1 Theoretical Studies of Reactive Intermediates in Complex Reaction Mechanisms Dissertation Presented in Partial Fulfillment Of

Total Page:16

File Type:pdf, Size:1020Kb

1 Theoretical Studies of Reactive Intermediates in Complex Reaction Mechanisms Dissertation Presented in Partial Fulfillment Of Theoretical Studies of Reactive Intermediates in Complex Reaction Mechanisms Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By William H. Coldren Graduate Program in Chemistry The Ohio State University 2018 Dissertation Committee Professor Christopher M. Hadad, Advisor Professor Jon R. Parquette Professor David A. Nagib Professor Karl A. Werbovetz 1 Copyrighted by William H. Coldren 2018 2 Abstract The mechanistic transformations of three fundamental classes of reactive intermediates are explored: singlet and triplet carbenes, carbene radical cations, and carbon-centered radicals. Through a marriage of theory and ultrafast spectroscopy, the identities of unique carbene species and photochemical transformations were characterized from nitrogenous (diazo and diazirine) precursors. The photochemistry of a novel trifluoro-diazo, carbenic precursor (ethyl 2-diazo-3,3,3-trifluoropropanoate) is explored by ultrafast time-resolved infrared spectroscopy in multiple solvents and the results do not reveal a prototypical 1,2-migration product via rearrangement in the excited state or through a carbene intermediate. The primary photochemical process is the interconversion of a diazo functional group to the corresponding diazirine. A completely new mechanistic pathway is detailed for the conversion of diazo and diazirine containing nitrogenous precursors to their corresponding products. This theoretical report accounts for the partially unexplained and curious bifurcation in photochemical vs thermal decomposition of nitrogenous precursors. Using a phenanthrene precursor, the first ultrafast time-resolved spectroscopic observation of a vinyl carbene (singlet a-methylbenzylidenecarbene) is reported and the results are supported and rationalized by computational data. ii Electronic factors affecting the regioselectivity of aryl radical hydrogen-atom abstraction reactions in benzyl-alkyl tethered species is explored in order to guide efforts of selective remote C–H functionalizations. The system can be biased towards or away from the standard abstraction pathway by the use of electron-donating and electron- withdrawing groups strategically placed on the benzene ring. The mechanistic aspects of the oxidative transformation of C2 symmetric o- aminophenol species and C3 symmetric formyl fragments to form benzobisxazole based covalent organic frameworks (COFs). Computational data strongly suggest that such reactions occur via a putative radical species that is stabilized by an active captodative effect. The nature of the catalysts used affects the efficiency of this reaction and the overall crystallinity and porosity of desired COFs. Preliminary investigations into the difficulty of resurrecting aged huAChE based on the nature of organophosphorus chemical nerve agents are presented. The active site is severely contracted for a methyl phosphonate aged enzyme compared to an alkyl phosphate aged enzyme. In silico prediction of factors influencing the binding and activity of novel quinone methide precursors as potential therapeutics is investigated with biophysical molecular dynamics simulations and in the case of one substrate, the efficacious enantiomer was predicted a priori to experimental in vitro screening. iii Dedication To my parents, John and Karen Coldren, and all of my family and friends, without whom none of my success would be possible. “He who has a why to live can bear almost any how.” – Friedrich Nietzsche “The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved.” – Paul Dirac iv Acknowledgments As I’ve finally reached this moment in time where my graduate career is almost at a close, I am reminded, humbled, and blessed by the many outstanding people who have made my accomplishments possible. This acknowledgment section could take up an entire chapter’s worth of space and still not adequately cover the extent of my gratitude towards all those mentioned. Brevity was never my thing as anyone who knows me could surely tell you (I think the tremendous amount of epic fantasy literature I have read has contributed to this shortcoming), but I will endeavor to do my best. Buckle up… I would like to thank my mother and father for their constant love, encouragement, patience, and support throughout my life. Their support has allowed me to defeat every obstacle, no matter the size, that has obstructed my path. To the D’Elias, Mr. and Mrs. D’Elia, Patrick and Becky, Scott and Catherine whom I consider to be as close as family; my gratitude for your selflessness, love, kindness, prayers, and support I cannot sufficiently put into words. To Dr. Francis Marchlinski, Dr. Anjali Tiku Owens, Monica Pammer, Erica Zado, Amy Beatty Marzolf, Dr. Stephanie Clouse, and Dr. Heidi Johnson as well as many other talented and compassionate electrophysiologists, nurses, especially my good friend Rachel Zekany, and the many other healthcare professionals at the University of Pennsylvania. You helped me through some of the most challenging periods of my life v and enabled me to live and accomplish my goals and live out my passion. You've instilled in me a desire to do everything that is within my power to help others. To Mr. Spahr, my first chemistry instructor and one of the most influential instructors I have ever met. I was hooked on the subject from the first day of class. I decided my sophomore year of high school that I was going to study chemistry, and it would be my passion for life. The critical thinking skills you instilled in me, and the sheer amount of talent and excitement you brought to the classroom is something I will take with me wherever I go. I'd like to thank my undergraduate research advisor Dr. Daniel Falvey and my graduate mentor Dr. Raffaele Perrotta who introduced me to the world of reactive intermediates and computational chemistry and guided me on my way to my graduate studies. To Dr. Christopher Hadad whose unending patience, unparalleled expertise, guidance, and willingness to help and mentor me throughout my graduate career has entirely enabled the successful completion of my Ph.D. The lessons I have learned I will keep for a lifetime. You have been an absolutely outstanding advisor. I owe you a debt that I can never possibly repay. Thank you, you are an inspiration of excellence. To Dr. Matthew Platz, my only regret is that our time at OSU didn’t overlap for longer. You are monumental in the field of reactive intermediate chemistry. It has been an absolute pleasure speaking and collaborating with you. To my graduate teaching mentors, Dr. Christopher Callam and Dr. Noel Paul, your commitment to excellence is an inspiration. You have a fantastic ability to draw out vi the best in the people around you. Dr. Callam, your love of everything chemistry and tremendous knowledge along with the willingness to discuss life and science has been a blessing. To the Hadad Group, especially Dr. Hoi Ling (Calvin) Luk, Dr. Shubham Vyas, and Dr. Shameema Oottikkal who spent the time to answer my questions and guided me at the beginning and throughout my graduate career. I’d also like to thank my classmates and colleagues: Dr. Ryan McKenney, Dr. Thomas Corrigan, Dr. Qinggeng Zhuang, Andrew Franjesivic, Ola Nosseir, Dr. Jojo Joseph, Sarah Border, Dr. Amneh Young, Dr. Ben Garrett, and Dr. Shane Polen. Also, to the new class of graduate students, especially Remy Lalisse and Joe Fernandez, may your careers and computational endeavors be fruitful. The thoughtful scientific discussion and support provided by those above was invaluable. To Dr. Krista Cunningham who cheered me on every step of the way to the finish line, your compassion and friendship is absolutely irreplaceable. Also, to all of my friends that helped me along my journey, putting up with my insanity. Thanks to Ryan Letourneau and the rest of the gang, your humor helped keep me afloat during my graduate career and while completing this thesis. A final thanks to the agencies that supported this research: The Ohio Supercomputing Center, the National Science Foundation, and the National Institutes of Health. vii Vita September 21, 1989 ......................................Born – Chester County, Pennsylvania USA June, 2008 ....................................................Lancaster Catholic High School May, 2012 ....................................................B.S., Chemistry, University of Maryland, College Park 2012–2016 ...................................................Graduate Teaching Associate, Department of Chemistry, The Ohio State University 2016–2018 ...................................................Graduate Research Associate, Department of Chemistry, The Ohio State University Publications 1. Perrotta, R. R.; Winter A. H.; Coldren, W. H.; Falvey, D. E. “2-(3,5- Dinitrophenyl)-1,3-dithiane Carbanion: A Benzylic Anion with a Low Energy Triplet State” J. Am. Chem. Soc. 2011, 133, 15553–15558. 2. Kaur, D; Luk, H.; Coldren, W.; Srinivas, P. M.; Sridhar, L.; Prabhakarm S.; Raghunathan, P.; Guru Row, T. N.; Hadad, C. M.; Platz, M. S.; Eswaran, S. V. “Concomitant Nitrene and Carbene Insertion Accompanying Ring Expansion: Spectroscopic, X-ray, and Computational Studies” J. Org. Chem. 2014, 79, 1199– 1205. 3. Feng, C.; Chan, D.; Joseph, J.; Muuronen, M.; Coldren, W. H.; Dai,
Recommended publications
  • Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Protein Complex Formation by Acetylcholinesterase and the Neurotoxin Fasciculin-2 Appears to Involve an Induced-Fit Mechanism
    Protein complex formation by acetylcholinesterase and the neurotoxin fasciculin-2 appears to involve an induced-fit mechanism Jennifer M. Bui†‡ and J. Andrew McCammon†§ †Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and §Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365 Edited by Jose N. Onuchic, University of California at San Diego, La Jolla, CA, and approved August 22, 2006 (received for review June 27, 2006) Specific, rapid association of protein complexes is essential for all forms of cellular existence. The initial association of two molecules in diffusion-controlled reactions is often influenced by the elec- trostatic potential. Yet, the detailed binding mechanisms of pro- teins highly depend on the particular system. A complete protein complex formation pathway has been delineated by using struc- tural information sampled over the course of the transformation reaction. The pathway begins at an encounter complex that is formed by one of the apo forms of neurotoxin fasciculin-2 (FAS2) and its high-affinity binding protein, acetylcholinesterase (AChE), followed by rapid conformational rearrangements into an inter- mediate complex that subsequently converts to the final complex as observed in crystal structures. Formation of the intermediate complex has also been independently captured in a separate 20-ns Fig. 1. Thermodynamic cycle for AB* complex formation reactions. A and B BIOPHYSICS molecular dynamics simulation of the encounter complex. Confor- molecules can be considered as any pair of interacting molecules. mational transitions between the apo and liganded states of FAS2 in the presence and absence of AChE are described in terms of their relative free energy profiles that link these two states.
    [Show full text]
  • Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: a Crystallographic, Kinetic and Calorimetric Study
    Article Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study Terrone L. Rosenberry 1, Xavier Brazzolotto 2, Ian R. Macdonald 3, Marielle Wandhammer 2, Marie Trovaslet-Leroy 2,†, Sultan Darvesh 4,5,6 and Florian Nachon 2,* 1 Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA; [email protected] 2 Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; [email protected] (X.B.); [email protected] (M.W.); [email protected] (M.T.-L.) 3 Department of Diagnostic Radiology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 4 Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 5 Department of Chemistry, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada 6 Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected]; Tel.: +33-178-65-1877 † Deceased October 2016. Received: 26 October 2017; Accepted: 27 November 2017; Published: 29 November 2017 Abstract: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE.
    [Show full text]
  • Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
    DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) .
    [Show full text]
  • Anti-Cholinergic Alkaloids As Potential Therapeutic Agents for Alzheimer's Disease
    Indian Journal of Biochemistry & Biophysics Vol. 50, April 2013, pp. 120-125 Anti-cholinergic alkaloids as potential therapeutic agents for Alzheimer’s disease: An in silico approach Huma Naaz, Swati Singh, Veda P Pandey, Priyanka Singh and Upendra N Dwivedi* Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226 007, India Received 10 September 2012; revised 25 January 2013 Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms is biochemically characterized by a significant decrease in the brain neurotransmitter acetylcholine (ACh). Plant-derived metabolites, including alkaloids have been reported to possess neuroprotective properties and are considered to be safe, thus have potential for developing effective therapeutic molecules for neurological disorders, such as AD. Therefore, in the present study, thirteen plant-derived alkaloids, namely pleiocarpine, kopsinine, pleiocarpamine (from Pleiocarpa mutica, family: Annonaceae), oliveroline, noroliveroline, liridonine, isooncodine, polyfothine, darienine (from Polyalthia longifolia, family: Apocynaceae) and eburnamine, eburnamonine, eburnamenine and geissoschizol (from Hunteria zeylanica, family: Apocynaceae) were analyzed for their anti-cholinergic action through docking with acetylcholinesterase (AChE) as target. Among the alkaloids, pleiocarpine showed promising anti-cholinergic potential, while its amino derivative showed about six-fold
    [Show full text]
  • Oximes: Inhibitors of Human Recombinant Acetylcholinesterase
    Int. J. Mol. Sci. 2013, 14, 16882-16900; doi:10.3390/ijms140816882 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study Vendula Sepsova 1,†, Jana Zdarova Karasova 2,3, Jan Korabecny 1,3,†, Rafael Dolezal 3,†, Filip Zemek 1, Brian J. Bennion 4,† and Kamil Kuca 3,5,* 1 Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; E-Mails: [email protected] (V.S.); [email protected] (J.K.); [email protected] (F.Z.) 2 Department of Public Health, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; E-Mail: [email protected] 3 University Hospital, Biomedicinal Research Centre, Sokolska 581, 50005 Hradec Kralove, Czech Republic; E-Mail: [email protected] 4 Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA; E-Mail: [email protected] 5 Center of Advances Studies, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-495-832-923; Fax: +420-495-518-094. Received: 8 May 2013; in revised form: 1 August 2013 / Accepted: 2 August 2013 / Published: 16 August 2013 Abstract: Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity.
    [Show full text]
  • Studies on New Vasodilators, Ws-1228 a and B Ii. Structure and Synthesis
    VOL. XXXV NO. 2 THE JOURNAL OF ANTIBIOTICS 157 STUDIES ON NEW VASODILATORS, WS-1228 A AND B II. STRUCTURE AND SYNTHESIS HIROKAZU TANAKA, KEIZO YOSHIDA, YOSHIKUNI ITOH and HIROSHI IMANAKA Fermentation Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan (Received for publication October 26, 1981) The structure of new hypotensive vasodilators, WS-1228 A and B, produced by Strepto- myces aureofaciens, were determined as I and 2, respectively, on the basis of their spectral and chemical evidences. WS-1228 A (1), having N-hydroxytriazene moiety, was synthesized from (E,E,E)-2,4,7- undecatrienal (4) by condensation with hydrazine hydrate followed by nitrosation. In the course of screening for new biologically active compounds, we found that Streptomyces aureofaciens produces hypotensive vasodilators designated as WS-1228 A (1) and B (2). Taxonomy, isolation and characterization of these compounds have been reported in the preceding papery. This report describes the structure elucidations of WS-1228 A (1) and B (2) and the synthesis of 1. WS-1228 A (1) WS-1228 B (2) WS-1228 A (1) was isolated as yellow needles [mp 100 - 102°C (dec.)] which showed a positive color reaction to ferric chloride reagent. Elemental analysis and mass spectrum established the molecular formula of 1 as C11H17N3O. Absorption bands at 1612 and 1580 cm-1 in its IR spectrum (Fig. 1) and at 300 nm in its UV spectrum suggested the presence of the triene oxime moiety. The PMR spectrum (Fig. Fig. 1. IR spectrum of WS-1228 A (1) (Nujol). 158 THE JOURNAL OF ANTIBIOTICS FEB.
    [Show full text]
  • UNIT – I Nomenclature of Organic Compounds and Reaction Intermediates
    UNIT – I Nomenclature of organic Compounds and Reaction Intermediates Two Marks 1. Give IUPAC name for the compounds. 2. Write the stability of Carbocations. 3. What are Carbenes? 4. How Carbanions reacts? Give examples 5. Write the reactions of free radicals 6. How singlet and triplet carbenes react? 7. How arynes are formed? 8. What are Nitrenium ion? 9. Give the structure of carbenes and Nitrenes 10. Write the structure of carbocations and carbanions. 11. Give the generation of carbenes and nitrenes. 12. What are non-classical carbocations? 13. How free radicals are formed and give its generation? 14. What is [1,2] shift? Five Marks 1. Explain the generation, Stability, Structure and reactivity of Nitrenes 2. Explain the generation, Stability, Structure and reactivity of Free Radicals 3. Write a short note on Non-Classical Carbocations. 4. Explain Fries rearrangement with mechanism. 5. Explain the reaction and mechanism of Sommelet-Hauser rearrangement. 6. Explain Favorskii rearrangement with mechanism. 7. Explain the mechanism of Hofmann rearrangement. Ten Marks 1. Explain brefly about generation, Stability, Structure and reactivity of Carbocations 2. Explain the generation, Stability, Structure and reactivity of Carbenes in detailed 3. Explain the generation, Stability, Structure and reactivity of Carboanions. 4. Explain brefly the mechanism and reaction of [1,2] shift. 5. Explain the mechanism of the following rearrangements i) Wolf rearrangement ii) Stevens rearrangement iii) Benzidine rearragement 6. Explain the reaction and mechanism of Dienone-Phenol reaarangement in detailed 7. Explain the reaction and mechanism of Baeyer-Villiger rearrangement in detailed Compounds classified as heterocyclic probably constitute the largest and most varied family of organic compounds.
    [Show full text]
  • INFORMATION to USERS This Manuscript Has Been Reproduced
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer primer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, prim bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Intormaiion Company 300 North Zeeb Road Ann Arbor Ml 46106*1346 USA 313/761-4700 800.521-0600 EXPLORATORY PHOTOCHEMISTRY OF POLYFLUORINATED ARYL AZIDES IN NEUTRAL AND ACIDIC MEDIA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Hongbin Zhai ***** The Ohio State University 1995 Dissertation Committee: Approved By Matthew S.
    [Show full text]
  • Guidelines for Drinking-Water Quality, Fourth Edition
    12 Chemical fact sheets A conceptual framework for Introduction implementing the Guidelines (Chapter 1) (Chapter 2) he background docu- FRAMEWORK FOR SAFE DRINKING-WATER SUPPORTING Tments referred to in INFORMATION this chapter (as the princi- Health-based targets Public health context Microbial aspects pal reference for each fact (Chapter 3) and health outcome (Chapters 7 and 11) sheet) may be found on Water safety plans Chemical aspects (Chapter 4) (Chapters 8 and 12) the Water, Sanitation, Hy- System Management and Radiological Monitoring giene and Health web site assessment communication aspects at http://www.who.int/ (Chapter 9) Acceptability Surveillance water_sanitation_health/ aspects (Chapter 5) dwq/chemicals/en/index. (Chapter 10) html. A complete list of r eferences cited in this Application of the Guidelines in specic circumstances chapter, including the (Chapter 6) background documents Climate change, Emergencies, Rainwater harvesting, Desalination for each c hemical, is pro- systems, Travellers, Planes and vided in Annex 2. ships, etc. 12.1 Chemical contaminants in drinking-water Acrylamide Residual acrylamide monomer occurs in polyacrylamide coagulants used in the treat- ment of drinking-water. In general, the maximum authorized dose of polymer is 1 mg/l. At a monomer content of 0.05%, this corresponds to a maximum theoretical concen- tration of 0.5 µg/l of the monomer in water. Practical concentrations may be lower by a factor of 2–3. This applies to the anionic and non-ionic polyacrylamides, but residual levels from cationic polyacrylamides may be higher. Polyacrylamides are also used as grouting agents in the construction of drinking-water reservoirs and wells.
    [Show full text]
  • Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
    molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa.
    [Show full text]
  • Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wellesley College Wellesley College Wellesley College Digital Scholarship and Archive Faculty Research and Scholarship 6-27-2018 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin Pierce van Mulbregt Jeniffer Perea Muhammad Kasule Jean Huang See next page for additional authors Follow this and additional works at: https://repository.wellesley.edu/scholarship Version: Post-print Recommended Citation E. Mullikin, P. van Mulbregt, J. Perea, M. Kasule, J. Huang, C. Buffo, J. Campbell, L. Gates, H. M. Cumberbatch, Z. Peeler, H. Schneider, J. Lukens, S. T. Bao, R. Tano-Menka, S. Baniya, K. Cui, M. Thompson, A. Hay, L. Widdup, A. Caldwell-Overdier, J. Huang, M. C. Boyer, M. Rajappan, G. Echebiri and C. R. Arumainayagam, ACS Earth and Space Chemistry, 2018, DOI: 10.1021/ acsearthspacechem.8b00027. This Article is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Faculty Research and Scholarship by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact [email protected]. Authors Ella Mullikin, Pierce van Mulbregt, Jeniffer Perea, Muhammad Kasule, Jean Huang, Christina Buffo, Jyoti Campbell, Leslie Gates, Helen M. Cumberbatch, Zoe Peeler, Hope Schneider, Julia Lukens, Si Tong Bao, Rhoda Tano-Menka, Subha Baniya, Kendra Cui, Mayla Thompson, Aury Hay, Lily Widdup, Anna Caldwell- Overier, Justine Huang, Michael C. Boyer, Mahesh Rajappan, Geraldine Echebiri, and Christopher R. Arumainayagam This article is available at Wellesley College Digital Scholarship and Archive: https://repository.wellesley.edu/scholarship/183 Condensed-Phase Photochemistry in the Absence of Radiation Chemistry Ella Mullikin,1 Pierce van Mulbregt,2 Jeniffer Perea,1 Muhammad Kasule,3 Jean Huang,1 Christina Buffo,1 Jyoti Campbell,1 Leslie Gates,1 Helen M.
    [Show full text]