Crayfish News Volume 38 Issue 4: Page 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DNA-Based Methods for Freshwater Biodiversity Conservation
DNA-based methods for freshwater biodiversity conservation - Phylogeographic analysis of noble crayfish (Astacus astacus) and new insights into the distribution of crayfish plague DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften Fachbereich 7: Natur- und Umweltwissenschaften der Universität Koblenz-Landau Campus Landau vorgelegt am 16. Januar 2013 von Anne Schrimpf geboren am 21. September 1984 in Frankfurt am Main Referent: Prof. Dr. Ralf Schulz Koreferent: Prof. Dr. Klaus Schwenk - This thesis is dedicated to my grandparents - Content CONTENT CONTENT ............................................................................................................... 5 ABSTRACT ............................................................................................................ 8 ZUSAMMENFASSUNG ........................................................................................ 10 ABBEREVIATIONS .............................................................................................. 13 GENERAL INTRODUCTION ................................................................................ 15 Conservation of biological diversity ........................................................................ 15 The freshwater crayfish ............................................................................................ 17 General ............................................................................................................... 17 The noble crayfish (Astacus astacus) ................................................................ -
Dunsborough Burrowing Crayfish (Engaewa Reducta), Margaret River
Dunsborough Burrowing Crayfish (Engaewa reducta), Margaret River Burrowing Crayfish (Engaewa pseudoreducta) and Walpole Burrowing Crayfish (Engaewa walpolea) Recovery Plan 2007 –2016 Wildlife Management Program No. 41 WESTERN AUSTRALIAN WILDLIFE MANAGEMENT PROGRAM NO. 41 Dunsborough Burrowing Crayfish (Engaewa reducta), Margaret River Burrowing Crayfish (Engaewa pseudoreducta) and Walpole Burrowing Crayfish (Engaewa walpolea) Recovery Plan 2007-2016 23 January 2008 Species and Communities Branch Department of Conservation and Land Management Locked Bag 104, Bentley Delivery Centre WA 6983 Above: Dunsborough Burrowing Crayfish (Engaewa reducta) Photo:Kelly Rogerson Cover: Walpole Burrowing Crayfish (Engaewa walpolea) Photo:Kelly Rogerson i. FOREWORD Recovery Plans are developed within the framework laid down in Department of Conservation and Land Management (CALM) Policy Statements No 44 and 50. Recovery Plans outline the recovery actions that are required to address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. Recovery Plans delineate, justify and schedule management actions necessary to support the recovery of threatened species and ecological communities. The attainment of objectives and the provision of funds necessary to implement actions are subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery Plans do not necessarily represent the views or the official position of individuals or organisations represented on the Recovery Team. This Recovery Plan was approved by the Department of Environment and Conservation, Western Australia. Approved Recovery Plans are subject to modification as dictated by new findings, changes in status of the taxon or ecological community and the completion of recovery actions. -
A Toolkit for Developing a Catchment-Scale Conservation
A toolkit for developing catchment-scale conservation strategy for White-clawed crayfish A toolkit for developing catchment-scale conservation strategy for White- clawed crayfish Version 2 October 2011 Reference this document as: Peay S., Kindemba V., Attwood F. and Christmas M. (2011). A toolkit for developing catchment-scale conservation strategy for White-clawed crayfish. Version 1 October 2011 Buglife – The Invertebrate Conservation Trust, Peterborough. ISBN 978-1-908657-00-8 Available to download from the crayfish website www.crayfish.org.uk Document history Consultation draft issued January 2011 Final Version 1 issued October 2011 White-clawed crayfish Signal crayfish Acknowledgements: This guidance has been produced with funding from the Environment Agency. The project has been developed following a crayfish conservation workshop held by the Environment Agency in July 2009 at Malham Tarn Field Centre, North Yorkshire. Assistance with graphics in the guidance was provided by Paul Bryden. Photographs are by Stephanie Peay. Thanks go to all those who have kindly provided comments on earlier drafts, including Margaret Palmer and Suzannah Dangerfield, Buglife; Pete Sibley, Environment Agency; Julia Stansfield, Environment Agency; Mike Howe, Countryside Council for Wales, David Heaver, Natural England, Joanne Backshall, Eden Rivers Trust; Abigail Stancliffe-Vaughn, University of East Anglia, Paul Bradley, PBA Applied Ecology. Contents 1. Introduction 1 1.1 How to use this guidance on conservation strategy for White-clawed crayfish ......................... 1 2. Considerations before starting a catchment strategy 3 2.1 Policy and regulations in the countries of the UK ...................................................................... 3 2.2 Status of crayfish in the River Basin Districts ............................................................................. 4 2.3 Policy and planning at country to catchment scale ................................................................... -
Differentiation and Pathogenicity Within the Saprolegniaceae
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 680 _____________________________ _____________________________ Differentiation and Pathogenicity within the Saprolegniaceae Studies on Physiology and Gene Expression Patterns in Saprolegnia parasitica and Aphanomyces astaci BY GUNNAR ANDERSSON ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy in Physiological Mycology presented at Uppsala University in 2002 Abstract Andersson, M. G. 2001. Differentiation and Pathogenicity within the Saprolegniaceae. Studies on Physiology and Gene Expression Patterns in Saprolegnia parasitica and Aphanomyces astaci. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 680, 41 pp. Uppsala. ISBN 91-554-5203-5. Saprolegnia parasitica and Aphanomyces astaci are parasitic water moulds belonging to the Oomycetes. Despite their importance as parasites they are very little studied at the molecular level and the work described in this thesis was aimed at increasing the molecular knowledge of these organisms by cloning and characterising genes of potential importance for reproduction and pathogenicity. Stage-specific transcripts from Saprolegnia parasitica were isolated by differential display RT-PCR. One of the markers, puf1 encodes a putative mRNA binding protein which may be involved in post-transcriptional regulation of gene expression. S. parasitica puf1 is expressed exclusively in spore cysts that have not been determined for germination or repeated zoospore emergence indicating that the cyst stage has two phases, of about equal duration, which are physiologically and transcriptionally distinct. A similar expression pattern is observed in Aphanomyces spp. with different regulation of spore development and in the transcript is detected in both primary and secondary cysts. -
Crayfish in Crisis
Crayfish in Crisis The rate of loss of White-clawed crayfish in England and Wales is rapid and shows no sign of slowing as Signal crayfish and other introduced crayfish invade more rivers. If this pattern continues, there is a high risk that White-clawed crayfish will become extinct in most of their current range in England and Wales over the next 20 years. Crayfish plague One of the major reasons for the decline in White-clawed crayfish is the spread of ‘Crayfish Plague’. The cause of this disease is a water mould called Aphanomyces astaci, which attacks the soft tissue of crayfish. It is carried and spread mostly by Signal crayfish (Pacifasticus leniusculus), which are unaffected by it. However other introduced crayfish species do carry plague, including the Red swamp (Procambarus clarkii) and the Spiny-cheeked (Orconectes limosus). Our White-clawed crayfish are not immune to plague and once introduced it rapidly kills off all that are present in an area in just a few weeks. Crayfish plague is easily moved between sites as it can be transported on wet angling equipment and wet clothes. The spores of crayfish plague can even remain active on damp gear for as long as 22 days. For more information about Non-native crayfish and disease, click here. Stopping the spread of crayfish plague All waterway users need to be aware about good practice to help prevent the spread of invasive crayfish species and diseases. Crayfish plague can be easily spread between sites on wet angling kit or water sports equipment. If you use rivers and lakes either as a walker, angler or for other activities (canoeists, divers, gorge walkers etc.), there are some simple things that you can do to help to prevent the spread of plague such as following the Check, Clean, Dry code in order to Stop the Spread of Crayfish Plague. -
Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2. -
Assessment of the Risk to Norwegian Biodiversity from Import and Keeping of Crustaceans in Freshwater Aquaria
VKM Report 2021: 02 Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria Scientific Opinion of the Panel on Alien Organisms and Trade in Endangered Species of the Norwegian Scientific Committee for Food and Environment VKM Report 2021: 02 Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria. Scientific Opinion of the Panel on Alien Organisms and trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food and Environment 15.02.2021 ISBN: 978-82-8259-356-4 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Postboks 222 Skøyen 0213 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Mohammed Anwarul Kabir Choudhury/Mostphotos.com Suggested citation: VKM, Gaute Velle, Lennart Edsman, Charlotte Evangelista, Stein Ivar Johnsen, Martin Malmstrøm, Trude Vrålstad, Hugo de Boer, Katrine Eldegard, Kjetil Hindar, Lars Robert Hole, Johanna Järnegren, Kyrre Kausrud, Inger Måren, Erlend B. Nilsen, Eli Rueness, Eva B. Thorstad and Anders Nielsen (2021). Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria. Scientific Opinion of the Panel on Alien Organisms and trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food and Environment. VKM report 2021:02, ISBN: 978-82-8259- 356-4, ISSN: 2535-4019. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. 2 Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to draft the opinion. -
Crayfish Plague Epizootics in Germany-Classification of Two
DISEASES OF AQUATIC ORGANISMS Vol. 35: 235-238,1999 Published February 26 Dis Aquat Org NOTE Crayfish plague epizootics in Germany-classification of two German isolates of the crayfish plague fungus Aphanomyces astaci by random amplification of polymorphic DNA Birgit Oidtmann1,*,Lage Cerenius2,Ines Schmidl, Rudolf ~offmann',Kenneth soderhal12 '~nstituteof Zoology, Fish Biology and Fish Diseases. University of Munich, Kaulbachstr. 37, D-80539 Munich, Germany '~ivisionof Physiological Mycology, University of Uppsala, Villavigen 6. S-752 36 Uppsala, Sweden ABSTRACT: Following 2 outbreaks of crayfish plague m cumb to infection. During the past century, the distrib- southern Germany, the causative agent, the oomycete fungus ution of non-native crayfish species has dramatically Aphanomyces astaci, was isolated from the diseased Astacus increased due to stocking activities, the natural spread astacus. The identity of the 2 strains was confirmed using established techniques, such as physiology, spore production of stocked populations, and the release of exotic and the fact that the isolated strains were hlghly virulent for crayfish by private aquarist or pond owners. In areas, A. astacus in infection experiments. The relationship between where American species have been introduced, mass these German strains and other A astaci strains was In- mortalities of European crayfish have frequently been vestigated using randomly amplified polymorphic DNA-poly- merase chain reaction (RAPD-PCR).The German strains were documented (Alderman 1996). found to be closely related to a strain that had been isolated Mass mortalities of Astacus astacus were observed in from PacLfastacus len~usculusfrom Lake Tahoe, USA. 1996 in 3 independent sites in southern Germany sep- arated by at least 80 km. -
Advice to the Minister for the Environment and Heritage from the Threatened Species Scientific Committee
Advice to the Minister for the Environment, Heritage and the Arts from the Threatened Species Scientific Committee (the Committee) on Amendment to the list of Threatened Species under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Scientific name (common name) Engaewa pseudoreducta (Margaret River Burrowing Crayfish) 2. Reason for Conservation Assessment by the Committee This advice follows assessment of information provided by a public nomination to list the Margaret River Burrowing Crayfish. The nominator suggested listing the species in the critically endangered category. The Committee provides the following assessment of the species’ eligibility for inclusion in the EPBC Act list of threatened species. This is the Committee’s first consideration of the species under the EPBC Act. 3. Summary of Conclusion The Committee judges that the species has been demonstrated to have met sufficient elements of Criterion 2 to make it eligible for listing as critically endangered. The highest category for which the species is eligible to be listed is critically endangered. 4. Taxonomy The species is conventionally accepted as Engaewa pseudoreducta (Margaret River Burrowing Crayfish) (Horwitz and Adams, 2000). 5. Description The Margaret River Burrowing Crayfish is a small burrowing crayfish up to 50 mm in length. It is generally a pale to mid-brown colour with purplish-blue claws. Distinctive characteristics of burrowing crayfish include a narrow abdomen which may be shorter than the head and thorax, reduced eye size and large claws adapted to digging, with the fingers of the claws moving in a vertical plane. The Margaret River Burrowing Crayfish is almost identical in appearance to closely related species such as E. -
For the Tasmanian White Gum (Eucalyptus Viminalis) Wet Forest
Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) (s266B) DRAFT Conservation Advice (incorporating listing advice) for the Tasmanian white gum (Eucalyptus viminalis) wet forest The Threatened Species Scientific Committee (the Committee) was established under the EPBC Act and has obligations to present advice to the Minister for the Environment in relation to the listing and conservation of threatened ecological communities, including under sections 189, 194N and 266B of the EPBC Act. The Committee will provide its advice on the Tasmanian white gum (Eucalyptus viminalis) wet forest to the Minister as a draft conservation advice in 2020. The Minister will decide whether to amend the list of threatened ecological communities under Section 184 of the EPBC Act to include the Tasmanian white gum (Eucalyptus viminalis) wet forest. This draft conservation advice will be made available for expert and public comment for a minimum of 30 business days. The Committee and Minister will have regard to all public and expert comment relevant to the consideration of the ecological community for listing. CONTENTS 1 Conservation objective ................................................................................................................... 3 2 Description ...................................................................................................................................... 3 2.1 Name ...................................................................................................................................... -
Yabby (Cherax Destructor) Ecological Risk Screening Summary
Yabby (Cherax destructor) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, September 2012 Revised, September 2014, February 2019 Web Version, 7/12/2019 Photo: Daiju Azuma. Licensed under Creative Commons Attribution-Share Alike 2.5 Generic. Available: https://commons.wikimedia.org/wiki/File:Cherax_destructor_by_OpenCage.jpg. (February 2019). 1 Native Range and Status in the United States Native Range From CABI (2019): “C. destructor ranges over 2 million km2 in its native range from South Australia and the southern parts of the Northern Territory in the west, to the Great Dividing Range in the east (Riek, 1967; Sokol, 1988).” 1 “It appears that yabbies were largely restricted to lower altitude habitats in inland areas of southeastern Australia including the Murray-Darling Basin before European settlement, with the Euastacus spp. found in higher altitude habitats and the coastal river systems.” Status in the United States No records of Cherax destructor in the wild in the United States were found. From CABI (2019): “[…] the specimens [Cherax destructor] came from a crayfish farm in California (USA) […]” From USFWS (2016a): “The yabby was officially listed as an injurious wildlife species by the U.S. Fish and Wildlife Service in 2016 under the Lacey Act (18.U.S.C.42). Importation and shipping between the continental United States and the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States is prohibited.” From USFWS (2016b): “Of the 11 species, four species (crucian carp, Nile perch, wels catfish, and yabby) have been imported in only small numbers since 2011 […]” The Florida Fish and Wildlife Conservation Commission has listed the crayfish, Cherax destructor as a prohibited species. -
Burrowing Crayfish Group Recovery Plan 2001-2005
Burrowing Crayfish Group Burrowing Recovery Crayfish Plan Group Recovery Prepared by Niall Doran Nature Conservation Branch Resource Management and Conservation Division Department of Primary Industries, Water and Environment Plan GPO Box 44A, Hobart, Tasmania 7001 January 2000 ISBN: 0 7246 6248 0 DEPARTMENT of DEPARTMENT of PRIMARY INDUSTRIES, PRIMARYand INDUSTRIES WATERDEPARTMENT and ENVIRONMETENVIRONMENT of PRIMARY INDUSTRIES, WATER and ENVIRONMENT 2 Burrowing Crayfish Group Recovery Plan 2001-2005 Acknowledgments Thanks are due to Dr Pierre Horwitz and Associate Professor Alastair Richardson for their input and comments on this plan, as well as the continued interest of field naturalist groups (particularly Jim Nelson and the Central North Field Naturalists), the Launceston Environment Centre, volunteers and the Forest Practices Board in collecting data and information on these species. Thanks are also due to Dr Sally Bryant, Peter Brown and the staff of the Threatened Species Unit for their support and advice. Mark Wapstra, Helen Glassick, Rob King, Serena King and Parks and Wildlife field staff (particularly on Flinders Island) provided valuable assistance in the field. This recovery plan was prepared by Dr Niall Doran and was produced with support from the Natural Heritage Trust. The Commonwealth formally adopted the plan in 2001. Citation: Doran, N.E. (2000). Burrowing Crayfish Group Recovery Plan 2001-2005. Department of Primary Industries, Water and Environment, Hobart. Copyright © State of Tasmania This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgment of the sources and no commercial usage or sale. Requests and enquires concerning reproduction and rights should be addressed to the Manager, Threatened Species Unit.