Mathematical Sculpture Classification: Present Proposal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Feasibility Study for Teaching Geometry and Other Topics Using Three-Dimensional Printers
Feasibility Study For Teaching Geometry and Other Topics Using Three-Dimensional Printers Elizabeth Ann Slavkovsky A Thesis in the Field of Mathematics for Teaching for the Degree of Master of Liberal Arts in Extension Studies Harvard University October 2012 Abstract Since 2003, 3D printer technology has shown explosive growth, and has become significantly less expensive and more available. 3D printers at a hobbyist level are available for as little as $550, putting them in reach of individuals and schools. In addition, there are many “pay by the part” 3D printing services available to anyone who can design in three dimensions. 3D graphics programs are also widely available; where 10 years ago few could afford the technology to design in three dimensions, now anyone with a computer can download Google SketchUp or Blender for free. Many jobs now require more 3D skills, including medical, mining, video game design, and countless other fields. Because of this, the 3D printer has found its way into the classroom, particularly for STEM (science, technology, engineering, and math) programs in all grade levels. However, most of these programs focus mainly on the design and engineering possibilities for students. This thesis project was to explore the difficulty and benefits of the technology in the mathematics classroom. For this thesis project we researched the technology available and purchased a hobby-level 3D printer to see how well it might work for someone without extensive technology background. We sent designed parts away. In addition, we tried out Google SketchUp, Blender, Mathematica, and other programs for designing parts. We came up with several lessons and demos around the printer design. -
Art Curriculum 1
Ogdensburg School Visual Arts Curriculum Adopted 2/23/10 Revised 5/1/12, Born on: 11/3/15, Revised 2017 , Adopted December 4, 2018 Rationale Grades K – 8 By encouraging creativity and personal expression, the Ogdensburg School District provides students in grades one to eight with a visual arts experience that facilitates personal, intellectual, social, and human growth. The Visual Arts Curriculum is structured as a discipline based art education program aligned with both the National Visual Arts Standards and the New Jersey Core Curriculum Content Standards for the Visual and Performing Arts. Students will increase their understanding of the creative process, the history of arts and culture, performance, aesthetic awareness, and critique methodologies. The arts are deeply embedded in our lives shaping our daily experiences. The arts challenge old perspectives while connecting each new generation from those in the past. They have served as a visual means of communication which have described, defined, and deepened our experiences. An education in the arts fosters a learning community that demonstrates an understanding of the elements and principles that promote creation, the influence of the visual arts throughout history and across cultures, the technologies appropriate for creating, the study of aesthetics, and critique methodologies. The arts are a valuable tool that enhances learning st across all disciplines, augments the quality of life, and possesses technical skills essential in the 21 century. The arts serve as a visual means of communication. Through the arts, students have the ability to express feelings and ideas contributing to the healthy development of children’s minds. These unique forms of expression and communication encourage students into various ways of thinking and understanding. -
THIAGO JOSÉ CÓSER Possibilidades Da Produção Artística Via
THIAGO JOSÉ CÓSER Possibilidades da produção artística via prototipagem rápida: processos CAD/CAM na elaboração e confecção de obras de arte e o vislumbre de um percurso poético individualizado neste ensaio. Dissertação apresentada ao Instituto de Artes da Universidade Estadual de Campinas, para a obtenção do título de mestre em Artes. Área de concentração: Artes Visuais Orientador: Prof. Dr. Marco Antonio Alves do Valle Campinas 2010 3 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE ARTES DA UNICAMP Cóser, Thiago José. C89p Possibilidades da produção artística via Prototipagem Rápida: Processos CAD/CAM na elaboração e confecção de obras de arte e o vislumbre de um percurso poético individualizado neste ensaio. : Thiago José Cóser. – Campinas, SP: [s.n.], 2010. Orientador: Prof. Dr. Marco Antonio Alves do Valle. Dissertação(mestrado) - Universidade Estadual de Campinas, Instituto de Artes. 1. Prototipagem rápida. 2. Arte. 3. Sistema CAD/CAM. 4. Modelagem 3D. 5. escultura. I. Valle, Marco Antonio Alves do. II. Universidade Estadual de Campinas. Instituto de Artes. III. Título. (em/ia) Título em inglês: “Possibilities of Art via Rapid Prototyping: using CAD / CAM systems to create art works and a glimpse of a poetic route individualized essay.” Palavras-chave em inglês (Keywords): Rapid prototyping ; Art ; CAD/CAM systems. ; 3D modelling ; Sculpture. Titulação: Mestre em Artes. Banca examinadora: Prof. Dr. Marco Antonio Alves do Valle. Profª. Drª. Sylvia Helena Furegatti. Prof. Dr. Francisco Borges Filho. Prof. Dr. Carlos Roberto Fernandes. (suplente) Prof. Dr. José Mario De Martino. (suplente) Data da Defesa: 26-02-2010 Programa de Pós-Graduação: Artes. 4 5 Agradecimentos Ao meu orientador, profº Dr. -
PROJECT DESCRIPTIONS — MATHCAMP 2016 Contents Assaf's
PROJECT DESCRIPTIONS | MATHCAMP 2016 Contents Assaf's Projects 2 Board Game Design/Analysis 2 Covering Spaces 2 Differential Geometry 3 Chris's Projects 3 Π1 of Campus 3 Don's Projects 3 Analytics of Football Drafts 3 Open Problems in Knowledge Puzzles 4 Finite Topological Spaces 4 David's Projects 4 p-adics in Sage 4 Gloria's Projects 5 Mathematical Crochet and Knitting 5 Jackie's Projects 5 Hanabi AI 5 Jane's Projects 6 Art Gallery Problems 6 Fractal Art 6 Jeff's Projects 6 Building a Radio 6 Games with Graphs 7 Lines and Knots 7 Knots in the Campus 7 Cities and Graphs 8 Mark's Projects 8 Knight's Tours 8 Period of the Fibonacci sequence modulo n 9 Misha's Projects 9 How to Write a Cryptic Crossword 9 How to Write an Olympiad Problem 10 Nic's Projects 10 Algebraic Geometry Reading Group 10 1 MC2016 ◦ Project Descriptions 2 Ray Tracing 10 Non-Euclidean Video Games 11 Nic + Chris's Projects 11 Non-Euclidean Video Games 11 Pesto's Projects 11 Graph Minors Research 11 Linguistics Problem Writing 12 Models of Computation Similar to Programming 12 Sachi's Projects 13 Arduino 13 Sam's Projects 13 History of Math 13 Modellin' Stuff (Statistically!) 13 Reading Cauchy's Cours d'Analyse 13 Zach's Projects 14 Build a Geometric Sculpture 14 Design an Origami Model 14 Assaf's Projects Board Game Design/Analysis. (Assaf) Description: I'd like to think about and design a board game or a card game that has interesting math, but can still be played by a non-mathematician. -
Math Morphing Proximate and Evolutionary Mechanisms
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales. -
Momath's Intersection of Math And
Bridges 2020 Conference Proceedings Composite: MoMath’s Intersection of Math and Art Cindy Lawrence1 and Tim Nissen2 1Cindy Lawrence, National Museum of Mathematics, NYC; [email protected] 2Tim Nissen, National Museum of Mathematics, NYC; [email protected] Abstract That there are meaningful connections between art and mathematics is intuitively clear to mathematicians and mathematically-inspired visual artists, but the connection is often less clear to others, especially to those whose negative associations with mathematics during school-age years trigger emotions counter to feelings inspired by beautiful artworks. At the National Museum of Mathematics, the Composite gallery has been a laboratory of temporary art exhibitions. The introduction of tactile interactivity as a bridge between art and geometric forms in Solid Math, and the presentation of origami art through its often-overlooked mathematical makeup in Math Unfolded, highlighted these interconnections for visitors of all ages. New in Composite Since 2014, Composite, the gallery at the National Museum of Mathematics (MoMath) [2], has housed a series of temporary exhibitions of the work of mathematically-inclined artists including Antal Kelle ArtFormer, Miguel Berrocal, Matthew Brand, and Trevor and Ryan Oakes. In 2019, two exhibitions explored the connections between mathematics and art through multi-artist curated shows and physical interactives. Characteristic of the Museum proper, the collection of works and interactives encourages visitors to engage deeply with the content, integrating an array of models and artworks.. Solid Math, which ran from April through July of 2019, explored the geometry of regular polyhedra and showcased art based on these forms. Platonic, Archimedean, and Catalan polyhedra provided the formal constraints as well as the rhythmic underpinnings for the artists’ pieces presented in the show. -
Bathsheba Grossman
gallery: bathsheba grossman “The universe is orderly and friendly and beautiful. Structure is this lovely, versatile thing.” “It’s either right or it’s wrong. It’s either elegant or not elegant. In math, those are actual properties. Everyone agrees.” 24 Based on mathematical structures, Bathsheba Grossman’s metal artworks are an example of digital sculpture given form. by Raven Hanna Bathsheba Grossman carries around her art wher- grasp. As you attempt to trace the labyrinthine for- ever she goes. She shows strangers her two- mations, you are drawn in, mesmerized. inch metal sculptures, the babies of her collection. Although her sculptures look mathematical, the People hold them, stare at them, love them, and quantitatively-challenged are not put off. “A lot buy them. In this way, she has sold on the spot to of people who don’t know anything about math or barmaids, secretaries, bus drivers, and mail deliverers. science buy these things,” she says. “There’s a The sculptures themselves are their own best lot of raw appeal. People approach them in different marketing. After selling a sculpture to Microsoft’s ways, but almost everybody sees that they are Mark Zbikowski, famous to computer geeks and of interest.” business buffs for developing MS-DOS software, Grossman grew up in a middle-class neighbor- she watched requests from other Microsoft employ- hood in Massachusetts with English professor ees roll in. Grossman makes art people want. parents. At Yale University, she shirked the family “I think they say something important about the tradition by pursuing a degree in mathematics. -
Armed with a Knack for Patterns and Symmetry, Mathematical Sculptors Create Compelling Forms
SCIENCE AND CULTURE Armedwithaknackforpatternsandsymmetry, mathematical sculptors create compelling forms SCIENCE AND CULTURE Stephen Ornes, Science Writer When he was growing up in the 1940s and 1950s, be difficult for mathematicians to communicate to out- teachers and parents told Helaman Ferguson he would siders, says Ferguson. “It isn’t something you can tell have to choose between art and science. The two fields somebody about on the street,” he says. “But if I hand inhabited different realms, and doing one left no room them a sculpture, they’re immediately relating to it.” for the other. “If you can do science and have a lick of Sculpture, he says, can tell a story about math in an sense, you’d better,” he recalled being told, in a accessible language. 2010 essay in the Notices of the American Mathemat- Bridges between art and science no longer seem ical Society (1). “Artists starve.” outlandish nor impossible, says Ferguson. Mathematical Ferguson, who holds a doctorate in mathematics, sculptors like him mount shows, give lectures, even never chose between art and science: now nearly make a living. They teach, build, collaborate, explore, 77 years old, he’s a mathematical sculptor. Working in and push the limits of 3D printing. They invoke stone and bronze, Ferguson creates sculptures, often mathematics not only for its elegant abstractions but placed on college campuses, that turn deep mathemat- also in hopes of speaking to the ways math underlies ical ideas into solid objects that anyone—seasoned the world, often in hidden ways. professors, curious children, wayward mathophobes— can experience for themselves. -
Math Encounters Is Here!
February 2011 News! Math Encounters is Here! The Museum of Mathematics and the Simons Foundation are proud to announce the launch of Math Encounters, a new monthly public presentation series celebrating the spectacular world of mathematics. In keeping with its mission to communicate the richness of math to the public, the Museum has created Math Encounters to foster and support amateur mathematics. Each month, an expert speaker will present a talk with broad appeal on a topic related to mathematics. The talks are free to the public and are filling fast! For more information or to register, please visit mathencounters.org. Upcoming presentations: Thursday, March 3rd at 7:00 p.m. & Friday, March 4th at 6:00 p.m. Erik Demaine presents The Geometry of Origami from Science to Sculpture Thursday, April 7th at 4:30 p.m. & 7:00 p.m. Scott Kim presents Symmetry, Art, and Illusion: Amazing Symmetrical Patterns in Music, Drawing, and Dance Wednesday, May 4th at 7:00 p.m. Paul Hoffman presents The Man Who Loved Only Numbers: The Story of Paul Erdȍs; workshop by Joel Spencer Putting the “M” in “STEM” In recognition of the need for more mathematics content in the world of informal science education, MoMath is currently seeking funding to create and prototype a small, informal math experience called Math Midway 2 Go (MM2GO). With the assistance of the Science Festival Alliance, MM2GO would debut at six science festivals over the next two years. MM2GO would be the first museum-style exhibit to travel to multiple festival sites over a prolonged period of time. -
Pleasing Shapes for Topological Objects
Pleasing Shapes for Topological Objects John M. Sullivan Technische Universitat¨ Berlin [email protected] http://www.isama.org/jms/ Topology is the study of deformable shapes; to draw a picture of a topological object one must choose a particular geometric shape. One strategy is to minimize a geometric energy, of the type that also arises in many physical situations. The energy minimizers or optimal shapes are also often aesthetically pleasing. This article first appeared translated into Italian [Sul11]. I. INTRODUCTION Topology, the branch of mathematics sometimes described as “rubber-sheet geometry”, is the study of those properties of shapes that don’t change under continuous deformations. As an example, the classification of surfaces in space says that each closed surface is topologically a sphere with a cer- tain number of handles. A surface with one handle is called a torus, and might be an inner tube or a donut or a coffee cup (with a handle, of course): the indentation that actually holds the coffee doesn’t matter topologically. Similarly a topologi- cal sphere might not be round: it could be a cube (or indeed any convex shape) or the surface of a cup with no handle. Since there is so much freedom to deform a topological ob- ject, it is sometimes hard to know how to draw a picture of it. We might agree that the round sphere is the nicest example of a topological sphere – indeed it is the most symmetric. It is also the solution to many different geometric optimization problems. For instance, it can be characterized by its intrin- sic geometry: it is the unique surface in space with constant (positive) Gauss curvature. -
Galerije Antuna Augustin^I]A Original U Skulpturi
28–29 ANALI ANALI GALERIJE ANTUNA AUGUSTIN^I]A GOD. XXVIII–XXIX (2008.–2009.) • BR. 28–29 • STR. 1–472 • KLANJEC 2010. Simpozij ORIGINAL U SKULPTURI Klanjec, 4. – 6. lipnja 2008. ZBORNIK RADOVA 28 29 ISSN-0352-1826 UDK 71/77(058) ANALI GALERIJE ANTUNA AUGUSTIN^I]A GOD. XXVIII–XXIX (2008.–2009.) • BR. 28–29 • STR. 1–472 • Klanjec 2010. ISSN-0352-1826 UDK 71/77(058) CONTENTS SADR@AJ Editor’s Word Riječ urednika 5 5 LAVINIA BELUŠIĆ LAVINIA BELUŠIĆ The Concept of Originality in Pojam izvornosti u traktatima Rennaisance Italy Treatises (1435–1568) renesansne Italije (1435.–1568.) 35 9 IGOR FISKOVIĆ IGOR FISKOVIĆ The Case of the Renaissance Sculpture Slučaj renesansnog kipa Sv. Petra u of St. Peter in Vrboska Vrboskoj 51 37 VEDRANA GJUKIĆ-BENDER VEDRANA GJUKIĆ-BENDER Sculptor Innocenzo Spinazzi, Creator Innocenzo Spinazzi – kipar stvaratelj and Copyist i kopist 64 53 VESNA LOVRIĆ PLANTIĆ VESNA LOVRIĆ PLANTIĆ »The Montgolfier Brothers’ Balloon« »Balon braće Montgolfier« Luxurious Clock-Sculpture: Problems of Raskošan sat-skulptura: problemi Attribution and Dating atribucije i datacije 84 67 DR. JOSIP KOROŠEC JOSIP KOROŠEC The Role of Sculpture and the Uloga skulpture i značaj njezine Importance of Its Originality izvornosti 96 85 CONTENTS SADR@AJ MARTINA OŽANIĆ MARTINA OŽANIĆ Sculptural Group of The Holy Family – Skulpturalna grupa Svete Obitelji – Sharing Ideas and Authorship in pitanje udjela autorske invencije u Studies and Prints odnosu na grafički predložak 113 97 ANICA RIBIČIĆ-ŽUPANIĆ ANICA RIBIČIĆ-ŽUPANIĆ Francisco Pallas y Puig Francisco -
A Mathematical Art Exhibit at the 1065 AMS Meeting
th A Mathematical Art Exhibit at the 1065 AMS Meeting The 1065th AMS Meeting was held at the University of Richmond, Virginia, is a private liberal arts institution with approximately 4,000 undergraduate and graduate students in five schools. The campus consists of attractive red brick buildings in a collegiate gothic style set around shared open lawns that are connected by brick sidewalks. Westhampton Lake, at the center of the campus, completes the beauty of this university. More than 250 mathematicians from around the world attended this meeting and presented their new findings through fourteen Special Sessions. Mathematics and the Arts was one of the sessions that has organized by Michael J. Field (who was also a conference keynote speaker) from the University of Houston, Gary Greenfield (who is the Editor of the Journal of Mathematics and the Arts, Taylor & Francis) from the host university, and Reza Sarhangi, the author, from Towson University, Maryland. Because of this session it was possible for the organizers to take one more step and organize a mathematical art exhibit for the duration of the conference. The mathematical art exhibit consisted of the artworks donated to the Bridges Organization by the artists that participated in past Bridges conferences. The Bridges Organization is a non-profit organization that oversees the annual international conference of Bridges: Mathematical Connections in Art, Music, and Science (www.BridgesMathArt.org). It was very nice of AMS and the conference organizers, especially Lester Caudill from the host university, to facilitate the existence of this exhibit. The AMS Book Exhibit and Registration was located at the lobby of the Gottwald Science Center.