System for Real Time Monitoring Metalworking Fluids

Total Page:16

File Type:pdf, Size:1020Kb

System for Real Time Monitoring Metalworking Fluids 30TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION DOI: 10.2507/30th.daaam.proceedings.104 SYSTEM FOR REAL TIME MONITORING METALWORKING FLUIDS František Jurina, Jozef Peterka, Tomáš Vopát, Vladimír Šimna & Marcel Kuruc This Publication has to be referred as: Jurina, F[rantisek]; Peterka, J[ozef]; Vopat, T[omas]; Simna V[ladimir] & Kuruc, M[arcel] (2019). System for Real Time Monitoring Metalworking Fluids, Proceedings of the 30th DAAAM International Symposium, pp.0758-0763, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734- 22-8, ISSN 1726-9679, Vienna, Austria DOI: 10.2507/30th.daaam.proceedings.104 Abstract The paper is focused on describing cutting fluids used in turning, drilling, milling, and grinding operations. It Describes their advantages and disadvantages and methods of maintenance. The automatic measurement system is designed in this article. The system consists of a hardware and software part. The hardware part consists from float shape probe located in the coolant tank. The software part consists of a simple application running in the browser. This system prevents inaccuracies in data acquisition and can work continuously. Keywords: Real Time Monitoring; Machining; Cutting fluids; Probe 1. Introduction The importance of cutting environment for metals machining continues to grow and has a significant impact on improving the quality of the surface of the workpiece, tool life and reduce energy consumption [1-4]. Cutting fluids are extensively used to cool and lubricate, flush away chips, and inhibit corrosion during machining operations such as drilling, turning, milling and grinding. [5]. Today, a wide variety of cutting fluids are commercially available. Generally we know four types of cutting fluids [6]. Neat oils consist petroleum or mineral oils that is not dissolve in water. Need oils are generally used for processes such as gear hobbing where cutting speeds and temperatures are low and lubrication and chip evacuation are of utmost importance [8]. Soluble oils are an emulsion composed of fifty to eighty percent oil plus additives that mix with water. Soluble oils or emulsifiable oils are the largest type of fluid used in metalworking. Disadvantages are prone to bacterial formation and low cooling effect [8]. Semisynthetic fluids are similar to soluble oils in that they are emulsions, and similar to synthetic fluids in that they are water-based fluids. However, there is usually 5 to 30% mineral oil emulsified into the water to form a microemulsion. They cool better than soluble oils and lubricants better than synthetic coolants [8]. - 0758 - 30TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION Synthetic fluids contain no natural oils and offer the benefits of superior cooling. They are also highly resistant to bacteria and typically have double life versus soluble oils. On the downside, they are expensive and inferior lubrication ability usually relegates them to grinding and light duty machining [8]. Depending on the machining operations, properties of the cutting fluid required may be oriented either on cooling, lubricating, or both. The effectiveness of cutting fluid depends on a number of factors, such as types of machining operation, cutting parameters and methods of cutting fluid application [6]. Cutting fluids, specifically the water-soluble types, are all formulated to operate within a certain range of conditions in areas such as concentration, pH, dirt levels, tramp oil, bacteria, and mold. When fluid conditions exceed this range in one or more of these areas, performance problems can develop [7]. It is therefore necessary control the following factors to keep cutting fluids in optimal conditions [8]. Concentration - Water-soluble cutting fluids are typically formulated to operate in a concentration range of 3 to 6%, although concentrations of 10% or higher are not uncommon for heavy-duty applications. Concentration is the most important variable to control. Too low concentration promote corrosion and bacterial formation. Too high concentration can cause skin irritation and foaming [8]. pH - Cutting fluids are typically formulated and buffered to operate in a pH range of approximately 8.5 to 9.5. This is somewhat of a compromise. If the pH ran higher, the fluid would provide excellent ferrous corrosion control, but could have problems in the areas of skin mildness and nonferrous corrosion protection. A lower pH would be good for mildness and nonferrous corrosion control but may cause problems with rancidity control and ferrous corrosion protection. It should be noted that some fluids, especially those used in certain aluminum applications, are formulated with a mix pH in the 7 to 8 range. The pH is also a good, quick indicator of the condition of the fluid. A pH below 8.5 is typically the result of bacterial activity. Additives can be used to increase the pH of a mix. A high pH, greater than 9.5, is generally the result of some form of alkaline contamination, and will affect the mildness of the fluid [11]. Dirt Level - Dirt or total suspended solids (TSS) in a cutting fluid mix include metal chips and grinding wheel grit. Recirculating dirt, whether it is a large quantity of small particles or just one or two large particles, can affect part finishes lead to dirty machines, and clog coolant supply lines. Recirculating metal fines can also lead to rust problems, if they deposit on parts [12]. Tramp oil - The sources of the tramp oil can be hydraulic leaks, way or gear lube leaks, or from lubrication systems that are found on many machines. Tramp oil can be in two forms, free, or emulsified. Free oil is that oil which is not emulsified and basically floats on the top of the mix. Emulsified tramp oil is nonproduct oil, which is either chemically or mechanically emulsified into the product. Free oil can generally be removed by skimmers or belts, while emulsified tramp is much more difficult to remove, even with a centrifuge or a coalescer. Generally, high tramp oil levels will affect a product’s cleanliness, filterability, mildness, corrosion and rancidity control [13]. When a metalworking fluid management program is in place, the fluctuation in this variable (correct fluid, concentration, pH, dirt volume, tramp oil, etc.) is reduced and more consistent quality parts can be produced [10]. Properly controlled fluids do not need to be dumped as often. This eliminates costs associated with machine downtime, disposal, and new fluid purchase [9]. Generally diagnostic of cutting fluids can be divided into two categories. Laboratory testing Many plants will have a set of laboratory screening criteria that a cutting fluids must pass before it can move any further into the plant. Tests such as lubricity corrosion control, and rancidity control are some of the many performance procedures used to screen cutting fluids. Several tests are typically chosen that are known to be key to the success of the product in a particular operation. For example, on cast iron machining applications, a corrosion test using cast iron chips is a typical laboratory evaluation [14-20]. In- Plant testing The most important item in in- plant testing is to establish measurable parameters before the testing begins. With refractometer check cutting fluid concentration. pH test strip or probe is used for finding correct pH value and etc. This values can be capture manually or automatically with real- time monitoring systems. This is the first step in fluid management. It is now necessary to control and maintain that fluid in the work environment to achieve optimum long-term performance [19,20]. 2. Design of monitoring system A monitoring system for automatic collection properties of cutting fluids data is designed. Based on the previous research we are selected the most important characteristics that will be monitored. The system record properties like pH, coolant concentrate, temperature and amount of cutting fluid in the machine sump. Based on this information, the operator or person responsible for fluids can effectively and simple monitor the condition of the cutting fluid. It is also possible to top up the missing volume of cutting fluid or decide to start over with new cooling fluid on the basis of this information. In this way, errors caused by manual fluid control are eliminated (for example wrong read concentration). In this way, errors caused by manual fluid read are eliminated (for example wrong concentration reading). The monitoring system consist of hardware and software part. The hardware part consists a probe placed in the machine sump, which automatically reads the selected properties using built-in sensors. The software part consists of an application that displays - 0759 - 30TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION the measured properties of the cutting fluid. Communication between the hardware and software parts is provided via internet network. 2.1 Probe The float shape probe is located in the coolant tank. The probe swims on the top of cutting fluids and records following data. Concentration ratio - with a built-in digital refractometer. The probe for measuring consists of a stainless steel sensing head. The refractometer measuring range is from 0-70% cutting emulsion. Measuring accuracy of this refractometer is 0.2% with automatic temperature compensation. This sensor is located at the bottom of the device. pH- with a built-in nonglass ISFET probe. The measuring range is from 2-12. Accuracy is +/- 0.1 pH units. This sensor is located at the side of the device. Temperature - for temperature reading is an NTC thermistor used. Cutting fluid level - Cutting fluid level with built-in distance optical sensor RFD 77402. This sensor has a wide measuring range from 5 to 200cm. This sensor is located at the top of the device. The sensor works oppositely. Measures the distance from the probe to the top of the machine reservoir. It can determine the amount of liquid in the tank by defining the total tank height.
Recommended publications
  • Machining Online Manufacturing Training
    MACHINING ONLINE MANUFACTURING TRAINING MACHINING FUNDAMENTALS 5S Overview Cutting Processes Hole Standards and Inspection Math: Fractions and Decimals Thread Standards and Inspection Band Saw Operation Essentials of Heat Treatment of Steel Intro to OSHA Metal Cutting Fluid Safety Trigonometry: Sine, Cosine, Tangent Basic Cutting Theory Ferrous Metals Introduction to Mechanical Properties Noise Reduction/Hearing Conservation Units of Measurement Basic Measurement Fire Safety and Prevention Introduction to Metal Cutting Fluids Overview of Machine Tools Walking and Working Surfaces Basics of Tolerance Geometry: Circles and Polygons ISO 9001: 2015 Review Personal Protective Equipment Bloodborne Pathogens Geometry: Lines and Angles Lean Manufacturing Overview Powered Industrial Truck Safety Blueprint Reading Geometry: Triangles Lockout/Tagout Procedures Safety for Lifting Devices Calibration Fundamentals Hand and Power Tool Safety Math Fundamentals SDS and Hazard Communication GRINDING TECH Basic Grinding Theory Cylindrical Grinder Operation Grinding Variables Major Rules of GD&T Supporting and Locating Principles Basics of G Code Programming Dressing and Truing Grinding Wheel Geometry Metrics for Lean Surface Grinder Operation Basics of the Centerless Grinder Essentials of Communication Grinding Wheel Materials Process Flow Charting Surface Texture and Inspection Basics of the Cylindrical Grinder Essentials of Leadership Intro to Fastener Threads Setup for the Centerless Grinder Troubleshooting Basics of the Surface Grinder Grinding Ferrous
    [Show full text]
  • Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions
    Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions MASAKAZU NABEKURA*1 MICHIAKI HASHITANI*1 YUKIHISA NISHIMURA*1 MASAKATSU FUJITA*1 YOSHIKOTO YANASE*1 MASANOBU MISAKI*1 It is a never-ending theme for motorcycle and automobile manufacturers, for whom the Machine Tool Division of Mitsubishi Heavy Industries, Ltd. (MHI) manufactures and delivers gear cutting machines, gear grinding machines and precision cutting tools, to strive for high precision, low cost transmission gears. This paper reports the recent trends in the automobile industry while describing how MHI has been dealing with their needs as a manufacturer of the machines and cutting tools for gear production. process before heat treatment. A gear shaping machine, 1. Gear production process however, processes workpieces such as stepped gears and Figure 1 shows a cut-away example of an automobile internal gears that a gear hobbing machine is unable to transmission. Figure 2 is a schematic of the conven- process. Since they employ a generating process by a tional, general production processes for transmission specific number of cutting edges, several tens of microns gears. The diagram does not show processes such as of tool marks remain on the gear flanks, which in turn machining keyways and oil holes and press-fitting bushes causes vibration and noise. To cope with this issue, a that are not directly relevant to gear processing. Nor- gear shaving process improves the gear flank roughness mally, a gear hobbing machine is responsible for the and finishes the gear tooth profile to a precision of mi- crons while anticipating how the heat treatment will strain the tooth profile and tooth trace.
    [Show full text]
  • Intelligent Process Optimization „Innovation Is Our Future.“ Sascha Tschiggfrei, CEO the Future Has Begun
    Intelligent Process Optimization „Innovation is our future.“ Sascha Tschiggfrei, CEO The Future has begun As a global market leader, we manufacture technologically advanced high precision tool holders for turning centers and swiss type lathes that are known for high performance and long life-time. Using our new “smart” technology, our customers will be able to intelligently optimize and monitor their processes in the future. Intelligent Process State-of-the-art technology for maximum productivity. With this claim, WTO develops Optimization and produces superior precision tool holders in terms of technology and quality. Used intelligently, processes are optimized and production becomes more productive. WTO Driven Precision Tool Holders equipped with innovative „smart“ technology enable intelligent online process monitoring. “Consistent development - always one step ahead.” Karlheinz Jansen, CTO High Tech – Made in Germany From the technical design to the finished product we make no compromises when it comes to manufacturing our high precision tool holders. Permanent investment in state-of-the-art production technologies, high quality standards and a large manufacturing depth. Our products are in use worldwide, wherever precision parts are manufactured on turning centers with high productivity. „Our employees don‘t work for WTO. They work for the success of our customers.“ Daniel Sierra, Sales Director WTO Your Success is our Business Motivated employees are the basis for 100 % consistent customer focus. WTO offers its employees a state-of-the-art working environ- ment to work independently and ensures highly motivated employees in a family-owned technology company. To a large extent, WTO relies on its own highly qualified employees in order to achieve high quality standards.
    [Show full text]
  • Influence of Bio-Oils As Cutting Fluids on Chip Formation and Tool Wear During Drilling Operation of Mild Steel
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2, July 2019 Influence of Bio-Oils as Cutting Fluids on Chip Formation and Tool Wear during Drilling Operation of Mild Steel Jyothi P N, Susmitha M, Bharath Kumar M issues with regards to application, recycling and disposal of Abstract: The importance of health and environment has cutting fluids. Improper dispose of cutting fluids can cause forced Machining Industries to reduce the application of environmental and health issues. These issues created a Petroleum-based cutting fluid. But to ease the machining process pathway to the introduction of animal, mineral and vegetable and to increase the tool life, cutting fluids must be used. Research oils. A “Vegetable oil” is a triglyceride extracted from the has been done on vegetable oils as cutting fluids which is easy for disposal and does not affect the environment and the operator’s plant. Vegetable oils are classified into edible and non-edible health [1] . This paper discusses the machinability and tool life oils. Due to growing population and increased demands, using during drilling of a mild steel work piece using Neem, Karanja, of edible oils as lubricants is restricted. Non-edible vegetable blends of 50%Neem-50%Karanja, 33.3%Neem-66.6%Karanja, oils are an effective alternative. All tropical countries which 66.6%Neem-33.3%Karanja as cutting fluid. Results obtained are abundant resources of forests yield a significant quantity using petroleum-based oil are compared with the results obtained of oil seeds. by using above mentioned combination of oils and also with dry cutting conditions.
    [Show full text]
  • Industrial Productivity Training Manual
    INDUSTRIAL PRODUCTIVITY TRAINING MANUAL Version 2.0 Written by: Dr. Michael R. Muller - Director, Don Kasten ©2006 Rutgers, the State University of New Jersey Table of Contents INTRODUCTION..............................................................................2 PRODUCTIVITY TOOLBOX ..............................................................5 Toolbox Introduction.....................................................................6 Productivity Metrics......................................................................9 Cost of Labor..............................................................................10 Space Optimization .......................................................................11 Productivity Questions...................................................................14 CONCEPTS FOR PRODUCTIVITY ENHANCEMENT, PART I INCREASING PIECES/PERSON/HOUR .............................................19 QUICK CHANGES......................................................................20 AR No. 1 Decrease Die Change-Out & Start-Up Times...................26 AR No. 2 Use Fixtures to Reduce Lathe Set-up Times....................32 AR No. 3 Install a Rotating Nozzle Carousel to Reduce Set-Up Times.34 AR No. 4 Employ Modular Jigs to Reduce Process Set-up Times.......36 BOTTLENECK MITIGATION.........................................................39 AR No. 5 Add Machine Operators to Reduce Production Bottleneck....41 AR No. 6 Install Refrigeration System to Cool Product...................45 AR No. 7 Replace Old Lathe
    [Show full text]
  • Gear Rolling for Production of High Gears Alireza Khodaee
    Gear Rolling for Production of High Gears Alireza Khodaee Gear Rolling for Production of High Gears Alireza Khodaee Licentiate Thesis, 2015 KTH Royal Institute of Technology Industrial Engineering and Management Department of Production Engineering SE-100 44 Stockholm, Sweden TRITA-IIP-15-06 ISSN: 1650-1888 ISBN: 978-91-7595-678-7 Abstract Gears are used to transmit mechanical work from one point to another. They are widely used in different mechanisms and they are the most important components of a transmission system. Thus, it is important that they are manufactured with high precision to deliver the work with highest possible efficiency. The dominant gear production method is metal cutting, like hobbing. The gear manufacturing industry aims to replace their traditional production lines with greener processes and thereby urge engineers to think about using metal forming methods instead of the traditional metal cutting solutions when possible. Gear rolling is an interesting metal forming method that can be an alternative method to fabricate gear wheels. Research on gear rolling firstly came into interest around 2000. Very few papers are published that covers the development of the method and its limitations and advantages. Almost all of these publications considered rolling of gear wheels with small modules. The focus of this study will be on application of gear rolling for gear wheels with large module (over 3 mm) where the amount of deformation is much larger than found in previous studies. In this thesis the Finite Element Method has been used to simulate and predict the results of rolling of high gears. In addition to that experiments were performed to validate the numerical results and develop the modelling technique for further investigations.
    [Show full text]
  • Tribological Considerations of Cutting Fluids in Machining Environment: a Review
    Vol. 38, No. 4 (2016) 463-474 Tribology in Industry www.tribology.fink.rs RESEARCH Tribological Considerations of Cutting Fluids in Machining Environment: A Review a a a a b A. Anand , K. Vohra , M.I. Ul Haq , A. Raina , M.F. Wani a Department of Mechanical Engineering, SMVD University, Katra, Jammu & Kashmir, India, b Centre for Tribology , National Institute of Technology, Srinagar, Jammu & Kashmir, India. Keywords: A B S T R A C T Tribology The paper presents a review to highlight the tribological aspects of Cutting fluids cutting fluids in machining environment. In this study, different Lubrication machining processes viz. turning, grinding, drilling and milling have Machining been considered with a special focus on grinding process. The cutting fluids are primarily used as coolants and lubricants in the various Corresponding author: machining processes. Different cutting fluids and the health hazards associated with their use have also been represented in this research A. Anand article. The paper also highlights the role of work materials and the Department of Mechanical Engineering, cutting tool materials from tribology point of view. The literature SMVD University, revealed that the development of biocompatible cutting fluids, recycling Katra, J&K, India. of cutting fluids, cutting fluids for high temperature tribological E-mail: [email protected] applications, studying the wetability characteristics with addition of nanoparticles, etc. can be taken up as study in order to enhance the tribological properties of the cutting fluids. © 2016 Published by Faculty of Engineering 1. INTRODUCTION emphasis on the role of tribology in the areas of energy conservation. It has been observed that In today’s competitive world, manufacturers and nearly 5.5 percent of U.S.
    [Show full text]
  • Safety Data Sheet Product No. 812-650, 812-653 Cutting Fluid, Soluble Oil Issue Date (05-12-14) Review Date (08-31-17)
    Safety Data Sheet Product No. 812-650, 812-653 Cutting Fluid, Soluble Oil Issue Date (05-12-14) Review Date (08-31-17) Section 1: Product and Company Identification Product Name: Cutting Fluid, Soluble Oil Synonym: SO Soluble Oil Company Name Ted Pella, Inc., P.O. Box 492477, Redding, CA 96049-2477 Inside USA and Canada 1-800-237-3526 (Mon-Thu. 6:00AM to 4:30PM PST; Fri 6:00AM to 4:00PM PST) Outside USA and Canada 1-530-243-2200 (Mon-Thu. 6:00AM to 4:30PM PST; Fri 6:00AM to 4:00PM PST) CHEMTREC USA and Canada Emergency Contact Number 1-800-424-9300 24 hours a day CHEMTREC Outside USA and Canada Emergency Contact Number +1-703-741-5970 24 hours a day Section 2: Hazard Identification 2.1 Classification of the substance or mixture OSHA/HCS status: This material is not considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Not classified. GHS Pictograms: Void GHS Categories: Void 2.2 Label elements Hazard Pictograms: None Signal Word: None Hazard Statements: No known significant effects or critical hazards. Precautionary Statements: NA 2.3 Other hazards Defatting to the skin. Health Effects: NFPA Hazard Rating: Health: 2; Fire: 1; Reactivity: 0 HMIS® Hazard Rating: Health: 1; Fire: 1; Reactivity: 0 (0=least, 1=Slight, 2=Moderate, 3=High, 4=Extreme) Results of PBT and vPvB assessment: PBT: ND vPvB: ND Emergency overview Appearance: Clear Blue Liquid. Immediate effects: Warning! Causes eye irritation. Potential health effects Primary Routes of entry: Skin, ingestion. Signs and Symptoms of Overexposure: ND Eyes: Causes eye irritation.
    [Show full text]
  • Gear Cutting Tools Rua André De Leão 155 Bloco a Mexiko/Mexico [email protected] CEP: 04672-030 LMT Boehlerit S.A
    Belgien/Belgium Indien/India Türkei/Turkey SA LMT Fette NV LMT Fette India Pvt. Ltd. Böhler Sert Maden Takim Sanayi Belin Yvon S.A. Industrieweg 15 B2 29, II Main Road ve Ticaret A.S. F-01590 Lavancia, Frankreich 1850 Grimbergen Gandhinagar, Adyar Ankara Asfalti ü zeri No.22 Tel. +33 (0) 4 74 75 89 89 Fon +32-2/2 51 12 36 Chennai 600 020 Kartal 81412 Fax +33 (0) 4 74 75 89 90 Fax +32-2/2 51 74 89 Fon +91-44/24 405 136 / 137 Istanbul E-mail: [email protected] Fax +91-44/24 405 1205 P.K. 167 Internet: www.belin-y.com Brasilien/Brazil [email protected] Fon +90-216/3 06 65 70 LMT Böhlerit LTDA. Fax +90-216/3 06 65 74 Gear Cutting Tools Rua André de Leão 155 Bloco A Mexiko/Mexico [email protected] CEP: 04672-030 LMT Boehlerit S.A. de C.V. • Hobbing Socorro-Santo Amaro Ungarn/Hungary Bilz Werkzeugfabrik GmbH & Co. KG Matias Romero No. 1359 • Gear Milling Vogelsangstraße 8 São Paulo Col. Letran Valle LMT Boehlerit KFT. D-73760 Ostfildern, Deutschland Fon +55/11 55 46 07 55 03650 Mexico D.F. Kis-Duma U.6 Tel. +49 (0) 711 3 48 01-0 Fax +55/11 55 46 04 76 Fon +52 (55) 56 05 82 77 PoBox 2036 Erdliget Pf. 32 Fax +49 (0) 711 3 48 12 56 [email protected] Fax +52 (55) 56 05 85 01 2030 Erd E-mail: [email protected] [email protected] Fon +36/23 52 19 10 Internet: www.bilz.de China Fax +36/23 52 19 14 Leitz Tooling Systems Österreich/Austria [email protected] (Nanjing) Co.
    [Show full text]
  • General Applications of Gears
    UNIT - III GEAR MANUFACTURING PROCESS SPRX1008 – PRODUCTION TECHNOLOGY - II Gears are widely used in various mechanisms and devices to transmit power and motion positively (without slip) between parallel, intersecting (axis) and non-intersecting non parallel shafts, •without change in the direction of rotation •with change in the direction of rotation •without change of speed (of rotation) •with change in speed at any desired ratio Often some gearing system (rack – and – pinion) is also used to transform Rotary motion into linear motion and vice-versa. Fig.1 Features of Spur Gear Gears are basically wheels having, on its periphery, equispaced teeth which are so designed that those wheels transmit, without slip, rotary motion smoothly and uniformly with minimum friction and wear at the mating tooth – profiles. To achieve those favorable conditions, most of the gears have their tooth form based on in volute curve, which can simply be defined as Locus of a point on a straight line which is rolled on the periphery of a circle or Locus of the end point of a stretched string while its unwinding over a cylinder as indicated in Fig. General Applications of Gears Gears of various type, size and material are widely used in several machines and systems requiring positive and stepped drive. The major applications are: • Speed gear box, feed gear box and some other kinematic units of machine tools • Speed drives in textile, jute and similar machineries • Gear boxes of automobiles • Speed and / or feed drives of several metal forming machines • Machineries for mining, tea processing etc. • Large and heavy duty gear boxes used in cement industries, sugar industries, cranes, conveyors etc.
    [Show full text]
  • Precision Tools
    Precision Tools Precision Tools Gear Cutting Tools & Broaches Pursuing advanced high-speed technology that is both user and environmentally friendly Since developing Japan's first broaching machine in the late 1920s, Fujikoshi has developed a variety of tools and machine tools to handle advancements in production systems. Fujikoshi continues to lead the way by developing machining systems that integrate tools and machines. Pursuing advanced high-speed technology that is both user and environmentally friendly Since developing Japan's first broaching machine in the late 1920s, Fujikoshi has developed a variety of tools and machine tools to handle advancements in production systems. Fujikoshi continues to lead the way by developing machining systems that integrate tools and machines. ndex Gear Cutting Tools Gear Cutting Comparison and Types 25 Broaches Design of Broach ools Guidance NACHI Accuracy of Gear Shaper Cutters 26 Technical Introduction Basic Design and Cutting Method 61 Materials and Coating of Gear Cutting Tools 5 Cutting Condition and Regrinding 27 Hard Broaches 45 Calculation of Pulling Load 62 Gear Cutting T Disk Type Shaper Cutters Type1Standard Dimensions 28 Broach for MQL 46 Face Angle and Relief Angle 63 Technical Introduction Disk Type Shaper Cutters Type2Standard Dimensions 30 Off-normal Gullet Helical Broach 47 Finished Size of Broaches 64 Hard Hobbing 6 Disk Type Shaper Cutters Type2Standard Dimensions 31 Micro Module Broaching 48 Helical Gear Shaper Cutters High Speed Dry Hobbing 7 Essential Points and Notice 65 Disk
    [Show full text]
  • Effects of the Cutting Fluid Types and Cutting Parameters on Surface Roughness and Thrust Force
    Proceedings of the World Congress on Engineering 2010 Vol II WCE 2010, June 30 - July 2, 2010, London, U.K. Effects of the Cutting Fluid Types and Cutting Parameters on Surface Roughness and Thrust Force E. Kuram, B. Ozcelik, E. Demirbas, and E. Şık Abstract- In this study, three different vegetable-based cutting De Chiffre [5] investigated effect of vegetable based cutting fluids developed from raw and refined sunflower oil and two oil on cutting forces and power. AISI 316L stainless steel commercial types (vegetable and mineral based cutting oils), workpieces were machined with drilling, core drilling, were carried out to determine for thrust force and surface reaming and tapping using HSS-E tools. From the roughness during drilling of AISI 304 austenitic stainless steel comparison of performance results obtained from two with HSSE tool. The uses of vegetable cutting oils was investigated in reducing thrust force and improve surface cutting fluids showed that the vegetable based cutting oils finish at different spindle speeds and feed rates during were better than the commercial mineral oil. Belluco and drilling. In the experiments, spindle speed, feed rate and De Chiffre [6] improved formulations of vegetable oils drilling depth were considered as machining parameters. which used as comparison with a mineral oil on surface integrity and part accuracy in reaming and tapping Index Terms- Drilling, Thrust force, Surface roughness, operations with AISI 316L stainless steel. The results with Cutting fluids, Vegetable based cutting fluids. the new formula were better than that of mineral oil. Later on De Chiffre and Belluco [7] used three vegetable based cutting oils including EP additives and a straight cutting I.
    [Show full text]