Cr-Diopside (Clinopyroxene) As a Kimberlite Indicator Mineral for Diamond Exploration in Glaciated Terrains

Total Page:16

File Type:pdf, Size:1020Kb

Cr-Diopside (Clinopyroxene) As a Kimberlite Indicator Mineral for Diamond Exploration in Glaciated Terrains Cr-diopside (Clinopyroxene) as a Kimberlite Indicator Mineral for Diamond Exploration in Glaciated Terrains David Quirt 1 Quirt, D.H. (2004): Cr-diopside (clinopyroxene) as a kimberlite indicator mineral for diamond exploration in glaciated terrains; in Summary of Investigations 2004, Volume 2, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2004- 4.2, CD-ROM, Paper A-10, 14p. Abstract For diamond exploration in glaciated terrains, Kimberlite Indicator Minerals (KIMs) are those minerals, contained in glacial deposits, that are characteristic of kimberlite, the dominant host for diamonds. As KIMs are many times more numerous in the kimberlite host rock than are diamonds, they are an important pathfinder for kimberlites. Typical KIMs include garnet, pyroxene, Cr-spinel, Mg-ilmenite, and olivine. Interpretation of the chemistry of KIM grains, such as clinopyroxene, allows evaluation of the kimberlitic affinities of the grains and delineation of possible glacial dispersion trains suggestive of potentially diamondiferous kimberlite sources. Pyroxenes from both peridotitic and eclogitic mantle sources can be KIMs, with clinopyroxene (cpx) being a common groundmass mineral in kimberlite. There have been two historical interpretative problems, however, with the use of cpx as a KIM. Firstly, the colour criteria used in picking KIM cpx (e.g., Cr-diopside) appear to vary widely between individual microscopists; and secondly, problems can arise from the presence of non-kimberlitic (alkalic gabbro, basalt, komatiite, syenite, carbonatite, ultrapotassic volcanic) Cr-diopsides in the glacial deposit sampled. Given the wide range of cpx host environments, determination of suitable cpx compositions for use in KIM evaluation and pyroxene thermobarometry is important. The chemical data should be constrained to compositions similar to those determined for kimberlitic cpx and diamond inclusion (DI) cpx worldwide. Kimberlitic cpx from peridotitic sources are typically diopsidic or, to a lesser extent, calcic/non-ferrous augitic on a Wo-En-Fs diagram; as are many cpx grains of crustal origin, most eclogitic (low-Cr) DI cpx, and many ‘eclogitic’ non-DI cpx. Consequently, the data must be screened for peridotitic cpx, permitting evaluation of only those grains having the selected criteria: diopsidic to calcic/non-ferrous augitic compositions (27.5%<Wo<55% and En/(En+Fs)>0.5) and low-Na content (J<0.5). Screening for high-Na DI eclogitic cpx uses the same Wo-En-Fs criteria as for peridotitic cpx, plus the selected criteria: Cr content <0.5% Cr2O3 and J>0.5 (i.e., cation Na>0.25). Several large kimberlite/diamond indicator mineral data sets were examined for pyroxene chemical trends. The entries of Fe, Al, Na, Ca, and Cr into the cpx structure are strongly affected by the P-T-X conditions during mineral crystallization, so multidimensional diagrams of cpx atomic cation proportions are used to illustrate the chemical variation of mantle-derived kimberlite cpx relative to the more Fe-rich non-kimberlitic (crustal) grains typically present in glacial deposits. Antipathic Fe-Cr, Fe-Na, Al-Cr, and Al-Na data trends present in four-dimensional data plots can be used to discriminate between ‘deeper mantle-derived’ grains and ‘more crustal’ grains. These interpretive guides provide useful discriminations between kimberlitic and non-kimberlitic peridotitic cpx in a suite of cpx KIM chemical data from samples of glacial deposits. Keywords: Diamond, kimberlite, drift prospecting, heavy minerals, indicator minerals, mineral chemistry, clinopyroxene, cpx, ternary discriminant diagrams, KIM. 1. Introduction Nearly all diamond mines recover diamonds from an ultramafic volcanic rock called kimberlite, typically containing many fragments of mantle peridotite and eclogite. The diamonds, which are xenocrysts, crystallized in the upper mantle and were brought to the surface by very deep-seated volcanic eruptions that formed the kimberlites. The peridotitic rock fragments, or xenoliths, are dominantly composed of garnet, olivine, and ortho- and/or clinopyroxene; eclogitic xenoliths consist of orange (Fe, Ti, Mg, Ca) almandine garnet, green clinopyroxene, and hornblende. Over the past 15 years, kimberlite pipes have been discovered in the Precambrian Shield of west-central 1 Saskatchewan Research Council, 15 Innovation Boulevard, Saskatoon, SK S7N 2X8; E-mail: [email protected]. Saskatchewan Geological Survey 1 Summary of Investigations 2004, Volume 2 and northern Canada – thus northern Saskatchewan and Alberta, Quebec, Ontario, Nunavut, and the Northwest Territories (NWT) have become prime diamond exploration areas. In glaciated areas, exploration for diamond-bearing kimberlite is undertaken mainly by two methods: airborne geophysics and drift prospecting. Drift prospecting involves sampling glacial deposits to identify economically significant components and trace them up ice to their bedrock source (DiLabio and Coker, 1989). It is routinely used in the Precambrian Shield areas of Canada because the dominant surficial material is glacial till and many ore deposits have been found using this technique, including those containing diamonds, gold, copper, zinc, uranium, and rare earth elements. An important component of a drift prospecting survey is extraction and identification of indicator minerals. An indicator mineral is a mineral characteristic or representative of a given host rock or mineral deposit. Examples of indicator minerals used in mineral exploration (cf. Averill, 2001) in Saskatchewan include clay minerals (uranium), gold grains (gold), and heavy minerals (base metals, gold, kimberlite/diamond). The heavy mineral (HM) component of sediment consists of all clastic grains with specific gravities greater than about 2.9. Many indicator minerals are part of the HM fraction, and as such this fraction is examined to determine the distribution and dispersion of HMs related to various types of mineralization, such as gold, base metals (volcanogenic massive sulphides, skarn, and magmatic Ni-Cu), and diamond. Kimberlite Indicator Minerals (KIMs), sometimes called Diamond Indicator Minerals (DIMs), are important in diamond exploration as diamonds are present in only trace amounts in only some kimberlites. Kimberlites contain other minerals, however, that are both specifically characteristic of kimberlite and much more abundant than diamond. These KIMs, which include garnet, Mg-ilmenite, chromite, clinopyroxene (cpx) (Cr-diopside), and olivine (Figure 1), are used to identify the presence of kimberlite and are thus useful in diamond exploration and diamond potential evaluations. In glaciated terrain, kimberlite exposed at surface has commonly been eroded and indicator minerals released. In a KIM drift prospecting survey, the sample material commonly obtained for analysis is the lowermost, or basal, till unit overlying bedrock. If KIMs are found in this material, their bedrock source usually lies in the up-ice direction. This exploration method was the primary tool used in the discovery of the Lac de Gras (NWT) kimberlites which are currently being exploited by Canada’s two operating diamond mines, Ekati and Diavik. 2. Kimberlite Indicator Minerals Heavy minerals, including KIMs, are separated from bulk till samples in support of kimberlite drift prospecting programs. Typically 10 to 25 kg till samples are processed for heavy mineral separation, KIM identification and extraction (picking), and diamond extraction and description. The sample size is reduced through non-destructive disaggregation, washing, and screening to obtain the <2 mm size-fraction (-10 mesh), which is further reduced by use of a shaker table to produce a rough heavy mineral concentrate. The concentrate then undergoes a heavy media separation procedure during which the HMs, including the KIMs, pass through a dense media. This separation procedure uses heavy liquids (MI: methylene iodide; TBE: tetrabromoethane) to separate the higher-density minerals of interest. Alternatively, a Magstream separator can be used to eliminate the need for toxic/dangerous heavy liquids. The KIMs and/or KIM intergrowths are variably magnetic, so the sample is further concentrated through the use of magnetic separation to separate the paramagnetic fractions from the non-magnetic fraction. The final HM concentrates are sieved to produce four weighed size-fractions (<0.25 mm, 0.25 to 0.5 mm, 0.5 to 1 mm, and 1 to 2 mm) within each magnetic fraction obtained. KIMs are identified, hand-picked (extracted), and sorted from selected HM concentrate size-fractions using optical binocular microscopy by highly trained mineral sorters. Quality control procedures commonly include spiking of samples with marker grains and/or the re-examination of some samples, depending on the background mineralogy and difficulty. Figure 1 - Kimberlite Indicator Minerals. From top left- clockwise: picroilmenite (Mg-rich ilmenite); eclogitic Fe- Following grain picking, further analysis includes Mg-Ca almandine G3 garnets; peridotitic chrome pyrope spreadsheet counting statistics and/or mineral chemical G9/G10 garnets; chromites; chrome diopsides; Ti-Cr-Mg pyrope G1/G2 garnets; and olivines in the centre. analysis. Selected grains are prepared for electron Saskatchewan Geological Survey 2 Summary of Investigations 2004, Volume 2 microprobe major-element chemical analysis. Interpretation of the KIM grain mineral chemistry is completed to evaluate kimberlitic affinities and to document and describe possible dispersion trains suggestive
Recommended publications
  • Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region
    minerals Article Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region Jeffrey Chiarenzelli 1,*, Marian Lupulescu 2, George Robinson 1, David Bailey 3 and Jared Singer 4 1 Department of Geology, St. Lawrence University, Canton, NY 13617, USA 2 New York State Museum, Research and Collections, Albany, NY 12230, USA 3 Geosciences Department, Hamilton College, Clinton, NY 13323, USA 4 Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Rensselaer, NY 12180, USA * Correspondence: [email protected]; Tel.: +1-315-229-5202 Received: 24 July 2019; Accepted: 19 August 2019; Published: 23 August 2019 Abstract: Silicocarbonate pegmatites from the southern Grenville Province have provided exceptionally large crystal specimens for more than a century. Their mineral parageneses include euhedral calc–silicate minerals such as amphibole, clinopyroxene, and scapolite within a calcite matrix. Crystals can reach a meter or more in long dimension. Minor and locally abundant phases reflect local bedrock compositions and include albite, apatite, perthitic microcline, phlogopite, zircon, tourmaline, titanite, danburite, uraninite, sulfides, and many other minerals. Across the Adirondack Region, individual exposures are of limited aerial extent (<10,000 m2), crosscut metasedimentary rocks, especially calc–silicate gneisses and marbles, are undeformed and are spatially and temporally associated with granitic pegmatites. Zircon U–Pb results include both Shawinigan (circa 1165 Ma) and Ottawan (circa 1050 Ma) intrusion ages, separated by the Carthage-Colton shear zone. Those of Shawinigan age (Lowlands) correspond with the timing of voluminous A-type granitic magmatism, whereas Ottawan ages (Highlands) are temporally related to orogenic collapse, voluminous leucogranite and granitic pegmatite intrusion, iron and garnet ore development, and pervasive localized hydrothermal alteration.
    [Show full text]
  • The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
    THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668.
    [Show full text]
  • Geology and Mineral Deposits of Jumbo Basin Southeastern Alaska
    Geology and Mineral Deposits of Jumbo Basin Southeastern Alaska GEOLOGICAL SURVEY PROFESSIONAL PAPER 251 Geology and Mineral Deposits of Jumbo Basin Southeastern Alaska By GEORGE C. KENNEDY GEOLOGICAL SURVEY PROFESSIONAL PAPER 251 A discussion of the contact metamorphism, geomagnetic surveys, magnetite deposits, and iron ore reserves of part of Prince of Whales Island. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1953 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract. __________________________________________ 1 Contact metamorphism—Continued Introduction ______________________________________ 1 Metamorphism in the vicinity of the Magnetite Cliff Previous work. _ _ _______________________________ 1 bodies—Continued Present work- ________ 1 Metamorphism of the schists.________________ 20 Acknowledgments. ______________ _______________ 2 Metamorphism of the dike rocks._____________ 20 Geography__ _______________________________________ 2 Metamorphism in the vicinity of the upper magnetite Location and accessibility________________________ 2 bodies_ _______________________---_----_-_____ 21 Topography. ____________________________!______ 3 Exomorphism of the marble__________________ 21 Climate, water supply, and vegetation. ____________ 4 Endomorphism of the intrusive rocks__________ 22 History and production______________________________ 4 Metamorphism
    [Show full text]
  • Winter 1998 Gems & Gemology
    WINTER 1998 VOLUME 34 NO. 4 TABLE OF CONTENTS 243 LETTERS FEATURE ARTICLES 246 Characterizing Natural-Color Type IIb Blue Diamonds John M. King, Thomas M. Moses, James E. Shigley, Christopher M. Welbourn, Simon C. Lawson, and Martin Cooper pg. 247 270 Fingerprinting of Two Diamonds Cut from the Same Rough Ichiro Sunagawa, Toshikazu Yasuda, and Hideaki Fukushima NOTES AND NEW TECHNIQUES 281 Barite Inclusions in Fluorite John I. Koivula and Shane Elen pg. 271 REGULAR FEATURES 284 Gem Trade Lab Notes 290 Gem News 303 Book Reviews 306 Gemological Abstracts 314 1998 Index pg. 281 pg. 298 ABOUT THE COVER: Blue diamonds are among the rarest and most highly valued of gemstones. The lead article in this issue examines the history, sources, and gemological characteristics of these diamonds, as well as their distinctive color appearance. Rela- tionships between their color, clarity, and other properties were derived from hundreds of samples—including such famous blue diamonds as the Hope and the Blue Heart (or Unzue Blue)—that were studied at the GIA Gem Trade Laboratory over the past several years. The diamonds shown here range from 0.69 to 2.03 ct. Photo © Harold & Erica Van Pelt––Photographers, Los Angeles, California. Color separations for Gems & Gemology are by Pacific Color, Carlsbad, California. Printing is by Fry Communications, Inc., Mechanicsburg, Pennsylvania. © 1998 Gemological Institute of America All rights reserved. ISSN 0016-626X GIA “Cut” Report Flawed? The long-awaited GIA report on the ray-tracing analysis of round brilliant diamonds appeared in the Fall 1998 Gems & Gemology (“Modeling the Appearance of the Round Brilliant Cut Diamond: An Analysis of Brilliance,” by T.
    [Show full text]
  • The J Oumal Of
    The Joumal of Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gem-a.info President: Professor A.T. Collins Vice-Presidents: N. W. Deeks, A.E. Farn, R.A. Howie, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, K. Nassau Honorary Life Members: H. Bank, D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, R.R. Harding, I. Mercer, J. Monnickendam, M.J. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, S. Burgoyne, P. Dwyer-Hickey, S.A. Everitt, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.G. Read, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West - D. M. Brady, Scottish - B. Jackson, South East - C.H. Winter, South West - R.M. Slater Examiners: A.J. Allnutt, M.Sc, Ph.D., FGA, L. Bartlett, B.Sc, M.Phil., FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Green, FGA, DGA, G.M. Howe, FGA, DGA, S. Hue Williams MA, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, Li Li Ping, FGA, DGA, M.A. Medniuk, FGA, DGA, M. Newton, B.Sc, D.PWL, C.J.E. Oldershaw, B.Sc. (Hans), FGA, DGA, H.L. Plumb, B.Sc, FGA, DGA, R.D.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Diopside Camgsi2o6 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    Diopside CaMgSi2O6 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As prismatic crystals with nearly square cross sections, to 50 cm; granular, columnar, lamellar massive. Twinning: Simple or multiple twins on 100 or 010 , common. f g f g Physical Properties: Cleavage: Distinct on 110 , (110) (110) 87±; partings on 100 and probably 010 . Fracture: Uneven to conchofidal.g Tenaci^ty: Britt»le. Hardness = 5f.5{6.g5 D(meas.) = 3.f22{3g.38 D(calc.) = 3.278 Optical Properties: Transparent to opaque. Color: Colorless, white, yellow, pale to dark green, black; colorless in thin section. Streak: White, gray, gray-green. Luster: Vitreous or dull. Optical Class: Biaxial (+). Orientation: Y = b; Z c = 38± on (010); X a = 22±. ^ ¡ ^ ¡ Dispersion: r > v; weak to moderate. ® = 1.664 ¯ = 1.672 ° = 1.694 2V(meas.) = 59± Cell Data: Space Group: C2=c: a = 9.746 b = 8.899 c = 5.251 ¯ = 105:63± Z = 4 X-ray Powder Pattern: Schwartzenstein, Austria. (ICDD 11-654). 2.991 (100), 2.528 (40), 2.893 (30), 2.518 (30), 3.23 (25), 2.952 (25), 1.625 (25) Chemistry: (1) (2) (1) (2) (1) (2) SiO2 54.66 54.09 FeO 0.07 1.47 K2O 0.15 + TiO2 0.28 MnO 0.02 0.09 H2O 0.22 0.22 Al2O3 0.07 1.57 MgO 18.78 16.96 H2O¡ 0.08 Fe2O3 0.68 0.74 CaO 25.85 21.10 rem: 0.49 Cr2O3 2.03 Na2O 1.37 Total 100.35 100.64 3+ (1) Juva, Finland; corresponds to Ca1:00(Mg1:01Fe0:02)§=1:03Si1:98O6: (2) Dutoitspan mine, 2+ Kimberley, Cape Province, South Africa; corresponds to (Ca0:82Na0:05Fe0:04Mg0:04K0:01)§=0:96 3+ (Mg0:88Cr0:06Al0:03Fe0:02Ti0:01)§=1:00(Si1:96Al0:04)§=2:00O6: Polymorphism & Series: Forms two series, with hedenbergite, and with johannsenite.
    [Show full text]
  • DIAMONDS and MANTLE SOURCE ROCKS in the WYOMING CRATON with a DISCUSSION of OTHER U.S. OCCURRENCES by W
    WYOMING STATE GEOLOGICAL SURVEY Gary B. Glass, State Geologist DIAMONDS AND MANTLE SOURCE ROCKS IN THE WYOMING CRATON WITH A DISCUSSION OF OTHER U.S. OCCURRENCES by W. Dan Hause} Report of Investigations No. 53 1998 Laramie, Wyoming WYOMING STATE GEOLOGICAL SURVEY Lance Cook, State Geologist GEOLOGICAL SURVEY BOARD Ex Officio Jim Geringer, Governor Randi S. Martinsen, University of Wyoming Don J. Likwartz, Oil and Gas Supervisor Lance Cook, State Geologist Appointed Nancy M. Doelger, Casper Charles M. Love, Rock Springs Ronald A. Baugh, Casper Stephen L. Payne, Casper John E. Trummel, Gillette Computer Services Unit Publications Section Susan McClendon - Manager Richard W. Jones - Editor Jaime R. Bogaard - Editorial Assistant Geologic Sections Lisa J. Alexander - Sales Manager James c. Case, Staff Geologist - Geologic Hazards Fred H . Porter, III - Cartographer Rodney H . De Bruin, Staff Geologist - Oil and Gas Phyllis A. Ranz - Cartographer Ray E. Harris, Staff Geologist - Industrial Minerals Joseph M. Huss - GIS Specialist and Uranium W. Dan Hausel, Senior Economic Geologist - Metals and Precious Stones Supportive Services Unit Robert M. Lyman, Staff Geologist - Coal Susanne G. Bruhnke - Office Manager Alan J. Ver Ploeg, Senior Staff Geologist - Geologic Joan E. Binder - Administrative Assistant Mapping This and other publications available from: Wyoming State Geological Survey P.O. Box 3008 Laramie, WY 82071-3008 Phone: (307) 766-2286 Fax: (307) 766-2605 Email: [email protected] Web Page: http://wsgsweb.uwyo.edu People with disabilities who require an alternative form of communication in order to use this publication should contact the Editor, Wyoming State Geological Survey at (307) 766-2286. TTY Relay operator 1(800) 877-9975.
    [Show full text]
  • Diopside, Enstatite and Forsterite Solubilities in H2O and H2O-Nacl Solutions at Lower Crustal and Upper Mantle Conditions
    Journal Pre-proofs Diopside, enstatite and forsterite solubilities in H2O and H2O-NaCl solutions at lower crustal and upper mantle conditions Catherine A. Macris, Robert C. Newton, Jeremy Wykes, Ruiguang Pan, Craig E. Manning PII: S0016-7037(20)30206-4 DOI: https://doi.org/10.1016/j.gca.2020.03.035 Reference: GCA 11712 To appear in: Geochimica et Cosmochimica Acta Received Date: 16 December 2019 Revised Date: 17 March 2020 Accepted Date: 24 March 2020 Please cite this article as: Macris, C.A., Newton, R.C., Wykes, J., Pan, R., Manning, C.E., Diopside, enstatite and forsterite solubilities in H2O and H2O-NaCl solutions at lower crustal and upper mantle conditions, Geochimica et Cosmochimica Acta (2020), doi: https://doi.org/10.1016/j.gca.2020.03.035 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Elsevier Ltd. All rights reserved. Diopside, enstatite and forsterite solubilities in H2O and H2O-NaCl solutions at lower crustal and upper mantle conditions Catherine A. Macris1,2, Robert C. Newton1, Jeremy Wykes3, Ruiguang Pan2 and Craig E.
    [Show full text]
  • Updated 2012
    American Federation of Mineralogical Societies AFMS Approved Reference List of Lapidary Material Names “Gem List” August 1996 Updated January 2003 AFMS Pubications Committee B. Jay Bowman, Chair Internet version of Approved Lapidary Material Names. This document can only be downloaded at http://www.amfed.org/rules APPROVED NAMES FOR LAPIDARY LABELS Prepared by the American Federation Nomenclature Committee and approved by the American Federa- tion Uniform Rules Committee, this list is the authorized guide and authority for Lapidary Label Names for exhibitors and judges in all competition under AFMS Uniform Rules. All materials are listed alpha- betically with two columns on a page. The following criteria are to assist in the selection and judging of material names on exhibit labels. 1. The name of any listed material (except tigereye), which has been cut to show a single chatoyant ray, may be preceded by “CAT’S-EYE”; the name of any material which has been cut to show asterism (two or more crossed rays) may be preceded by “STAR”, i.e.: CATS-EYE DIOPSIDE, CAT’S-EYE QUARTZ, STAR BERYL, STAR GARNET, etc. 2. This list is not all-inclusive as to the names of Lapidary materials which may at some time be exhibited. If a mineral or rock not included in this list is exhibited, the recognized mineralogical or petrological name must be used. The names of valid minerals and valid mineral varieties listed in the latest edition of the Glossary of Mineral Species by Michael Fleisher, or any other authorized reference, will be acceptable as Lapidary names. Varieties need only have variety name listed and not the root species.
    [Show full text]
  • Industrial Minerals Industrial Minerals
    37th FORUM on the GEOLOGY of INDUSTRIAL MINERALS MAY 23-25, 2001 VICTORIA, BC, CANADA Industrial Minerals with emphasis on Western North America Editors: George J. Simandl, William J. McMillan and Nicole D. Robinson Ministry of Energy and Mines Geological Survey Branch Paper 2004-2 Recommended reference style for individual papers: Nelson, J. (2004): The Geology of Western North America (Abridged Version);in G.J. Simandl, W.J. McMillan and N.D. Robinson, Editors, 37th Annual Forum on Industrial Minerals Proceedings, Industrial Minerals with emphasis on Western North America, British Columbia Ministry of Energy and Mines, Geological Survey Branch, Paper 2004-2, pages 1-2. Cover photo: Curved, grey magnesite crystals in a black dolomite matrix. Mount Brussilof magnesite mine, British Columbia, Canada Library and Archives Canada Cataloguing in Publication Data Forum on the Geology of Industrial Minerals (37th : 2001 : Victoria, B.C.) Industrial mineral with emphasis on western North America (Paper / Geological Survey Branch) ; 2004-2) "37th Forum on the Geology of Industrial Minerals, May 23-25, 2001, Victoria, B.C. Canada." Includes bibliographical references: p. ISBN 0-7726-5270-8 1. Industrial minerals - Geology - North America - Congresses. 2. Ore deposits - North America - Congresses. 3. Geology, Economic - North America - Congresses. I. Simandl, George J. (George Jiri), 1953- . II. McMillan, W. J. (William John). III. Robinson, Nicole D. IV. British Columbia. Ministry of Energy and Mines. V. British Columbia. Geological Survey Branch. VI. Title. VII. Series: Paper (British Columbia. Geological Survey Branch) ; 2004-2. TN22.F67 2005 553.6'097 C2005-960004-7 Recommended reference style for individual papers: Nelson, J.
    [Show full text]
  • Gemstone Deposits of the Four Corners Region, USA Robert W
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/61 Gemstone deposits of the Four Corners region, USA Robert W. Eveleth and Virgil W. Lueth, 2010, pp. 221-229 in: Geology of the Four Corners Country, Fassett, James E.; Zeigler, Kate E.; Lueth, Virgil W., [eds.], New Mexico Geological Society 61st Annual Fall Field Conference Guidebook, 246 p. This is one of many related papers that were included in the 2010 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]