n n n n n n n n 2 2n = 24 2 2 2 2 2 2 2

fulvus

collinus

(Wedd.) "— chilense Plagiobothrys Thlaspi

(Hook. and Arn.) I.M.Johnst. var. (Comm. ex Poir.) ex Poir.) (Comm. Holub [ magellanicum ex Poir.] Comm. (Ruiz & Pav.) A.Gray] (Ruiz & Pav.) (Phil.) I.M.Johnst. (Phil.) (Speg.) Macloskie(Speg.) (Phil.) I.M.Johnst. var. I.M.Johnst. var. (Phil.) collinus (Ruiz & Pav.) I.M.Johnst. (Ruiz & Pav.) Kunze ex Walp.] ex Kunze congestus I.M.Johnst. I.M.Johnst. (Lehm.) (Phil.) E.Wimm. (Phil.) Plagiobothrys linifolius Plagiobothrys tinctorius Lepidium Plagiobothrys fulvus Noccaea magellanica Noccaea [ [ Plagiobothrys polycaulis Rorippa philippiana Plagiobothrys Plagiobothrys gracilis + Legenere valdiviana Legenere {47} ] ] x x {87} — — " — " — — — — — CLADE of — = 14 [2 = 36 [3 = 22 {24; 46} n n n 2 2 2

var. var. (L.) Greene Noccaea

(Phil.) (Standl.)

(A.Gray) (Hook. & (Hook.) Plagiobothrys (G.Don ex californicus Plagiobothrys Nutt. — " (Greene) Downingia fulvescens Howellia limosa Howellia (Greene) (Phil.) I.M.Johnst.] (Phil.) Noccaea arctica Noccaea Plagiobothrys Thlaspi montanum var. var. (A.Gray) Holub (& (A.Gray) (Greene) Rattan] (Greene) (A.Gray) I.M.Johnst. (A.Gray) (A.Gray) Higgins (A.Gray) (I.M.Johnst.) Higgins, (I.M.Johnst.) Higgins, Noccaea montana Noccaea Arn.) I.M.Johnst. var. Arn.) I.M.Johnst. var. campestris I.M.Johnst. L.; in part] F.K.Mey., (Ruiz & Pav.) I.M.Johnst. (Ruiz & Pav.) Bessey ex Britton McVaugh [ McVaugh I.M.Johnst. var. I.M.Johnst. var. (I.M.Johnst.) Higgins, Plagiobothrys collinus gracilis Plagiobothrys collinus ursinus with + possibly nested Plagiobothrys pringlei (A.Gray) Higgins, Higgins, (A.Gray) collinus (A.Gray) I.M.Johnst. (A.Gray) verrucosus fendleri subspp.), and Holub, (A.E.Porsild) mexicana Noccaea (Lehm.) Brand [ (Lehm.) Holub [ I.M.Johnst. Greene] A.DC.) Torr. [ A.DC.) Torr. humilis greenei Plagiobothrys gracilis Plagiobothrys fulvus Lepidium nitidum Lepidium + Rorippa curvisiliqua Legenere limosa Legenere Plagiobothrys collinus Plagiobothrys greenei MEMBER of complex Plagiobothrys myosotoides Plagiobothrys mollis Downingia pusilla CLADE of Sp Sp Sp (tS?) Cl-Sp Sp-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp Sp-Sp Sp-Sp Sp-InD Sp-InD Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax.

Genus Continued

Lepidium Rorippa Downingia Legenere Plagiobothrys Noccaea Brassicaceae Brassicaceae Campanulaceae Campanulaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

1640 • AMERICAN JOURNAL OF BOTANY continued Walsh et al., 2015 et al., Walsh Kadereit 2010 et al., (4.52– 11.08) S 7.72 S → P-H P-H P-H P-H P-H P-H AP-H AP-H {25} {25} N {25} — — — — {108} A-H A-H {108} ] = 18 = 36 = 16, 36 {25; 63} x n n n 2 2 2 [4

Phil., — (Moq.) Kunth, lampa (Moq.) Gand. & Gand. Britton, — (C.Presl) C.Presl] (Lam.) "— muricata Atriplex Helianthemum Crocanthemum Crocanthemum D.Dietr., brasiliense Spach [ spartioides Janch.; spartioides ex Small [A. ex Small [A. D.Dietr.] (Moq.) (Moq.) D.Dietr., D.Dietr., (Moq.) [Atriplex cordobensis Stuck., (Moq.) D.Dietr. (Moq.) Schrad. Humb. & Bonpl. & Bonpl. Humb. ex Willd.] Atriplex undulata Atriplex deserticola Atriplex imbricata Crocanthemum Crocanthemum Atriplex lampa Atriplex patagonica Atriplex parvifolia CLADE of + Chenopodium hircinum Atriplex rusbyi ] x {89} {36} {89} {89} {32; {74} {32; 75} — —"— —"— —"— {29} = 18, 36, = 18 = 46 = 18 = 18 = 18 = 18 = 18, 36, 72 = 36 [4 54 74; 89} {63; 75} {65; 108} = 36 n n n n n n n n n n 2 2 2 2 2 2

L.]

Moq. 2 Retz.] (L.) R.Br. (L.) R.Br. (Torr. (Moq.) Minuartia (Torr.) (Pursh) Nutt., (Pursh) 2 A.Nelson (Torr.) Helianthemum Aiton, — Moq., — (Retz.) Ostenf., (Retz.) Ostenf., S.Watson, 2 S.Watson, 2 Nutt.] Atriplex Convolvulus soldanella Convolvulus Arenaria groenlandica scoparium [ (Nutt.) Millsp. [ (Nutt.) Millsp. D.Dietr., D.Dietr., (Retz.) Dillenb. & Kadereit (Retz.) Dillenb. [ (Retz.) Spreng, groenlandica Stellaria groenlandica Ell. (Muhl.) acanthocarpa S.Watson, (Weinm.) & J.F.Macbr. A.Nels. ex Abrams ex S.Watson) S.Watson, S.Watson, ex S.Watson) S.Watson,

Atriplex gardneri Calystegia soldanella Calystegia Crocanthemum scoparium Crocanthemum Atriplex leucophylla Atriplex obovata Atriplex parishii Mononeuria groenlandica spathulatum Lepuropetalon CLADE of Cardionema ramosissima Cardionema Atriplex canescens Atriplex powellii Atriplex serenana Chenopodium berlandieri Atriplex phyllostegia Atriplex polycarpa Sp Sp Sp Sp (tS) (tN) (eN) (eN) Cl-Cl (AAD) (AAD) Sp-Sp Sp-Sp (AAD?) (AAD?) (AAD*) (AAD*) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax.

Genus Continued

Calystegia Crocanthemum Mononeuria Lepuropetalon Atriplex Cardionema Chenopodium Convolvulaceae Convolvulaceae Cistaceae Cistaceae Celastraceae Celastraceae Chenopodiaceae Caryophyllaceae Caryophyllaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1641 continued Scherson et al., 2008 Scherson et al., Fritsch et al., 2011 2011 et al., Fritsch S 0.98 S S* → → P-S P-S N P-H P-H P-H A-H A-H A-H A-H A-H AP-H AP-H N {45} {67} {67} — – — – – – — – – – — = 22 = 22 = 44 n n n 2 2 2

]

,

Hook., – Small, – Vent., –

triandra Cham. & (Clos) " "— Astragalus Astragalus Gaultheria curvicaulis Reiche, (Pers.) Mart. ex Sleumer, (Pers.) Sleumer, (Cav.) Kunth, (Colla) Clos, Clos, (Colla) Camp, Camp, Kunth, Griseb. ex Wedd. ex Griseb. (Lag.) D.D.Sokoloff (Lag.) subpinnatus Lotus Lag.] acuminata Schlecht, Urb., Urb., A.C.Sm., G.Don,(Cavanilles) Schkuhr var. Schkuhr var. Gaultheria vaccinoides triandra Acmispon subpinnatus Acmispon Gaultheria erecta Gaultheria eriophylla Gaultheria glomerata Gaultheria gracilis Gaultheria lanigera Gaultheria reticulata Gaultheria schultesii Astragalus darumbium Astragalus Gaultheria tomentosa + [ CLADE of CLADE of Gaultheria amoena Gaultheria bracteata Gaultheria domingensis [ {99} {38} {99} —"— —" —" {19; 67} = 22 = 14 = ca. 40–50 = 44, ca. = 22 {87} 88 n n n n n 2 2 2

,

Elatine Humb. & Humb. A.Gray, 2 Pursh 2 subpinnatus Sw. — " —

(Ruiz & Pav.) (Ruiz & Pav.) Lotus Lotus Fisch. & Fisch. Gay [ [ allochrous erecta Crassula Lotus Astragalus allochrous Astragalus H.Mason] Bonpl. ex Willd. ex Bonpl. (Fisch. & C.A.Mey.) & C.A.Mey.) (Fisch. D.D.Sokoloff wrangelianus C.A.Mey., misappl.] Lag., A.Berger [ A.Berger (Hook & Arn.) Berger] A.Gray var. var. A.Gray gracilis Astragalus thurberi Astragalus Dichondra sericea Dichondra Dichondra argentea Dichondra Acmispon wrangelianus Acmispon CLADE of Crassula connata Crassula Gaultheria shallon Elatine chilensis (?) Sp Sp Sp Sp Sp (tS) (tS) Cl-Cl (tNS) Sp-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus Continued

Dichondra Crassula Acmispon Astragalus Elatine Gaultheria Crassulaceae Fabaceae Fabaceae Elatinaceae GROUP / Family / GROUP / Family APPENDIX 3, 3, APPENDIX

Ericaceae 1642 • AMERICAN JOURNAL OF BOTANY continued 2012 ; Hughes and 2006 Eastwood, Scherson et al., 2008 Scherson et al., Drummond et al., Drummond et al., Drummond et al., 2012 2012 Drummond et al.,

*

* (2.5–9.2) S 1.89 S S S 2.42 S S 6.2 S → → → → P-H P-H N A-H A-H A-H A-H A-H A-H A-H N A-H/ A-H/ P-H N A-H/ A-H/ P-H N {28} {28} — — — — — — — — — — — = 22 = 28 n n 2 2

Phil., —

Lupinus johnstonii

Astragalus Astragalus Lupinus Clos, I.M.Johnst., Niederl., (Gillies) Reiche, (Moris) Reiche, Reiche (Hook. & Arn.) Griseb., (Hook.f.) Robinson, (Hook.f.) Gómez-Sosa, amatus I.M.Johnst., Cav., Gomez-Sosa, DC. Andean" group Andean" group (81 spp.) eastern (1 western) eastern (1 western) South America (19 spp.) group Astragalus vagus Astragalus Astragalus looseri Astragalus monticola Astragalus pehuenches Astragalus + arnottianus Astragalus berteroanus Astragalus cruckshanksii Astragalus Astragalus cryptobotrys Astragalus Astragalus edmondstonei Astragalus CLADE of Astragalus garbancillo Astragalus nivicola Astragalus orus unifl + Astragalus CLADE of " CLADE of {99} {99} {99} {99} {104} {104} —"— —"— —"— —"— = 22 = 22 = 28 = 22 = 16, 24 = 36 = 36 {62; 99} n n n n n n n 2 2 2 2

Desv. — " — Benth., A.Gray 2

A.Heller] A.Gray 2 Sims

Mexican" S.Watson 2 (Lam.) Microcala Microcala

E.Sheld., A.Gray Astragalus Astragalus Lupinus Astragalus Astragalus Lupinus texensis Lupinus Lupinus densifl orus densifl Lupinus (Torr. & A.Gray) A.Gray & A.Gray) (Torr. asymmetricus arizonicus Hook. & Arn. Hook. & Arn. (Lam.) Griseb. [ (Lam.) Griseb. quadrangularis Griseb.] Lupinus horizontalis Lupinus [ group (4-6 spp.) group Hook. Astragalus douglasii Astragalus Astragalus nothoxys Astragalus Lupinus havardii Lupinus Astragalus oxyphysus Astragalus + + CLADE of + CLADE of Trifolium depauperatum Trifolium macraei Trifolium microdon Trifolium quadrangularis Cicendia Lupinus microcarpus Lupinus + CLADE of " CLADE of (?) (?) (?) Sp Sp Sp Sp Sp Cl-Cl Cl-Cl Cl-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus Continued

Trifolium Cicendia Lupinus Gentianaceae GROUP / Family / GROUP / Family APPENDIX 3, 3, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1643 continued et al., 2009 ; Walden Walden ; 2009 et al., 2014 et al., Heckard, 1963 ; Hansen Walden et al., 2014 et al., Walden (4.1–5) 2017 et al., Drew 4.55 P-S P-S P-H P-H A-H A-H A-H A-H PB-H P-H P-H or or P-H ABP-H/ ABP-H/ {47b} {47b} {17; {17} A-H? A-H? {17} — — — — — — — — — — = 72 = 22 = 24 = 22 27; 44} {15; 17} n n n n 2 2 2 2

,

Benth., —

incana Epling,

Epling, — (Briq.) Griseb.

Colla] Benth., — rhododon

Glandulosae Phacelia Phacelia Cunila Phacelia Phacelia microcephala spicata

Benth., Benth., Spreng., Benth., Epling (Epling) Epling, (Benth.) Epling, (Benth.) Epling, erythrostachys (Benth.) Epling, stenodontum Epling, (Benth.) Epling section Phacelia brachyantha Phacelia Benth. [ simplicifolia (Benth.) A.Gray incl. incl. artemisioides Cunila Cunila Glechon discolor Glechon marifolia Glechon thymoides ora Hedeoma multifl Hesperozygis nitida Rhabdocaulon gracilis Rhabdocaulon Hoehnea epilobiodes Hesperozygis Rhabdocaulon Rhabdocaulon Rhabdocaulon strictus + Rhabdocaulon CLADE of CLADE of 4 species, incl. incl. CLADE of 4 species, Phacelia cumingii Phacelia

{94} virgata P. h. P. {37} {13; 14; — — CLADE of —"— = 80 = 22 [ = 22 subsp. subsp. (Greene) (Greene) Heckard] 15; 16; 17} {15; 17} = 22, 24 n n n n 2 2

(L.) L. — " — Pursh 2 Phacelia Cerv. section , incl. , incl. A.Gray 2 nis Blephilia hirsuta Phacelia Atwood (L.) T.Durand & B.D.Jacks. & B.D.Jacks. T.Durand (L.) & Fernald ex B.L.Rob. ex Lag., ex Lag., (Pursh) Benth., (Pursh) Britton, E.E.Sterns & Poggenb. Glandulosae vossii Pycnanthemum virginianum + Monarda citriodora Monarda CLADE of Hypericum gentianoides Proserpinaca palustris Proserpinaca Phacelia affi Phacelia CLADE of Phacelia heterophylla Phacelia (?) Sp Sp Cl-Cl Cl-Cl Sp-Cl (eNS) (eNS) (AAD) (AAD) (AAD) (AAD) Sp-Sp (eN/tNS) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax.

Genus

Continued

Pycnanthemum CLADE Blephilia-Monarda- Hypericum Proserpinaca Phacelia Lamiaceae Hypericaceae Hypericaceae Haloragaceae Haloragaceae Hydrophyllaceae Hydrophyllaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

1644 • AMERICAN JOURNAL OF BOTANY continued 2009 2009 Tank and Olmstead, and Olmstead, Tank Tank and Olmstead,

* (2.5–6.9) 2017 et al., Drew (1.9–5.1) 2017 et al., Drew S S S 0.26 S S S N → → → → → → P-S P-S 4 P-H P-H 5.1 P-H P-H P-H S A-H A-H N A-H A-H A-H N A-H A-H N A-H A-H ] x {3} A-H A-H {3} {22} A-H N {22} P-H P-H {22} {87} A-H A-H {87} {21} A-H N {27} A-H A-H {27} — — — — {70} {87} =22 = 14 = 26, = 24 = 24 = 32, = 44 = 14 = 24 28 34 {52; 91} {87} = 28 [4 n n n n n n n n n n 2 2 2 2 2 2 2

(Cav.)

(Ruiz &

(Benth.) L. var. L. var. (Colla) (Cav.) "2 "2 "— A.Gray] "2 "2 Kunth, (Benth.) Oenothera Oenothera Cav.] Castilleja Castilleja Cuminia Cuminia Orthocarpus Weddell, Weddell, Reiche [ dentata (Clos) Kuntze nubigena (Wedd.) Edwin H.F.Lewis & M.R.Lewis H.F.Lewis Colla [ Colla eriantha Benth. var. fernandezia Harley] Hook. & Arn. (Presl) montevidensis Munz] (Spreng.) [ attenuatus Pavon) DC. Pavon) Castilleja virgata Castilleja Jussiaea repens Castilleja pumila Castilleja Camissonia dentata Camissonia Kurzamra pulchella Kurzamra CLADE of + tenella Cuminia fernandezia Cuminia ciliata Calandrinia Gayophytum micranthum " [ " {21} {70} {22} {3} {87} {87} {87} {86; 87} {87} — — — — = 24, 28, 48 = 28 = 24 = 28 = 30 = 34 = 16 = 28 = 14

{21; 22} n n n n n n n n n 2 — 2 2 2n = 24 2 2 2 2 2

Torry & (Fisch. & (Fisch. (Hook.) Benth. (Jeps.) Juss. 2 Satureja peploides (Ruiz & Eastwood dichotoma (A.Gray) (Kunth) Kunth — " 2 (Hemsl.) Calandrinia Calandrinia Kunth — " —

usum (Jeps.) (Hook.) Macbr.] Loes.] Clinopodium Castilleja arvensisCastilleja (R. & P.) DC. var. DC. var. (R. & P.) ., tenuifl ora tenuifl a var. var. C.A.Mey.) P.H.Raven C.A.Mey.) micromerioides Govaerts, (B.L.Turner) Govaerts (B.L.Turner) Cham. & Schltdl., Cham. & Schltdl., var. var. T.I.Chuang & Heckard T.I.Chuang Pav.) Choisy var. Choisy var. Pav.) Hoch & W.L.Wagner Hoch & H.F.Lewis & M.R.Lewis H.F.Lewis Torr. & A.Gray [ & A.Gray Torr. (Loes.) Govaerts [ (Loes.) seleriana ciliata menziesii P.H.Raven subsp. subsp. P.H.Raven A.Gray Castilleja tenuifl ora tenuifl Castilleja Clinopodium hintoniorum + Nama undulatum strigulosa Camissonia CLADE of + CLADE of Castilleja auriculata Castilleja Castilleja attenuata Castilleja Epilobium campestre Clarkia davyi Clinopodium selerianum menziesii Calandrinia Cressa peploides Ludwigia Gayophytum diff Nama dichotomum Gayophytum humile Sp Sp Sp Sp Sp Sp Cl-Cl (tNS) (tNS) (tNS) (tNS) Cl-Sp (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp Sp-Sp Sp-Sp Sp-InC Sp-InC Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus

Continued

Kurzamra Cuminia Camissonia Epilobium Clarkia Clinopodium- Clinopodium- Cressa Calandrinia Ludwigia Castilleja Gayophytum Nama Onagraceae Onagraceae Malvaceae Malvaceae Montiaceae Orobanchaceae Orobanchaceae Namaceae Namaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1645 continued 2009 2017 Johnson et al., 2012 Johnson et al., Johnson et al., 2012 Johnson et al., Porter et al., 2010 et al., Porter Tank and Olmstead, and Olmstead, Tank Johnson and Porter, Johnson and Porter,

(0.23–1.13) (0.09–1.13) (1–3) 2000 Morrell et al., S 0.68 S 0.61 S S 2 S 14.9 S S S → → → → → → P-H P-H P-H P-H N A-H A-H N A-H A-H N A-H A-H N A-H A-H A-H A-H A-H A-H {49} ] ] x x {82} ] {87} A-H A-H {87} {72} A-H {87} N A-H N {21} A-H A-H {21} x — — — — — — , 8 x = 32 [4 = 20 = 32 [4 = 18 = 36, 72 = 18 = 14 = 96 {64} {64} (inferred) (inferred) [4 n n n n n n n n 2 2 2 2 2 2

Phil., — )

Hook. Griseb. 2

Collomia Collomia (Ruiz & Benth. 2 Douglas " "— linearis

T.I.Chuang & purshii Collomia Collomia Castilleja Castilleja Gilia laciniata

(Ruíz & Pav.) (Ruíz & Pav.) Collomia cavanillesii Collomia Pav.) Brand Pav.) perhaps (allopolyploid, with ancestral SA Collomia [ Hook. & Arn.] grandifl ora grandifl ex Lindl., Roem. & Schult.] (Molina) Kuntze bifl ora bifl Brand alpicola Heckard, Ruiz & Pav. Grant (Gill.) Edwin, & Arn., & Heckard T.I.Chuang T.I.Chuang & T.I.Chuang Heckard, Castilleja vadosa Castilleja Gilia valdiviensis Plantago Collomia bifl ora bifl Collomia CLADE of [ Limonium guaicuru

Collomia soehrensii Collomia + allopolyploid + Gilia crassifolia CLADE of Ipomopsis gossypifera Castilleja cerroana Castilleja Castilleja laciniata Castilleja Castilleja peruviana Castilleja = 32 n {33; {87} {60; {83} {82} {87} {21} {21} {87} {21} cell] x — CLADE of —+ —+ = 16 = 16 [2 = 18 = 20 = 18 = 18 = 14 = 24 = 24 = 22 = 20 82; 103} for 4 for {33; 82} 87; 92; 93} n n n n n n n n n n n 2 2 2 2 2 2 2

]

(Boiss.) Nutt. 2

Jacq. 2 Douglas ambigua (Benth.) , (Benth.) rubicundula (Nutt.) Nutt. 2 Eastw., Eastw. 2 Benth. subsp. Benth. subsp. Castilleja attenuata Castilleja densifl ora densifl

Castilleja ambigua Castilleja ex Lindl. Heller (A.Gray) T.I.Chuang & T.I.Chuang (A.Gray) Heckard, Grant T.I.Chuang & Heckard T.I.Chuang subsp. T.I.Chuang & Heckard, T.I.Chuang tricolor (Jepson) T.I.Chuang (Jepson)& T.I.Chuang Heckard subsp. [ M.E.Jones subsp. Castilleja rubicundula Castilleja Collomia linearis Collomia Collomia grandifl ora grandifl Collomia Limonium californicum CLADE of Gilia salticola Ipomopsis pumila Castilleja densifl ora densifl Castilleja Castilleja lineariloba Castilleja patagonica Plantago Gilia tricolor Castilleja nana Castilleja + heterophylla Plantago Sp Sp Cl-Cl Sp-Cl Sp-Cl (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-Sp Sp-Sp Sp-Sp Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus Continued

Collomia Limonium Gilia Ipomopsis Plantago Polemoniaceae Polemoniaceae Plumbaginaceae Plumbaginaceae Plantaginaceae Plantaginaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

1646 • AMERICAN JOURNAL OF BOTANY continued 2000 2017 Johnson and Porter, Johnson and Porter, Kempton, 2012 Johnson et al., 2012 Johnson et al., Kempton, 2012 (0.06– (1.2–2) Bell and Patterson, 0.64) S 1.6 S 0.27 S S S S S → → → → → → N A-H A-H N A-H N A-H A-H N A-H A-H N A-H A-H A-H A-H (C.f.) (C.f.) AB-H A-H/ A-H/ P-H — — — — — — {49; 50} A-H N ] = 14 = 18 {71; 87} {71; 87} x n n [4

×

Kurtz — Gilia J.Rémy J.Rémy chilensis prostrata Phil. indet.)

"2 "2 "2 "2 Chorizanthe Benth.] J.Rémy (Benth.) J.M.Porter & (Benth.) J.M.Porter L.A.Johnson [ pusilla Navarretia Ruiz & Pav. Ruiz & Pav. (allopolyploid of cf. Navarretia commisuralis dasyantha frankenioides (J.Rémy) Ertter(J.Rémy) Nutt. subsp. Nutt. subsp. Chorizanthe Lastarriaea chilensis Androsace salasii Androsace Leptosiphon pusillus Leptosiphon Navarretia involucrata Navarretia Chorizanthe CLADE of + Oxytheca dendroidea Oxytheca {43} {34; 60} {87} {87} {87} {43} {31} {87} — —"— {43} {43} {43} {43} {43} {43} = 42, = 78, 80, = 38–42, = 20 = 38, 40, 42, = 38, 40, = 38, 40, 42, = 18 = 14 = 18 = 38–42, 46 = 38, 40, = 40 = 40 = 18 56–60 82 46 44 42 44 {43} 42 n n n n n n n n n n n n n n n 2 2 2 2 2 2 2 2 2 2 2

L. var. L. var. Torr. 2 Pursh 2 , Rumex Stokes, — Nutt.

S.Watson, 2

(A.Gray) Benth., 2 Goodman S.Watson (Benth.) (Hook.) (S.Watson) Phil. [ Phil. usa Nutt., Benth.] , L., misappl.; L., misappl.; brevicornu (Phil.) A.Haines] (Phil.) Chorizanthe dendroidea fernandina biloba Chorizanthe coriacea Gilia fi lipes Gilia fi dendroideum (Goodman) Hoover (Goodman) Hoover [ Goodman] Torr. & A.Gray, Torr. Torr. var. var. Torr. Goodman, var. Jeps., Jeps., J.M.Porter & L.A.Johnson J.M.Porter [ Greene (or its ancestor) Greene subsp. subsp. angustifolia (Nutt.) S.Stokes] [ fueginus maritimus Rumex persicarioides var. var. Benth. Microsteris gracilis Lastarriaea coriacea + Chorizanthe brevicornu Chorizanthe inequalis Chorizanthe obovata Chorizanthe palmeri Chorizanthe parryi Chorizanthe uniaristata Leptosiphon fi lipes fi Leptosiphon Navarretia prostrata Navarretia Oxytheca dendroidea Oxytheca occidentalis Androsace Chorizanthe brevicornu CLADE of Chorizanthe diff Rumex fueginus Chorizanthe biloba Polemonium micranthum Polemonium Sp Sp Sp Cl-Cl AAD) AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (ewN) (ewN) Sp-Sp Sp-Sp Sp-Sp Sp-Sp Sp-Sp Sp-InD Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus

Continued

Microsteris Lastarriaea Leptosiphon Navarretia Oxytheca Androsace Chorizanthe Polemonium Rumex Primulaceae Primulaceae Polygonaceae Polygonaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1647 continued Wahlert et al., 2015 et al., Wahlert 2015 et al., Wahlert Wahlert et al., 2015 et al., Wahlert Njuguna 2013 et al., Paun et al., 2005 et al., Paun Guggisberg et al., 2009 et al., Guggisberg (0.19– 0.86) S → P-H P-H P-H 0.53 P-H P-H Equiv P-H P-H Equiv A-H A-H A-H A-H A-H A-H {42} P-H N ] ] ] x x x {107} P-H Equiv {107} {107} {12} P-H P-H {12} — — — — {1; 73} = 24, 48, n = 56 [8 = 42 [6 = 24 = 48 = 24 (NA); = 48 = 24, 48, = 48 {87; 100} {68; 71} 2 72 (SA) {1; 73; 84} 72 = 72 [8 n n n n n n n n n 2 2 2 2 2 2

Gay Thell., 2 Cav. Briq., — Fragaria Myosurus Myosurus lepturus (E.Vilm. ex (E.Vilm. [

Kuntze chiloensis " subsp. "2 "2

var. var. Benth. Solanum Gay; Staudt; Solanum Solanum Morong, chiloensis lucida Myosurus

apetalus (L.) Mabb.] Ruiz & Pav. var. var. Ruiz & Pav. da pinnatifi chiloensis ca pacifi Potentilla C.V.Morton, C.V.Morton, elaeagnifolium (NA + SA), M.Nee, M.Nee, hieronymi subsp. subsp. J.Gay) Staudt, J.Gay) Lehm. aridum var. var. apetalus aristatus ex Hook., illegit.] Speg [ apetalus A.Gray] Fragaria Acaena pinnatifi da pinnatifi Acaena Solanum comptum Solanum juvenale Solanum moxosense Solanum reineckii + possibly [ Primula magellanica Primula CLADE of Myosurus apetalus Myosurus patagonicus {42} ] ] x x {107} {107} {107} {84} {87} — — CLADE of —"— = 72 = 72 = 56 [8 = 18 [2 = 24 = 24 = 16 {87; 100} {42} = 18 [2x] n n n n n n n n 2 2 2 2

Sm. — " 2 Cav. 2 Poir. Bitter] Raf., 2 Dunal — Rydb. 2 Small Ruiz & Pav. Ruiz & Pav. L. — Gay var. Gay var. (L.) Mill. 2 Raf.], (Bitter) Jeps. Jeps. (Bitter) (Gillies L., Myosurus (G.R.Campb.) Gay] Whittem., var. Solanum hindsianum Solanum Primula alcalina Primula californica trisepalus dimidiatum Acaena californica Acaena Benth. [S. var. var. [ var. var. ex Hook. & Arn.) Lourteig Cholewa & Douglass M.Hend. carolinense borealis montanus [ Whittem. apetalus Solanum pumilum Primula specuicola Primula Solanum dimidiatum Solanum perplexum CLADE of + Fragaria chiloensis Fragaria Acaena pinnatifi da pinnatifi Acaena Ranunculus fl agelliformis Ranunculus fl CLADE of CLADE of Solanum elaeagnifolium Myosurus apetalus Myosurus minimus Ranunculus bonariensis Sp Sp Sp Cl-Cl Cl-Cl (tNS) Cl-Sp (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) (AAD) Sp-Sp Sp-InC Sp-InD Sp-InD (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (AAD*) (eNewS) (eNewS) Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. Genus Continued

Fragaria Solanum Acaena Primula Myosurus Ranunculus Solanaceae Solanaceae Rosaceae Rosaceae Primulaceae Primulaceae Ranunculaceae Ranunculaceae GROUP / Family / GROUP / Family

APPENDIX 3, 3, APPENDIX

+ +

1648 • AMERICAN JOURNAL OF BOTANY

= = {97} {49} {40} = Cave Cave = = Engel, Engel, = {15} {30} = Veno, 1979 ; = Löve, 1981b ; 1981b Löve, = = Raven, 1963 ; Raven, 1963 = = Oud et al., 1988 ; 1988 Oud et al., = {58} {87} {106} = Grau, 1971 ; 1971 Grau, = = Mishima et al., 2002 ; Mishima 2002 et al., = {78} = Snogerup, 1993 ; 1993 Snogerup, = 2005 {39} = Bothmer and Jacobsen, = {68} Bell et al., 2012 Bell et al., Bell et al., 2012 Bell et al., Bell et al., 2012 Bell et al., Bell et al., 2012 Bell et al., 2012 Bell et al., Bell and Donoghue, Bell and Donoghue, {96} {7} , 1963 ; , 1963 = Chuang and Heckard, 1982 ; Chuang and Heckard, 1982 = = Dunford, 1985 ; 1985 Dunford, = = Löve, 1981a ; 1981a Löve, = = Jansen and Stuessy, 1980 ; 1980 Jansen and Stuessy, = {21} {29} {57} {48} (4.07– = Grant, 1997 ; Grant, 1997 = = Ornduff = (4.74– (10.3– = Turner et al., 1979 ; 1979 et al., Turner = = Cave and Constance, 1944 ; 1944 and Constance, Cave = (0.67– = Bell, 1954 ; 1954 Bell, = 5.02) 10.73) 17.3 9.33) = Raven and Tai, 1979 ; 1979 Tai, Raven and = {38} {77} = Sivinski, 1993 ; Sivinski, 1993 = {6} {14} {105} {86} {95} S 2.1 S S 7.69 S S 13.4 S N 6.49 N = Löve, 1981c ; = Irving, 1980 ; Irving, 1980 = → → → → → = Gill, 1981 ; 1981 Gill, = {56} = Dopchiz et al., 1995 ; 1995 Dopchiz et al., = {47b} = Middleton and Wilcock, 1990 ; Wilcock, 1990 Middleton and = {37} = Ørgaard, 1994 ; 1994 Ørgaard, = {28} = Powell, 1968 ; 1968 Powell, = = Shelly, 1989 ; 1989 Shelly, = {67} {76} {85} {94} ? N ? A-H A-H S = Chmielewski and Chinnappa, 1988 ; Chmielewski and Chinnappa, 1988 = = Bell and Constance, 1957 ; 1957 Bell and Constance, = = Horn, 2000 ; Horn, 2000 = = Turner and Powell, 2001 ; 2001 and Powell, Turner = = Cave and Constance, 1942 ; 1942 and Constance, Cave = {5} = Diers, 1961 ; 1961 Diers, = {20} {47} {104} {13} = Nobs, 1978 ; 1978 Nobs, = {27} {30} P-H N {75} {30} P-HV N {111} ?/P-V S = Linde-Laursen et al., 1989 ; Linde-Laursen 1989 et al., = — — — = Gastony and Soltis, 1977 ; 1977 and Soltis, Gastony = = Sharma et al., 1992 ; 1992 Sharma et al., = {55} = 64? = 24 = 28 = 64 {1; 73} {36} = Mathew and Raven, 1962 ; Mathew and Raven, 1962 = n n n n {93} = Casas, 1981 ; 1981 Casas, = 2 2 2 = Powell and Weedin, 2005 ; 2005 Weedin, and Powell = = Sugiura, 1936 ; 1936 Sugiura, = {66} = Holmgren, 1971 ; 1971 Holmgren, = {12} = Di Fulvio, 1976 ; 1976 Di Fulvio, = = Nobs, 1975 ; 1975 Nobs, = {84} {46} {103} {26} {74}

= Baden and Bothmer, 1994 ; 1994 Baden and Bothmer, =

Hunz., — = Friend, 1982 ; 1982 Friend, = {4} = Las Peñas, 2005 ; 2005 Las Peñas, = Phil. (DC.) {35} Kunth] "2 "2 spp., {54} Solanum = Marhold, 2006 ; Marhold, 2006 = = Xena de Enrech, 1993 . 1993 de Enrech, Xena = Valeriana Valeriana = Porter, 2012 ; 2012 Porter, = = Chinnappa and Chmielewski, 1987 ; Chinnappa and Chmielewski, 1987 = = Sharma et al., 1990 ; 1990 Sharma et al., = {65} = Strother, 1976 ; 1976 Strother, = {83} {111} {19} rutescent vine, vine, rutescent {92} = Moscone, 1992 ; 1992 Moscone, = Valeriana Valeriana Valeriana including suff Columbian, Peruvian, southern Andean, and and Paramo clades of Peruvian 2012 Bell et al., homalospermum Chiarini, euacanthum Loefl . ex L. Loefl (DC.) Höck [ samolifolia Höck] Kunth [ clematitis = Bacon, 1984 ; Bacon, 1984 = {102} Solanum Solanum mortonii + possibly Valeriana scandens Valeriana Valeriana laurifolia Valeriana Plectritis samolifolia Plectritis {73} {3} = Hersey and Kloet, 1976 ; Hersey and Kloet, 1976 = = Carrique and Martínez, 1984 ; Carrique and Martínez, 1984 = {45} = Las Peñas, 2003 ; 2003 Las Peñas, = {11} = Löve, 1986b ; 1986b Löve, = = Porter, 1996 ; 1996 Porter, = = Del Pero Martínez, et al., 2002 ; Martínez, 2002 Del et al., Pero = {53} {30} {64} {59} {30} {30} {30} {82} {25} = Chambers, 1963 ; 1963 Chambers, = — CLADE of ca. 55 SA — — = Freeman and Brooks, 1988 ; 1988 and Brooks, Freeman = = Stoeva, 1987 ; 1987 Stoeva, = = Sanders et al., 1983 ; 1983 Sanders et al., = {18} = 24 = 56 = 64? = 32 = 32 {34} n n n n n {91} {101} 2 2 2 2 2 = Morrell et al., 2000 ; 2000 Morrell et al., = = Heckard, 1963 ; Heckard, 1963 = {72} {44} = Löve, 1986a ; 1986a Löve, =

= Windham and Yatskievych, 2003 ; 2003 Yatskievych, and Windham = = Kiehn et al., 2005 ; Kiehn 2005 et al., = = Bachmann and Price, 1977 ; 1977 Bachmann and Price, = = Bothmer et al., 1985 ; 1985 Bothmer et al., =

= Peterson, 1988 ; 1988 Peterson, = {63} {2} = Flory, 1937 ; 1937 Flory, = {52}

{110} {10} {81}

Benth. —

Martyn Plectritis Plectritis = Staudt, 1962 ; Staudt, 1962 = {33} Kunth

spp., the spp., = Dawe and Murray, 1981 ; 1981 and Murray, Dawe = (Fisch. & (Fisch. & Fisch. = Moore, 1981 ; 1981 Moore, = {100} (Gardner) Valeriana Valeriana {24} = Hardham, 1989 ; 1989 Hardham, = tridynamum

Valeriana Valeriana = Löve, 1985 ; 1985 Löve, = {71} spp. and spp. Loefl . ex L. var. . ex L. var. Loefl Plectritis congesta Plectritis = Cave and Constance, 1959 ; 1959 and Constance, Cave = Barrie {43} = Ward, 1983 ; congesta {62}

Valeriana = Keil et al., 1988 ; Keil 1988 et al., = = Salomon and Bothmer, 1998 ; 1998 Salomon and Bothmer, = {17} = Acosta et al., 2005 ; 2005 et al., Acosta = {109} Solanum Valeriana tafi ensis tafi Valeriana {51} Valeriana 2 SA AmericanCentral clade 2012 Bell et al., of Dunal] [ [ Borsini] naidae (Lindl.) DC. subsp. DC. subsp. (Lindl.) brachystemon [ Morey C.A.Mey.) brachystemon C.A.Mey.], (Lindl.) DC., (Lindl.) [ Gardner scandens candolleana C.A.Muell.] Torr. & A.Gray Torr. {90} Solanum houstonii Valeriana subincisa Valeriana Plectritis macrocera Plectritis {1} = Bothmer et al., 1980 ; 1980 Bothmer et al., = CLADE of ca. 18 NA + Valeriana urticifolia Valeriana CLADE of NA CLADE of + Plectritis + candolleana Valeriana {9} = Spellenberg, 1976 ; 1976 Spellenberg, = = Löve, 1982c ; 1982c Löve, = {99} = Peterson and Ortíz-Diaz, 1998 ; and Ortíz-Diaz, 1998 Peterson = {61} = Constance et al., 1976 ; 1976 et al., Constance = Sp (tS) Cl-Cl (tNS) (tNS) Cl-Sp Sp-Cl {80} (AAD) (AAD) (AAD) (AAD) Sp-Sp = Moore and Raven, 1970 ; and Raven, 1970 Moore = {23} = Guggisberg et al., 2009 ; 2009 et al., Guggisberg = = Walsh et al., 2015 ; 2015 et al., Walsh = = Ruas et al., 2001 ; 2001 Ruas et al., = {70} = Johnson et al., 2012 ; 2012 Johnson et al., = Tax./(Dist.) AAD taxon/Clade-NA C#-NA AAD taxon/Clade-SA C#-SA Dur.-Hab. dir. Disp. Ma Div. source Lit. Phyl./Tax. {42} {89} = Flores-Olvera and Mercado-Ruaro, 1997 ; 1997 and Mercado-Ruaro, Flores-Olvera = {108} = Cave and Constance, 1950 ; 1950 and Constance, Cave = {50} {32} = Soreng, 1991 ; 1991 Soreng, = = Löve, 1982b ; 1982b Löve, = Genus {16} Continued

{98} {60}

= Grau, 1988 ; 1988 Grau, = 1981c ; 1981c {41} = Ertter, 1980 ; 1980 Ertter, = = Bothmer and Subrahmanyam, 1988 ; 1988 Bothmer and Subrahmanyam, = {8} {31} Plectritis Valeriana = Wahlert et al., 2014 ; 2014 et al., Wahlert = = Ray and Chisaki, 1957 ; Ray and Chisaki, 1957 = = Peterson and Annable, 1991 ; 1991 and Annable, Peterson = = Molnar and Fedak, 1989 ; 1989 Molnar and Fedak, = = Löve, = = Chuang and Heckard, 1993 ; Chuang and Heckard, 1993 = Valerianaceae Valerianaceae GROUP / Family / GROUP / Family {88} Grau, Grau, 1983 ; {79} {69} 1976 ; {59} {22} {107} and Constance, 1947 ; 1947 and Constance, Johnson and Porter, 2017 ; 2017 Johnson and Porter, 1989 ; APPENDIX 3, 3, APPENDIX numbers: citations of chromosome Key literature to = Soltis et al., 1989 ; 1989 Soltis et al., =

NOVEMBER 2017 , VOLUME 104 • SIMPSON ET AL.—AMERICAN AMPHITROPICAL DISJUNCTS • 1649

(L.) Tax. = Tax. P.

continued Nutt., but not Vulpia myuros Vulpia Botrychium dusenii Festuca megalura Festuca Hack. is considered native to the Hack. to native is considered or closely either sister species, erent hirsuta L. sens. lat. likewise probably occurs as a native occurs as a native lat. likewise probably L. sens. = two diff = two Sp-Sp here. Taxa in square brackets [ ] in square = synonym(s). Taxa here. (Christ) Alston now considered native to SA ( Farrar and Farrar SA ( to native (Christ) now considered Alston , this issue) 2017 Stensvold, ( Jepson Flora Project, 2017 ; USDA-NCRS, 2017 ) and 2017 USDA-NCRS, ; 2017 Project, Jepson Flora ( , although no voucher 2016 Rebman et al., in Mexico ( ) 2016 Villaseñor, reported; by not listed Southern Cone region of SA ( Zuloaga et al., 2008 ) 2008 Zuloaga et al., of SA ( Southern region Cone native to USA ( Jepson Flora Project, 2017 ; USDA-NCRS, USDA-NCRS, ; 2017 Project, Jepson Flora USA ( to native ); 2016 Rebman et al., ) or Mexico ( 2017 pratensis SA, but the picture is confused by the cultivation in s. and common introduction of this important pasture at least the into introduced but considered grass”, ) 2008 Zuloaga et al., of SA ( Southern region Cone C.C.Gmel. var. var. C.C.Gmel. ) 2008 Zuloaga et al., ; 1994 Baden and Bothmer, ( Southern Cone region of SA ( Zuloaga et al., 2008 ) 2008 Zuloaga et al., of SA ( Southern region Cone by humans from South Africa to Chile, then to North then to South Africa Chile, to by humans from ) 2003 Vivrette, ; Bicknell 1998 and Mackey, America ( ) 2008 Zuloaga, et al., SA ( Project, Jepson Flora in Canada and USA (but naturalized 2017 ; USDA-NCRS, 2017 ) and Chile, according to Zuloaga et al., 2008 Zuloaga et al., to according and Chile, the Southern to as non-native ) but listed NCRS, 2017 ) 2008 Zuloaga et al., of SA ( region Cone , but only Raven (1963) by Listed in SA NA, but introduced to ; native Raven (1963) by Listed Listed by Raven (1963) . Native to SA ( Zuloaga et al., 2008 ), 2008 Zuloaga et al., SA ( to . Native Raven (1963) by Listed USDA- Canada and USA ( to . Native Raven (1963) by Listed

patagonicum Botrychium A.Gray var. var. A.Gray (L.) B. S. P.)] (L.) B. (Döll) A.Braun " pampeanum " , but reported in USA non-native Raven (1963) by Listed " , as Raven (1963) by Listed Christ [ L. var. L. var. virginiana

patagonicum matricariifolium subsp. W.D.J.Koch ex (Christ) R.T.Clausen] Haum.] H. jubatum Myosotis Botrychium ramosum [ [Soliva valdiviana Phil.] [

subsp.

Soliva Soliva (Kuntze) in both Northcs) occurring and South America (SA); America (NA) (L.) C.C.Gmel. (L.) C.C.Gmel. (Maxon & (Maxon (Juss.) Less.] (Mol.) N.E.Br. N.E.Br. (Mol.) " be introduced , but thought to Raven (1963) by Listed Vulpia myuros Vulpia Harv. & A.Gray & A.Gray Harv. " Argentina at least into ; introduced Raven (1963) by Listed (Kuntze) Parodi Parodi (Kuntze) Festuca megalura Festuca L. " L. [ Nutt. " ] (Sm.) Keck does not occur in , but apparently Raven (1963) by Listed Hack., L. s.s. L. s.s. " “The circumboreal 171) as , p. Raven (1963 by Listed Maxon & R.T.Clausen] Maxon Ruiz & Pav. [ Ruiz & Pav. Vulpia myuros Vulpia Nutt.; , Vahl. Vahl. " at least the into , but introduced Raven (1963) by Listed Vulpia myuros Vulpia hirsuta myuros myuros Botrychium matricariifolium Bromidium tandilense Bromidium R.T.Clausen) W.H.Wagner & Lellinger & Lellinger W.H.Wagner R.T.Clausen) [ hesperium Rúgolo] Nutt., [ var. var. var. f. daucifolia pterosperma Soliva Botrychium hesperium Agrostis tandilensis Agrostis Festuca myuros Festuca Poa glauca Poa Poa pratensis Poa Carpobrotus chilensis Carpobrotus Hordeum jubatum Hordeum Madia gracilis Malacothrix coulteri Malacothrix Soliva sessilis Soliva Myosotis verna = single species (conspecifi Sp Bipolar Sp-Sp? Temperate Temperate Sp Temperate Temperate Sp Bipolar Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Sp Bioregion Tax. Taxon-NA Taxon-SA Comments Genus

related, occurring in NA and SA. occurring related, List of vascular plants considered in some sources to have an American amphitropical disjunct (AAD) distribution, but rejected distribution, but rejected disjunct an American amphitropical (AAD) have to in some sources List of vascular plants considered taxonomic unit of comparison: unit of comparison: taxonomic

Botrychium Agrostis Festuca Carpobrotus Poa Hordeum Madia Malacothrix Myosotis Soliva Ophioglossaceae Ophioglossaceae Poaceae Poaceae Aizoaceae Aizoaceae Asteraceae Asteraceae Boraginaceae GROUP / Family/ GROUP / Family/ FERNS MONOCOTS MONOCOTS APPENDIX 4 4 APPENDIX

EUDICOTS EUDICOTS

1650 • AMERICAN JOURNAL OF BOTANY

). is . Native to SA to . Native Chenopodium littoreum Chenopodium carnosulum Chenopodium macrospermum Plantago truncata Plantago in Chile ( Wagner, 2005 ). Possibly of anthropochorus of anthropochorus ). Possibly 2005 Wagner, in Chile ( oras. http://www.efl ). See: 2007 Sánchez-Vilas, ( origin ora_id=1&taxon_id=220006496 orataxon.aspx?fl org/fl Project, 2017 ; USDA-NCRS, 2017 ); native to SA-CHL to ); native 2017 USDA-NCRS, ; 2017 Project, ) 2008 Zuloaga et al., ( ) 2008 Zuloaga et al., SA ( to ); not native 2017 2017 ); native to SA ( Zuloaga et al., 2008 ); another 2008 Zuloaga et al., SA ( to ); native 2017 Jepson variety in CHL ( SA-ARG, to introduced native ) 2017 Project, Flora The ). 2008 Zuloaga et al., SA ( to not native apparently but coastal southern California for species was cited ed as the native is now identifi and Benet-Pierce & M.G.Simpson ( Benet-Pierce ) Simpson, 2010 Not native to NA ( Rebman et al., 2016 ; Jepson Flora Jepson Flora ; 2016 Rebman et al., NA ( to Not native to native ); two subspp. 2017 USDA-NCRS, ; 2017 Project, ) 2008 Zuloaga et al., SA: ARG, ( CHL, PRY 2017 ). Introduced in ARG, BRA ( Zuloaga et al., 2008 ) 2008 Zuloaga et al., ). Introduced in ARG, BRA ( 2017 and to Baja California, Mexico ( Rebman et al., 2016 ), but 2016 Rebman et al., Mexico Baja California, ( and to ; 2016 Villaseñor, other parts to native of USA and Mexico ( Southern ). Introduced to Cone 2017 USDA-NRCS, ) 2008 Zuloaga et al., ( but non-native to SA ( Zuloaga et al., 2008 ) 2008 Zuloaga et al., SA ( to but non-native ( Zuloaga et al., 2008 ). Introduced in USA ( Jepson Flora Jepson Flora ). Introduced in USA ( 2008 Zuloaga et al., ( ) 2017 USDA-NRCS, ; 2017 Project, the Southern Cone region of SA ( Zuloaga et al., 2008 ) 2008 Zuloaga et al., of SA ( the Southern region Cone Introduced to California, USA ( Jepson Flora Project, 2017 ) 2017 Project, Jepson Flora USA ( California, Introduced to " " ), 2017 USDA-NRCS, NA ( to . Native Raven (1963) by Listed " USDA-NCRS, ; 2017 Project, Jepson Flora NA ( to Not native " as Raven (1963) by Listed " , as Raven (1963 by Cited Dougl. ex Hook. Dougl. var lachnocarpa] Gaura parvifl ora parvifl Gaura [

(L.) Chaz., (Scheele) var. Moq. Moq. " , but Raven (1963) by Cited Douglas Gaura mollis Gaura (Hook.f.) Eastw " Jepson Flora NA ( to . Not native Raven (1963) by Listed texana Spergula Spergula (Scheele) Lam. " Project, Jepson Flora NA ( to . Native Raven (1963) by Listed Cham. & Schltdl. Cham. & Schltdl. [ (L.) Ehrh. " occur to , but no longer considered Raven (1963) by Listed (Cambess.) W.L.Wagner & Willd. Willd. " in non-native , but now considered Raven (1963) by Listed L. " USDA-NCRS, ; 2017 Project, Jepson Flora NA ( to Native Weath.; (Kunze ex Walp.) Pilg.] Walp.) ex (Kunze Kunze ex Walp. Walp. ex Kunze Linaria canadensis Gaura parvifl ora parvifl Gaura platensis (Cambess.) Shinners] (Cambess.) Linaria canadensis fi rma fi Gaura parvifl ora parvifl Gaura Plantago truncata Plantago Chenopodium macrospermum James, nom. rej.] James, D.A.Sutton [ D.A.Sutton Fenzl var. var. Fenzl (L.) Dum.Cours. var. var. (L.) Dum.Cours. Pennell; platensis in part, misappl.] subsp. subsp. [ Hook.f.] S.Fuentes, Uotila & Borsh S.Fuentes, [ ex Lehm.; ex Lehm.; lachnocarpa Hoch [ Honckenya peploides Honckenya Paronychia franciscana Paronychia Silene antirrhina Nuttallanthus texanus Spergularia platensis Spergularia Plantago fi rma fi Plantago Chenopodium carnosulum Oxybasis macrosperma spathulata Euphorbia Lathyrus japonicus Oenothera curtifl ora curtifl Oenothera Bipolar Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Temperate Sp Temperate Sp Temperate Temperate Sp Bipolar Sp Temperate Temperate Sp Bioregion Tax. Taxon-NA Taxon-SA Comments

Continued Genus

Honckenya Honckenya Paronychia Paronychia Nuttallanthus Nuttallanthus Silene Spergularia Plantago Chenopodium Oxybasis Euphorbia Lathyrus Oenothera Caryophyllaceae Caryophyllaceae Plantaginaceae Plantaginaceae Chenopodiaceae Chenopodiaceae Fabaceae Fabaceae Onagraceae Onagraceae GROUP / Family/ GROUP / Family/

APPENDIX 4, 4, APPENDIX

Euphorbiaceae