A Poset Framework to Model Decentralized Control Problems

Total Page:16

File Type:pdf, Size:1020Kb

A Poset Framework to Model Decentralized Control Problems A Poset Framework to Model Decentralized Control Problems Parikshit Shah and Pablo A. Parrilo Laboratory for Information and Decision Systems Massachusetts Institute of Technology, Cambridge, MA 02139. Abstract— In a previous paper [10], these authors showed 1) We study systems with time delays. It had been that posets provide a useful modeling framework for a reason- shown in a previous paper [9], that subject to certain ably large class of decentralized control problems. In this paper conditions on the delays between subsystems (namely we show more connections between posets and decentralized control. Firstly, we show that previously known results about the triangle inequality), the resulting problem was systems with time delays follow naturally using the poset frame- quadratically invariant (and thus amenable to con- work. We also mention extensions of this to infinite-dimensional vex optimization). We show that there is a natural spatio-temporal systems. Secondly, we study conditions under poset associated with systems with time delays with which the property known as quadratic invariance and poset this subadditivity property, and that the computational structure are equivalent. Through this paper, we hope to convince the reader of the important role that posets seem tractability is simply an algebraic consequence of this to play in much of the current theory of decentralized control. underlying poset. 2) We describe an extension of the preceding to spatially distributed systems. It was shown by Bamieh that spa- I. Introduction tially invariant systems with a “funnel causal” impulse response was amenable to convex optimization. Using It is well-known that in general decentralized control is our poset approach, we are able to generalize the a hard problem. Blondel and Tsitsiklis [3] have shown that funnel causality condition. certain instances of such problems are in fact intractable. 3) We study the relationship between posets and quadratic On the other hand, Voulgaris [13], [14] presented several invariance. We show that quadratic invariance can be cases where decentralized control is tractable. In a previous naturally interpreted as a transitivity property, and paper [10], the authors were able to generalize these results that under certain natural settings, poset structures in an appealing framework using partially ordered sets. This and quadratic invariance are exactly equivalent. We paper includes extensions of that work to other settings. introduce the notion of a quoset, which is a poset Rotkowitz and Lall [9] have presented a criterion known as modulo an equivalence relation. We show that un- quadratic invariance that characterizes a class of problems der similar but somewhat more general conditions, in decentralized control that have the property that problems quadratic invariance is equivalent to quosets. become convex in the Youla parameter. Our results are Posets are very well-studied objects in combinatorics. and related to this property and we show the connection to their have been used in engineering and computer science (see work in our paper. We also show how some preexisting [10] and the references therein). results on quadratic invariance of networked systems with The rest of this paper is organized as follows. In Section II time delays can be interpreted as results about underlying we introduce the order-theoretic and control theoretic prelim- partially ordered sets. inaries that will be used throughout the paper. In Section III In a previous paper [10], we developed a framework for we study systems with time delays. In Section IV we decentralized control problems using posets. We argued that study an extension of the results of Section III to spatially posets provide the right language and technical tools to talk invariant systems. In Section V, we study the connection about a more general notion of causality (also referred to between quadratic invariance and posets/incidence algebras. as hierarchical control in the literature) among subsystems. In Section VI we conclude our paper. Associated to the notion of a poset (which is a combinatorial II. Preliminaries object) is the notion of an incidence algebra [6], an algebraic object. This algebraic structure allowed us to convexify A. Order-theoretic Preliminaries the problem. We showed that some interesting examples of Definition 1: A partially ordered set (or poset) P = decentralized control that had been shown to be tractable (P, ) consists of a set P along with a binary relation in the literature were in fact specific instances of this poset which has the following properties: paradigm. In this paper, we extend this poset framework to 1) a a (reflexivity), other cases, for instance systems with time delays. 2) a b and b a implies a = b (antisymmetry), The main contributions of this paper are the following: 3) a b and b c implies a c (transitivity). Posets may be finite or infinite, depending upon the cardi- This research was funded in part by AFOSR MURI 2003-07688-1. nality of the underlying set P. Example 1: An example of a poset with three elements A standard corollary of this theorem is the following [12, (i.e., P = {a, b, c}) with order relations a b and a c Theorem 1.2.3]. −1 is shown in Figure 1. In the diagram (known as a Hasse Corollary 1: Suppose A ∈ IP is invertible. Then A ∈ IP. diagram), an up arrow indicates the relation . B. Control-theoretic Preliminaries b c In this paper we are interested in decentralized structures on linear time-invariant systems. We will not particularly emphasize the continuous or discrete time cases as our results a apply equally well to both the settings. We will consider Fig. 1. A poset on the set {1, 2, 3}. systems with the following description: u ∈ Rnu is the control input, y ∈ Rny is the plant output, w ∈ Rnw is the exogenous Definition 2: Let P be a poset. Let Q be a ring. The input, z ∈ Rnz is the system output. We will be interested in set of all functions representing our systems via transfer function matrices as f : P×P→ Q P (ω) P (ω) P(ω) = 11 12 , with the property that f (x, y) = 0 if x y is called the " P21(ω) P22(ω) # incidence algebra of P over Q. It is denoted by IP(Q). If where P(ω) ∈ C(nw+nu)×(nz+ny) is the overall system transfer the ring is clear from the context, we will simply denote this function. Through the rest of this paper, we abbreviate by IP (we will usually work over the field of rational proper notation and define P22 = G. Furthermore, in several cases transfer functions, or related extended spaces). we will assume that system G has an equal number of inputs P When the poset is finite, the set of functions in the and outputs (i.e. nu = ny). In these cases, we will think of incidence algebra may be thought of as matrices with a G being composed of several subsystems, each subsystem specific sparsity pattern given by the order relations of the having one input and one output. While dealing with finite poset. dimensional LTI systems the signal and operator spaces will Definition 3: Let P be a poset. The function ζ(P) ∈ be the standard ones. In some sections we will be dealing IP(Q) defined by with systems with time-delays, in these cases the systems 0, if x y are no longer finite-dimensional, and the relevant spaces will ζ(P)(x, y) = ( 1, otherwise need to be appropriately extended (see [9]). We denote by Rp the set of rational proper transfer functions. Given a is called the zeta-function of P. ny ×nu controller K ∈ Rp , the closed-loop system has transfer Clearly, the zeta-function of the poset is an element of the function: incidence algebra. −1 Example 2: The matrix representation of the zeta function f (P, K) = P11 + P12K(I − GK) P21. for the poset from Example 1 is as follows: We are interested in optimal controller-synthesis problems of 1 1 1 the form: ζP = 0 1 0 minimize k f (P, K) k 0 0 1 subject to K stabilizes P (2) The incidence algebra is the set of all matrices in Q3×3 which K ∈ S, have the same sparsity pattern as its zeta function. where S is some subspace of the space of controllers. In this Given two functions f, g ∈ I (Q), their sum f + g and scalar nz×nw P paper, k · k is any norm on Rp , chosen to appropriately multiplication c f are defined as usual. The product h = f · g capture the performance of the closed-loop system. In this is defined as follows: paper S will represent different constraints on the controller K (for example sparsity, or delay bounds). It may be noted h(x, y) = f (x, z)g(z, y). (1) that for general P and S there is no known technique for Xz∈P solving problem (2). As mentioned above, we will frequently think of the func- Problem (2) as presented is a non-convex problem in K. If tions in the incidence algebra of a poset as square matrices the subspace constraint K ∈ S were not present, then several (of appropriate dimensions) inheriting a sparsity pattern techniques exist for solving the problem. One approach dictated by the poset. The above definition of function towards a solution to the problem is to write an explicit multiplication is made so that it is consistent with standard parameterization of all stabilizing controllers for the prob- matrix multiplication. lem. It is desirable to have the closed-loop transfer function Theorem 1: Let P be a poset. Under the usual definition be an affine function in the parameter, so that the problem of addition, and multiplication as defined in (1) the incidence becomes convex.
Recommended publications
  • Duality for Outer $ L^ P \Mu (\Ell^ R) $ Spaces and Relation to Tent Spaces
    p r DUALITY FOR OUTER Lµpℓ q SPACES AND RELATION TO TENT SPACES MARCO FRACCAROLI p r Abstract. We prove that the outer Lµpℓ q spaces, introduced by Do and Thiele, are isomorphic to Banach spaces, and we show the expected duality properties between them for 1 ă p ď8, 1 ď r ă8 or p “ r P t1, 8u uniformly in the finite setting. In the case p “ 1, 1 ă r ď8, we exhibit a counterexample to uniformity. We show that in the upper half space setting these properties hold true in the full range 1 ď p,r ď8. These results are obtained via greedy p r decompositions of functions in Lµpℓ q. As a consequence, we establish the p p r equivalence between the classical tent spaces Tr and the outer Lµpℓ q spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on Rd. 1. Introduction The Lp theory for outer measure spaces discussed in [13] generalizes the classical product, or iteration, of weighted Lp quasi-norms. Since we are mainly interested in positive objects, we assume every function to be nonnegative unless explicitly stated. We first focus on the finite setting. On the Cartesian product X of two finite sets equipped with strictly positive weights pY,µq, pZ,νq, we can define the classical product, or iterated, L8Lr,LpLr spaces for 0 ă p, r ă8 by the quasi-norms 1 r r kfkL8ppY,µq,LrpZ,νqq “ supp νpzqfpy,zq q yPY zÿPZ ´1 r 1 “ suppµpyq ωpy,zqfpy,zq q r , yPY zÿPZ p 1 r r p kfkLpppY,µq,LrpZ,νqq “ p µpyqp νpzqfpy,zq q q , arXiv:2001.05903v1 [math.CA] 16 Jan 2020 yÿPY zÿPZ where we denote by ω “ µ b ν the induced weight on X.
    [Show full text]
  • Superadditive and Subadditive Transformations of Integrals and Aggregation Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portsmouth University Research Portal (Pure) Superadditive and subadditive transformations of integrals and aggregation functions Salvatore Greco⋆12, Radko Mesiar⋆⋆34, Fabio Rindone⋆⋆⋆1, and Ladislav Sipeky†3 1 Department of Economics and Business 95029 Catania, Italy 2 University of Portsmouth, Portsmouth Business School, Centre of Operations Research and Logistics (CORL), Richmond Building, Portland Street, Portsmouth PO1 3DE, United Kingdom 3 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering Slovak University of Technology 810 05 Bratislava, Slovakia 4 Institute of Theory of Information and Automation Czech Academy of Sciences Prague, Czech Republic Abstract. We propose the concepts of superadditive and of subadditive trans- formations of aggregation functions acting on non-negative reals, in particular of integrals with respect to monotone measures. We discuss special properties of the proposed transforms and links between some distinguished integrals. Superaddi- tive transformation of the Choquet integral, as well as of the Shilkret integral, is shown to coincide with the corresponding concave integral recently introduced by Lehrer. Similarly the transformation of the Sugeno integral is studied. Moreover, subadditive transformation of distinguished integrals is also discussed. Keywords: Aggregation function; superadditive and subadditive transformations; fuzzy integrals. 1 Introduction The concepts of subadditivity and superadditivity are very important in economics. For example, consider a production function A : Rn R assigning to each vector of pro- + → + duction factors x = (x1,...,xn) the corresponding output A(x1,...,xn). If one has available resources given by the vector x =(x1,..., xn), then, the production function A assigns the output A(x1,..., xn).
    [Show full text]
  • A Mini-Introduction to Information Theory
    A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding
    [Show full text]
  • An Upper Bound on the Size of Diamond-Free Families of Sets
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library An upper bound on the size of diamond-free families of sets Dániel Grósz∗ Abhishek Methuku† Casey Tompkins‡ Abstract Let La(n, P ) be the maximum size of a family of subsets of [n] = {1, 2,...,n} not containing P as a (weak) subposet. The diamond poset, denoted Q2, is defined on four elements x,y,z,w with the relations x < y,z and y,z < w. La(n, P ) has been studied for many posets; one of the major n open problems is determining La(n, Q2). It is conjectured that La(n, Q2) = (2+ o(1))⌊n/2⌋, and infinitely many significantly different, asymptotically tight constructions are known. Studying the average number of sets from a family of subsets of [n] on a maximal chain in the Boolean lattice 2[n] has been a fruitful method. We use a partitioning of the maximal chains and n introduce an induction method to show that La(n, Q2) ≤ (2.20711 + o(1))⌊n/2⌋, improving on the n earlier bound of (2.25 + o(1))⌊n/2⌋ by Kramer, Martin and Young. 1 Introduction Let [n]= 1, 2,...,n . The Boolean lattice 2[n] is defined as the family of all subsets of [n]= 1, 2,...,n , and the ith{ level of 2}[n] refers to the collection of all sets of size i. In 1928, Sperner proved the{ following} well-known theorem. Theorem 1.1 (Sperner [24]).
    [Show full text]
  • 5 Norms on Linear Spaces
    5 Norms on Linear Spaces 5.1 Introduction In this chapter we study norms on real or complex linear linear spaces. Definition 5.1. Let F = (F, {0, 1, +, −, ·}) be the real or the complex field. A semi-norm on an F -linear space V is a mapping ν : V −→ R that satisfies the following conditions: (i) ν(x + y) ≤ ν(x)+ ν(y) (the subadditivity property of semi-norms), and (ii) ν(ax)= |a|ν(x), for x, y ∈ V and a ∈ F . By taking a = 0 in the second condition of the definition we have ν(0)=0 for every semi-norm on a real or complex space. A semi-norm can be defined on every linear space. Indeed, if B is a basis of V , B = {vi | i ∈ I}, J is a finite subset of I, and x = i∈I xivi, define νJ (x) as P 0 if x = 0, νJ (x)= ( j∈J |aj | for x ∈ V . We leave to the readerP the verification of the fact that νJ is indeed a seminorm. Theorem 5.2. If V is a real or complex linear space and ν : V −→ R is a semi-norm on V , then ν(x − y) ≥ |ν(x) − ν(y)|, for x, y ∈ V . Proof. We have ν(x) ≤ ν(x − y)+ ν(y), so ν(x) − ν(y) ≤ ν(x − y). (5.1) 160 5 Norms on Linear Spaces Since ν(x − y)= |− 1|ν(y − x) ≥ ν(y) − ν(x) we have −(ν(x) − ν(y)) ≤ ν(x) − ν(y). (5.2) The Inequalities 5.1 and 5.2 give the desired inequality.
    [Show full text]
  • Contrasting Stochastic and Support Theory Interpretations of Subadditivity
    Error and Subadditivity 1 A Stochastic Model of Subadditivity J. Neil Bearden University of Arizona Thomas S. Wallsten University of Maryland Craig R. Fox University of California-Los Angeles RUNNING HEAD: SUBADDITIVITY AND ERROR Please address all correspondence to: J. Neil Bearden University of Arizona Department of Management and Policy 405 McClelland Hall Tucson, AZ 85721 Phone: 520-603-2092 Fax: 520-325-4171 Email address: [email protected] Error and Subadditivity 2 Abstract This paper demonstrates both formally and empirically that stochastic variability is sufficient for, and at the very least contributes to, subadditivity of probability judgments. First, making rather weak assumptions, we prove that stochastic variability in mapping covert probability judgments to overt responses is sufficient to produce subadditive judgments. Three experiments follow in which participants provided repeated probability estimates. The results demonstrate empirically the contribution of random error to subadditivity. The theorems and the experiments focus on within-respondent variability, but most studies use between-respondent designs. We use numerical simulations to extend the work to contrast within- and between-respondent measures of subadditivity. Methodological implications of all the results are discussed, emphasizing the importance of taking stochastic variability into account when estimating the role of other factors (such as the availability bias) in producing subadditive judgments. Error and Subadditivity 3 A Stochastic Model of Subadditivity People are often called on the map their subjective degree of belief to a number on the [0,1] probability interval. Researchers established early on that probability judgments depart systematically from normative principles of Bayesian updating (e.g., Phillips & Edwards, 1966).
    [Show full text]
  • Lecture 1 1 Introduction 2 How to Measure Information? 3 Notation
    CSE533: Information Theory in Computer Science September 28, 2010 Lecture 1 Lecturer: Anup Rao Scribe: Anup Rao 1 Introduction Information theory is the study of a broad variety of topics having to do with quantifying the amount of information carried by a random variable or collection of random variables, and reasoning about this information. In this course, we shall see a quick primer on basic concepts in information theory, before switching gears and getting a taste for a few domains in computer science where these concepts have been used to prove beautiful results. 2 How to measure information? There are several ways in which one might try to measure the information carried by a random variable. • We could measure how much space it takes to store the random variable, on average. For example, if X is uniformly random n-bit string, it takes n-bits of storage to write down the value of X. If X is such that there is a string a such that Pr[X = a] = 1=2, we can save on the space by encoding X so that 0 represents a and all other strings are encoded with a leading 1. With this encoding, the expected amount of space we need to store X is at most n=2 + 1. • We could measure how unpredictable X is in terms of what the probability of success is for an algorithm that tries to guess the value of X before it is sampled. If X is a uniformly random string, the best probability is 2−n. If X is as in the second example, this probability is 1=2.
    [Show full text]
  • MATH 421/510 Assignment 1
    MATH 421/510 Assignment 1 Suggested Solutions January 2018 All exercises from Folland, section 5.1. \Problem 1 (6)" below, for instance, indicates that the first problem on this assignment is Exercise 5.1.6 in Folland. Problem 1 (6). Suppose that X is a finite-dimensional normed space. Let e1; e2; : : : ; en Pn Pn be a basis for X, and define k 1 ajejk1 = 1 jajj. a) k · k1 is a norm on X. Pn n b) The map (a1; : : : ; an) 7! 1 ajej is continuous from K with the usual Euclidean topology to X with the topology defined by k · k1. c) fx 2 X : kxk1 = 1g is compact in X. d) All norms on X are equivalent. (Compare any norm to k · k1.) Solution. a) As always, we need to check positivity, homogeneity, and subadditivity. • Positivity: Pn Let x = j=1 ajej. Then kxk1 ≥ 0. Suppose that x 6= 0. Then aj 6= 0 for some 1 ≤ j ≤ n, and hence n X kxk1 = jaij ≥ jajj > 0 i=1 Conversely, suppose that x = 0. Then aj = 0 for each 1 ≤ j ≤ n, so kxk1 = 0. Pn • Homogeneity: Let x = j=1 ajej as before and let c 2 K. We compute directly: n n n n X X X X kcxk1 = c ajej = (caj)ej = jcajj = jcj jajj = jcjkxk1 j=1 1 j=1 1 j=1 j=1 as required. 1 Pn Pn • Subadditivity: If x = j=1 ajej and b = j=1 bjej, then n n n n X X X X kx + yk1 = (aj + bj)ej = jaj + bjj ≤ jajj + jbjj = kxk1 + kyk1: j=1 1 j=1 j=1 j=1 n b) Let k · k2 denote the Euclidean norm on K .
    [Show full text]
  • SUBADDITIVE FUNCTIONS of ONE REAL VARIABLE by RICHARD
    SUBADDITIVE FUNCTIONS OF ONE REAL VARIABLE I By RICHARD GEORGE LAATSCH" Bachelor of Science Central Missouri State College Warrensburg, Missouri 1953 Master of Arts University of Missouri Columbia, Missouri 1957 Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY l"lay, 1962 L \ \ \ s (. 0 f . ?. OKLAHOMA STATE UNIVERSITY LIBRARY NOV 8 1962 SUBADDITIVE FUNCTIONS OF ONE REAL VARIABLE Thesis Approved: Thesis Adviser <D�ff/�� ~ ~ffcL~~\, -y1o-z..<A/ [:.. ~ ~~~ Dean of the Graduate School 504544 ii PREFACE This paper is concerned with certain problems in the theory of subadditive functions of a real variable. The basic definitions appear on page 1 and the entire first chapter serves as an introduction and orientation to the remaining materialo Chapter II contains a basic rotation theorem and some lemmas on continuity and boundedness which will be used in later chapters. Chapters III and IV deal with several kinds of extensions of functions which yield or preserve subadditivity; in particular, Chapter III is devoted to the maximal subadditive extension to E = [O ,co) of a subaddi tive function on [O, a]. Contrary to previous work on this topic, no assumptions of continuity are made. The last three chapters are devoted to sets of subad­ ditive functions. Chapter V discusses convergence, espe­ cially uniform convergence, of subadditive functions -­ motivated by a theorem of Bruckner -- and gives an example (the Cantor function) of a monotone subadditive function with unusual propertieso In Chapters VI and VII convex cones of subadditive functions are discussed and the ex­ tremal element problems considered.
    [Show full text]
  • IEOR E4602: Quantitative Risk Management Risk Measures
    IEOR E4602: Quantitative Risk Management Risk Measures Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: [email protected] Reference: Chapter 8 of 2nd ed. of MFE’s Quantitative Risk Management. Risk Measures Let M denote the space of random variables representing portfolio losses over some fixed time interval, ∆. Assume that M is a convex cone so that If L1, L2 ∈ M then L1 + L2 ∈ M And λL1 ∈ M for every λ > 0. A risk measure is a real-valued function, % : M → R, that satisfies certain desirable properties. %(L) may be interpreted as the riskiness of a portfolio or ... ... the amount of capital that should be added to the portfolio so that it can be deemed acceptable Under this interpretation, portfolios with %(L) < 0 are already acceptable In fact, if %(L) < 0 then capital could even be withdrawn. 2 (Section 1) Axioms of Coherent Risk Measures Translation Invariance For all L ∈ M and every constant a ∈ R, we have %(L + a) = %(L) + a. - necessary if earlier risk-capital interpretation is to make sense. Subadditivity: For all L1, L2 ∈ M we have %(L1 + L2) ≤ %(L1) + %(L2) - reflects the idea that pooling risks helps to diversify a portfolio - the most debated of the risk axioms - allows for the decentralization of risk management. 3 (Section 1) Axioms of Coherent Risk Measures Positive Homogeneity For all L ∈ M and every λ > 0 we have %(λL) = λ%(L). - also controversial: has been criticized for not penalizing concentration of risk - e.g. if λ > 0 very large, then perhaps we should require %(λL) > λ%(L) - but this would be inconsistent with subadditivity: %(nL) = %(L + ··· + L) ≤ n%(L) (1) - positive homogeneity implies we must have equality in (1).
    [Show full text]
  • Topological Vector Spaces
    An introduction to some aspects of functional analysis, 3: Topological vector spaces Stephen Semmes Rice University Abstract In these notes, we give an overview of some aspects of topological vector spaces, including the use of nets and filters. Contents 1 Basic notions 3 2 Translations and dilations 4 3 Separation conditions 4 4 Bounded sets 6 5 Norms 7 6 Lp Spaces 8 7 Balanced sets 10 8 The absorbing property 11 9 Seminorms 11 10 An example 13 11 Local convexity 13 12 Metrizability 14 13 Continuous linear functionals 16 14 The Hahn–Banach theorem 17 15 Weak topologies 18 1 16 The weak∗ topology 19 17 Weak∗ compactness 21 18 Uniform boundedness 22 19 Totally bounded sets 23 20 Another example 25 21 Variations 27 22 Continuous functions 28 23 Nets 29 24 Cauchy nets 30 25 Completeness 32 26 Filters 34 27 Cauchy filters 35 28 Compactness 37 29 Ultrafilters 38 30 A technical point 40 31 Dual spaces 42 32 Bounded linear mappings 43 33 Bounded linear functionals 44 34 The dual norm 45 35 The second dual 46 36 Bounded sequences 47 37 Continuous extensions 48 38 Sublinear functions 49 39 Hahn–Banach, revisited 50 40 Convex cones 51 2 References 52 1 Basic notions Let V be a vector space over the real or complex numbers, and suppose that V is also equipped with a topological structure. In order for V to be a topological vector space, we ask that the topological and vector spaces structures on V be compatible with each other, in the sense that the vector space operations be continuous mappings.
    [Show full text]
  • 247A Notes on Lorentz Spaces Definition 1. for 1 ≤ P < ∞ and F : R D → C We Define (1) Weak(Rd) := Sup Λ∣∣{X
    247A Notes on Lorentz spaces Definition 1. For 1 ≤ p < 1 and f : Rd ! C we define ∗ 1=p (1) kfkLp ( d) := sup λ fx : jf(x)j > λg weak R λ>0 and the weak Lp space p d ∗ L ( ) := f : kfk p d < 1 : weak R Lweak(R ) p −p Equivalently, f 2 Lweak if and only if jfx : jf(x)j > λgj . λ . Warning. The quantity in (1) does not define a norm. This is the reason we append the asterisk to the usual norm notation. To make a side-by-side comparison with the usual Lp norm, we note that ZZ 1=p p−1 kfkLp = pλ dλ dx 0≤λ<jf(x)j Z 1 dλ1=p = jfjfj > λgj pλp 0 λ 1=p 1=p = p λjfjfj > λgj p dλ L ((0;1); λ ) and, with the convention that p1=1 = 1, ∗ 1=1 1=p kfkLp = p λjfjfj > λgj 1 dλ : weak L ((0;1); λ ) This suggests the following definition. Definition 2. For 1 ≤ p < 1 and 1 ≤ q ≤ 1 we define the Lorentz space Lp;q(Rd) as the space of measurable functions f for which ∗ 1=q 1=p (2) kfkLp;q := p λjfjfj > λgj q dλ < 1: L ( λ ) p;p p p;1 p From the discussion above, we see that L = L and L = Lweak. Again ∗ k · kLp;q is not a norm in general. Nevertheless, it is positively homogeneous: for all a 2 C, ∗ −1 1=p ∗ (3) kafkLp;q = λ fjfj > jaj λg Lq (dλ/λ) = jaj · kfkLp;q (strictly the case a = 0 should receive separate treatment).
    [Show full text]