Error and Subadditivity 1 A Stochastic Model of Subadditivity J. Neil Bearden University of Arizona Thomas S. Wallsten University of Maryland Craig R. Fox University of California-Los Angeles RUNNING HEAD: SUBADDITIVITY AND ERROR Please address all correspondence to: J. Neil Bearden University of Arizona Department of Management and Policy 405 McClelland Hall Tucson, AZ 85721 Phone: 520-603-2092 Fax: 520-325-4171 Email address:
[email protected] Error and Subadditivity 2 Abstract This paper demonstrates both formally and empirically that stochastic variability is sufficient for, and at the very least contributes to, subadditivity of probability judgments. First, making rather weak assumptions, we prove that stochastic variability in mapping covert probability judgments to overt responses is sufficient to produce subadditive judgments. Three experiments follow in which participants provided repeated probability estimates. The results demonstrate empirically the contribution of random error to subadditivity. The theorems and the experiments focus on within-respondent variability, but most studies use between-respondent designs. We use numerical simulations to extend the work to contrast within- and between-respondent measures of subadditivity. Methodological implications of all the results are discussed, emphasizing the importance of taking stochastic variability into account when estimating the role of other factors (such as the availability bias) in producing subadditive judgments. Error and Subadditivity 3 A Stochastic Model of Subadditivity People are often called on the map their subjective degree of belief to a number on the [0,1] probability interval. Researchers established early on that probability judgments depart systematically from normative principles of Bayesian updating (e.g., Phillips & Edwards, 1966).