Dynamics of a Solar Sail Around an Asteroid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Venona Special Studies
- 1 - Venona Project Special Studies Transcribed by Students of the Mercyhurst College Institute for Intelligence Studies Arranged by John Earl Haynes, Library of Congress, 2010 COVER NAMES IN NEW YORK TRAFFIC p. 2 UNIDENTIFIED COVER NAMES IN NEW YORK TRAFFIC p. 86 COVER NAMES IN SAN FRANCISCO TRAFFIC p. 92 COVER NAMES IN WASHINGTON TRAFFIC p. 123 ADDITIONAL COVERNAMES AND RELATED INFORMATION IN DIPLOMATIC TRAFFIC p. 127 REVISED TRANSLATION OF MESSAGE ON ANTENNA-LIBERAL'S WIFE ETHEL p. 135 THE COVERNAMES "ANTENNA" AND "LIBERAL" IN . MESSAGES p. 139 ESSAGES IN . INVOLVING THE COVERNAME"ENORMOZ" AND THE NAMES OF NUCLEAR PHYSICISTS, ETC. p. 147 UNDATED REPORT OF MEREDITH GARDNER p. 155 DEVELOPMENT OF THE “G--“HOMER” [“GOMER”] CASE p. 158 THE KOMAR (KRAVCHENKO) AFFAIR IN . MESSAGES p. 161 REVISED TRANSLATION OF TWO . MESSAGES ON CHANGES IN COVERNAMES p. 170 THE COVERNAME "KARAS" IN. TRAFFIC p. 178 THE COVERNAMES "TÉNOR", "BAS", AND "CHETÁ" (? IN . TRAFFIC p. 181 - 2 - Special Study Cover Names in New York Traffic - 3 - cover-name Message number Date Publication reference S/ or 3/NBF/ 19 N.Y. to M. 812 29053 JKI 06 T1022 1B-1910 0027A ABRAM N.Y. to M. 992 24063 JKR 14 T872√ 1B-7518 0005A JACK SOBLE 1086 06073 JKV 48 T873√ 2A-0011 1957 29113 NNNNNN T939√ 625 04054 JHD 48 T916√ 851 15064 JIJ 40 T10.1√ 1146 10084 JHM 41 T123√ 1251 02094 JHN 12 T301√ (to ChEKh) 0005B 1353 23094 JHO 42 T289√ 1449 12104 JIL 37 T106√ 1754 14124 JHZ 49 T6√ 48 11015 JHV 37 (NSA)T1941 AVGUR 2A-0013 1638 (AUGUR) N.Y. -
An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1]. -
The Hera Mission
Dr. Patrick Michel Hera Investigation Team PI Université Côte d’Azur Observatoire de la Côte d’Azur CNRS, Lagrange Laboratory Nice, France The Hera Mission ESA UNCLASSIFIED - For Official Use Hera main aspects Role of space missions at ESA in NEO hazard mitigation • Understanding the problem (deflection modeling and simulations) 2001 • Ground versus space solutions analyses • Assessment of space component options 2002- • 6 parallel phase-0 studies (3 space telescopes, 3 rendezvous) Euneos Nero Earthguard 1 2004 • ESA’s NEO Mission Advisory Panel (NEOMAP) established • Kinetic impactor validation ranked highest importance 2004- • Don Quijote mission selected and studied up to phase-A level 2006 • SANCHO / Proba-IP orbiter up to phase A level studies, small deep-space Don Quijote Ishtar Simone 2008- mission to investigate impactor’s result 2009 • AIDA proposed by NASA: USA/impactor + ESA/impact assessment • ESA phase 0 and phase A studies on the observer spacecraft "AIM” (GSP) 2011- Proba-IP 2016 • Phase B1 study and “consolidation phase” for mission definition (GSTP) • HERA: impact observer spacecraft reformulation and optimization AIM 2017- • Phase B1 implementation + payload + technology breadboards (GSTP+SSA) Several concepts 2019 • DART phase-C kick-off on 15 May 2018 Hera iterated AIDA: An International Planetary Defense Mission U.S. National Research Council Committee “Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies” Recommendation: “If [U.S.] Congress chooses to fund mitigation research at an appropriately high level, the first priority for a space mission in the mitigation area is an experimental test of a kinetic impactor along with a characterization, monitoring, and verification system, such as the Don Quixote mission that was previously considered, but not funded, by the European Space Agency. -
ESA SSA and Instrumentation Required for Space Weather Activities
ESA SSA and instrumentation required for space weather activities Piers Jiggens, Alain Hilgers (ESTEC/TEC) Juha-Pekka Luntama, Alexi Glover (ESOC/HSO) SSA Preparatory Programme Overview (2009-2012) SSA Preparatory Programme SST NEO SWE Core CO-I CO-II Data Centre (DC-xx) Database and Prototype Requirements Architectural Portal Pilot Data and design Development Centres evaluation SN-I SN-II SN-IV SN-VI Preparation of Space Weather Space Weather Space Weather Space Weather Instruments Precursor Additional Services Implementation Service Services Design Study Operations and Development SSA Preparatory Programme Architecture studies ESA Customer Product System Req. (CRD) Spec. (PSD) Req. (SRD) CO-I Also SN-II CO-II Dedicated Space Weather Hosted SSA Spacecraft Instruments Payloads Programme Implementation Architectural Astrium Design Study Design Study (GmbH) Gather Instrument Astrium Kayser-Threde Documentation (GmbH) (GmbH) 2010 - Produce shortlist of Covering all 3 Covering only one viable missions Segments: segment: 2013 Space Surveillance Space Weather Match instruments & Tracking (other 2 are to missions Near-Earth Objects covered under a Space Weather separate contract) Determine 2012-2014 2013-2014 Development Plan SN-II: Space Weather Instrument Implementation Design Study - Inputs 1. Create database of instruments (46 originally included) Astrium (GmbH) 2. AO + instrument workshop (ESTEC, November 2010) Project Manager: Norbert Pailer 3. List of all possible mission opportunities (> 200 initially) 4. Shortlist of representative instruments based on maturity at the time and the amount of data provided (Design Descriptions, ICDs) including: • Radiation Monitors: NGRM, HMRM, EPT, SREM; Plasma instruments: SW- ChaPS, AMBER, AMBER_GEO, M-NLP • Micrometeoroids: AIDA-IS, SODA; Surface Potential: SPD; Magnetometer: MRMAG; Auroral Imager: WFAI; Solar X-rays: XFM 5. -
Landing and Operations on Comet 67P/Churyumov–Gerasimenko
Acta Astronautica ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Rosetta Lander – Landing and operations on comet 67P/Churyumov–Gerasimenko Stephan Ulamec a,n, Cinzia Fantinati a, Michael Maibaum a, Koen Geurts a, Jens Biele a, Sven Jansen a, Oliver Küchemann a, Barbara Cozzoni a, Felix Finke a, Valentina Lommatsch a, Aurelie Moussi-Soffys b, Cedric Delmas b, Laurence O´Rourke c a DLR, D-51147 Köln, Germany b CNES, F-31055 Toulouse, France c ESA/ESAC, Urb. Villafranca del Castillo, ES-28691 Madrid, Spain article info abstract Article history: The Rosetta Lander Philae is part of the ESA Rosetta Mission which reached comet 67P/ Received 2 October 2015 Churyumov–Gerasimenko after a 10 year cruise in August 2014. Since then, Rosetta has Received in revised form been studying both its nucleus and coma with instruments aboard the Orbiter. On 16 November 2015 November 12th, 2014 the Lander, Philae, was successfully delivered to the surface of the Accepted 24 November 2015 comet and operated for approximately 64 h after separation from the mother spacecraft. Since the active cold gas system aboard the Lander as well as the anchoring harpoons did Keywords: not work, Philae bounced after the first touch-down at the planned landing site “Agilkia”.At Rosetta the final landing site, “Abydos”, a modified First Scientific Sequence was performed. Due to Philae the unexpectedly low illumination conditions and a lack of anchoring the sequence had to Lander be adapted in order to minimize risk and maximize the scientific output. All ten instru- Comet Operations ments could be activated at least once, before Philae went into hibernation. -
Enhanced Gravity Tractor Technique for Planetary Defense
4th IAA Planetary Defense Conference – PDC 2015 13-17 April 2015, Frascati, Roma, Italy IAA-PDC-15-04-11 ENHANCED GRAVITY TRACTOR TECHNIQUE FOR PLANETARY DEFENSE Daniel D. Mazanek(1), David M. Reeves(2), Joshua B. Hopkins(3), Darren W. Wade(4), Marco Tantardini(5), and Haijun Shen(6) (1)NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-1739, (2) NASA Langley Research Center, Mail Stop 462, 1 North Dryden Street, Hampton, VA, 23681, USA, 1-757-864-9256, (3)Lockheed Martin Space Systems Company, Mail Stop H3005, PO Box 179, Denver, CO 80201, USA, 1-303- 971-7928, (4)Lockheed Martin Space Systems Company, Mail Stop S8110, PO Box 179, Denver, CO 80201, USA, 1-303-977-4671, (5)Independent, via Tibaldi 5, Cremona, Italy, +393381003736, (6)Analytical Mechanics Associates, Inc., 21 Enterprise Parkway, Suite 300, Hampton, VA 23666, USA, 1-757-865-0000, Keywords: enhanced gravity tractor, in-situ mass augmentation, asteroid and comet deflection, planetary defense, low-thrust, high-efficiency propulsion, gravitational attraction, robotic mass collection Abstract Given sufficient warning time, Earth-impacting asteroids and comets can be deflected with a variety of different “slow push/pull” techniques. The gravity tractor is one technique that uses the gravitational attraction of a rendezvous spacecraft to the impactor and a low-thrust, high-efficiency propulsion system to provide a gradual velocity change and alter its trajectory. An innovation to this technique, known as the Enhanced Gravity Tractor (EGT), uses mass collected in-situ to augment the mass of the spacecraft, thereby greatly increasing the gravitational force between the objects. -
Stardust Sample Return
National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey -
WV Graded Music List 2011
2011 WV Graded Music List, p. 1 2011 West Virginia Graded Music List Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade Artist Arranger Title Publisher 1 - Higgins, John Suo Gan HL 1 - McGinty Japanese Folk Trilogy QU 1 - McGinty, Anne Elizabethan Songbook, An KJ 1 - Navarre, Randy Ngiele, Ngiele NMP 1 - Ployhar Along the Western Trail BE 1 - Ployhar Minka BE 1 - Ployhar Volga Boat Song BE 1 - Smith, R.W. Appalachian Overture BE Variant on an Old English 1 - Smith, R.W. BE Carol 1 - Story A Jubilant Carol BE 1 - Story Classic Bits and Pieces BE 1 - Story Patriotic Bits and Pieces BE 1 - Swearingen Three Chorales for Band BE 1 - Sweeney Shenandoah HL 1 Adams Valse Petite SP 1 Akers Berkshire Hills BO 1 Akers Little Classic Suite CF 1 Aleicheim Schaffer Israeli Folk Songs PO 1 Anderson Ford Forgotten Dreams BE 1 Anderson Ford Sandpaper Ballet BE 1 Arcadelt Whiting Ave Maria EM 1 Arensky Powell The Cuckoo PO 1 Bach Gardner Little Bach Suite ST Grand Finale from Cantata 1 Bach Gordon BO #207 1 Bach Walters Celebrated Air RU 1 Bain, James L. M Wagner Brother James' Air BE 1 Balent Bold Adventure WB Drummin' With Reuben And 1 Balent BE Rachel 1 Balent Lonesome Tune WB 1 Balmages Gettysburg FJ 2011 WV Graded Music List, p. 2 1 Balmages Majestica FJ 1 Barnes Ivory Towers of Xanadu SP 1 Bartok Castle Hungarian Folk Suite AL 1 Beethoven Clark Theme From Fifth Symphony HL 1 Beethoven Foulkes Creation's Hymn PO 1 Beethoven Henderson Hymn to Joy PO 1 Beethoven Mitchell Ode To Joy CF 1 Beethoven Sebesky Three Beethoven Miniatures Al 1 Beethoven Tolmage -
Asteroid Impact Mission (AIM)
Asteroid Impact Mission (AIM) Andrés Gálvez, ESA HQ, Paris, France Ian Carnelli, ESA HQ, Paris, France Carlos Corral, ESTEC, Noordwijk, The Netherlands & the AIDA team (JHU/APL, NASA, OCA. DLR) NEO mission studies in ESA Near-Earth Objects (NEOs); impact probability is very low but effects can be extremely severe ; ESA addresses risk assessment and works with data users, but these users also need missions There is still very limited practical knowledge on the best technology approach to tackle NEO impact threats. NASA/JHU ESA Don Quijote study . After ESA’s Mission Advisory Panel recommendation, ESA studied Don Quijote asteroid mission . Two launches . Interceptor . Rendezvous . Not affordable techno demonstration for ESA 5/29/2012 3 AIDA Background . The Double Asteroid Redirection Test (DART) study undertaken by APL in 2011-2012 with participation of NASA NASA HQ, GSFC, JSC, LaRC, JPL Asteroid impact and deflection, . The Asteroid Impact Mission (AIM) study undertaken by ESA in 2012 with OCA, DLR Impact test and characterization 5/29/2012 4 The AIDA concept . AIDA will send two spacecraft to the binary asteroid 65803 Didymos Asteroid impactor Asteroid rendezvous . Each AIDA component is independent and has unique value AIDA = AIM + DART 5/29/2012 5 Target: Didymos Didymos Spectral type Xk Primary rotation 2.26 hr Binary orbit period 11.91 hr Binary orbit semi-major axis 1.05 km Primary diameter 800 m Secondary diameter 150 m Magnitude H 18 Pole Solutions (λ,β) = (157°,19°); (329°,-70°) Heliocentric Orbit . Spacecraft impact (in Eccentricity 0.384 2022) will change Inclination 3.41° mutual orbit of binary Semi-major axis 1.645 AU . -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg -
A Mobile Asteroid Surface Scout for the AIDA Mission
Geophysical Research Abstracts Vol. 18, EGU2016-16163, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. A Mobile Asteroid Surface Scout for the AIDA Mission Tra Mi Ho (1), Caroline Lange (1), Christian Grimm (1), Jan Thimo Grundmann (1), Johannes Rößler (1), Silvio Schröder (1), Thomas Skoczylas (1), Christian Ziach (1), Jens Biele (2), Barbara Cozzoni (2), Christian Krause (2), Oliver Küchemann (2), Michael Maibaum (2), Stephan Ulamec (2), Michael Lange (3), Olaf Mierheim (3), Maximilian Maier (4), Alain Herique (5), and Mascot Study Team () (1) DLR RY, Bremen, Germany, (2) DLR MUSC, Cologne, Germany, (3) DLR FA, Braunschweig, Germany, (4) DLR RM, Oberpfaffenhofen, Germany, (5) IPAG UJF/CNRS, Grenoble, France The Asteroid Impact Deflection, AIDA, mission is composed of a kinetic impactor, DART and an observer, the Asteroid Impact Monitor, AIM, carrying among other payload a surface package, MASCOT2 (MSC2). Its proposed concept is based on the MASCOT lander onboard the HAYABUSA2 Mission (JAXA) to near-Earth asteroid (162173) Ryugu. MASCOT is a compact platform (‘shoe box size’) carrying a suite of 4 scientific instruments and has a landed mass of ∼10kg. Equipped with a mobility mechanism, the MASCOT lander is able to upright and relocate on the targeted asteroid; thus providing in-situ data at more than one site. In the context of the AIDA Mission, the MASCOT2 lander would be carried by the AIM spacecraft and delivered onto Didymoon, the secondary object in the (65803) Didymos binary near-Earth asteroid system. Since the mission objectives of the AIM mission within the joint AIDA mission concept differ from JAXA’s sample return mission HAYABUSA2, several design changes need to be studied and implemented.