5 Norms on Linear Spaces

Total Page:16

File Type:pdf, Size:1020Kb

5 Norms on Linear Spaces 5 Norms on Linear Spaces 5.1 Introduction In this chapter we study norms on real or complex linear linear spaces. Definition 5.1. Let F = (F, {0, 1, +, −, ·}) be the real or the complex field. A semi-norm on an F -linear space V is a mapping ν : V −→ R that satisfies the following conditions: (i) ν(x + y) ≤ ν(x)+ ν(y) (the subadditivity property of semi-norms), and (ii) ν(ax)= |a|ν(x), for x, y ∈ V and a ∈ F . By taking a = 0 in the second condition of the definition we have ν(0)=0 for every semi-norm on a real or complex space. A semi-norm can be defined on every linear space. Indeed, if B is a basis of V , B = {vi | i ∈ I}, J is a finite subset of I, and x = i∈I xivi, define νJ (x) as P 0 if x = 0, νJ (x)= ( j∈J |aj | for x ∈ V . We leave to the readerP the verification of the fact that νJ is indeed a seminorm. Theorem 5.2. If V is a real or complex linear space and ν : V −→ R is a semi-norm on V , then ν(x − y) ≥ |ν(x) − ν(y)|, for x, y ∈ V . Proof. We have ν(x) ≤ ν(x − y)+ ν(y), so ν(x) − ν(y) ≤ ν(x − y). (5.1) 160 5 Norms on Linear Spaces Since ν(x − y)= |− 1|ν(y − x) ≥ ν(y) − ν(x) we have −(ν(x) − ν(y)) ≤ ν(x) − ν(y). (5.2) The Inequalities 5.1 and 5.2 give the desired inequality. ⊓⊔ Corollary 5.3. If p : V −→ R is a semi-norm on V , then p(x) ≥ 0 for x ∈ V . Proof. Choose y = 0 in the inequality of Theorem 5.2 we have ν(x) ≥ |ν(x)|≥ 0. ⊓⊔ Definition 5.4. Let F = (F, {0, 1, +, −, ·}) be the real or the complex field. A norm on an F -linear space V is a semi-norm ν : V −→ R such that ν(x)=0 implies z = 0 for x ∈ V . The pair (V, ν) is referred to as a normed linear space. 5.2 Vector Norms on Rn R 1 1 Lemma 5.5. Let p, q ∈ −{0, 1} such that p + q =1. Then we have p> 1 if and only if q> 1. Furthermore, one of the numbers p, q belongs to the interval (0, 1) if and only if the other number is negative. Proof. We leave to the reader the simple proof of this statement. ⊓⊔ R 1 1 Lemma 5.6. Let p, q ∈ −{0, 1} be two numbers such that p + q = 1 and p> 1. Then, for every a,b ∈ R≥0, we have ap bq ab ≤ + , p q − 1 where the equality holds if and only if a = b 1−p . xp 1 Proof. By Lemma 5.5, we have q> 1. Consider the function f(x)= p + q −x for x ≥ 0. We have f ′(x)= xp−1 − 1, so the minimum is achieved when x =1 and f(1) = 0. Thus, − 1 f ab p−1 ≥ f(1) = 0, which amounts to p p − p−1 a b 1 − 1 + − ab p−1 ≥ 0. p q p By multiplying both sides of this inequality by b p−1 , we obtain the desired inequality. ⊓⊔ 1 1 Observe that if p + q = 1 and p< 1, then q< 0. In this case, we have the reverse inequality n 5.2 Vector Norms on R 161 ap bq ab ≥ + . (5.3) p q which can be shown by observing that the function f has a maximum in x = 1. The same inequality holds when q< 1 and therefore p< 0. Theorem 5.7 (The H¨older Inequality). Let a1,...,an and b1,...,bn be 1 1 2n nonnegative numbers, and let p and q be two numbers such that p + q =1 and p> 1. We have 1 1 n n p n q p q aibi ≤ ai · bi . i=1 i=1 ! i=1 ! X X X Proof. Define the numbers ai bi xi = 1 and yi = 1 n p p n q q ( i=1 ai ) ( i=1 bi ) for 1 ≤ i ≤ n. Lemma 5.6P applied to xi,yi yieldsP p p aibi 1 ai 1 bi 1 1 ≤ n + n . n p n q p p p q p i ai q i bi ( i=1 ai ) ( i=1 bi ) =1 =1 Adding these inequalities,P P we obtain P P 1 1 n n p n q p q aibi ≤ ai bi i=1 i=1 ! i=1 ! X X X 1 1 because p + q = 1. ⊓⊔ The nonnegativity of the numbers a1,...,an,b1,...,bn can be relaxed by using absolute values. Indeed, we can easily prove the following variant of Theorem 5.7. Theorem 5.8. Let a1,...,an and b1,...,bn be 2n numbers and let p and q 1 1 be two numbers such that p + q =1 and p> 1. We have 1 1 n n p n q p q aibi ≤ |ai| · |bi| . ! ! i=1 i=1 i=1 X X X Proof. By Theorem 5.7, we have 1 1 n n p n q p q |ai||bi|≤ |ai| · |bi| . i=1 i=1 ! i=1 ! X X X The needed equality follows from the fact that 162 5 Norms on Linear Spaces n n aibi ≤ |ai||bi|. i=1 i=1 X X ⊓⊔ We obtain as a special case the Cauchy-Schwarz inequality that was proven in Theorem 7.3. n Corollary 5.9 (The Cauchy-Schwarz Inequality for R ). Let a1,...,an and b1,...,bn be 2n numbers. We have n n n 2 2 aibi ≤ |ai| · |bi| . v v i=1 ui=1 ui=1 X uX uX t t Proof. The inequality follows immediately from Theorem 5.8 by taking p = q = 2. ⊓⊔ Theorem 5.10 (Minkowski’s Inequality). Let a1,...,an and b1,...,bn be 2n nonnegative numbers. If p ≥ 1, we have 1 1 1 n p n p n p p p p (ai + bi) ≤ ai + bi . i=1 ! i=1 ! i=1 ! X X X If p< 1, the inequality sign is reversed. Proof. For p = 1, the inequality is immediate. Therefore, we can assume that p> 1. Note that n n n p p−1 p−1 (ai + bi) = ai(ai + bi) + bi(ai + bi) . i=1 i=1 i=1 X X X 1 1 By H¨older’s inequality for p, q such that p> 1 and p + q = 1, we have 1 1 n n p n q p−1 p (p−1)q ai(ai + bi) ≤ ai (ai + bi) i=1 i=1 ! i=1 ! X X 1 X 1 n p n q p p = ai (ai + bi) . i=1 ! i=1 ! X X Similarly, we can write 1 1 n n p n q p−1 p p bi(ai + bi) ≤ bi (ai + bi) . i=1 i=1 ! i=1 ! X X X Adding the last two inequalities yields n 5.2 Vector Norms on R 163 1 1 1 n n p n p n q p p p p (ai + bi) ≤ a + b (ai + bi) , i i i=1 i=1 ! i=1 ! i=1 ! X X X X which is equivalent to inequality 1 1 1 n p n p n p p p p (ai + bi) ≤ ai + bi . i=1 ! i=1 ! i=1 ! X X X ⊓⊔ n Corollary 5.11. For p ≥ 1, the function νp : R −→ R≥0 defined by 1 n p p νp(x1,...,xn)= |xi| , i=1 ! X n n where x = (x1,...,xn) ∈ R , is a norm on the linear space (R , +, ·). Proof. We must prove that νp satisfies the conditions of Definition 5.1 and that νp(x) = 0 implies x = 0. n Let x = (x1,...,xn), y = (y1,...,yn) ∈ R . Minkowski’s inequality ap- plied to the nonnegative numbers ai = |xi| and bi = |yi| amounts to 1 1 1 n p n p n p p p p (|xi| + |yi|) ≤ |xi| + |yi| . i=1 ! i=1 ! i=1 ! X X X Since |xi + yi| ≤ |xi| + |yi| for every i, we have 1 1 1 n p n p n p p p p (|xi + yi|) ≤ |xi| + |yi| , i=1 ! i=1 ! i=1 ! X X X that is, νp(x + y) ≤ νp(x)+ νp(y). We leave to the reader the verification of n the remaining conditions. Thus, νp is a norm on R . ⊓⊔ n Example 5.12. Consider the mappings ν1, ν∞ : R −→ R given by ν1(x)= |x1| + |x2| + · · · + |xn|, ν∞(x) = max{|x1|, |x2|,..., |xn|}, n n for every x = (x1,...,xn) ∈ R . Both ν1 and ν∞ are norms on R . We will frequently use the alternative notation k x kp for νp(x). n n A special norm on R is the function ν∞ : R −→ R≥0 given by ν∞(x) = max{|xi| | 1 ≤ i ≤ n} (5.4) 164 5 Norms on Linear Spaces n for x = (x1,...,xn) ∈ R . We verify here that ν∞ satisfies the first condition of Definition 5.1. We start from the inequality |xi + yi| ≤ |xi| + |yi|≤ ν∞(x)+ ν∞(y) for every i, 1 ≤ i ≤ n. This in turn implies ν∞(x + y) = max{|xi + yi| | 1 ≤ i ≤ n}≤ ν∞(x)+ ν∞(y), which gives the desired inequality. This norm can be regarded as a limit case of the norms νp. Indeed, let Rn x ∈ and let M = max{|xi| | 1 ≤ i ≤ n} = |xℓ1 | = · · · = |xℓk | for some ℓ1,...,ℓk, where 1 ≤ ℓ1,...,ℓk ≤ n.
Recommended publications
  • Duality for Outer $ L^ P \Mu (\Ell^ R) $ Spaces and Relation to Tent Spaces
    p r DUALITY FOR OUTER Lµpℓ q SPACES AND RELATION TO TENT SPACES MARCO FRACCAROLI p r Abstract. We prove that the outer Lµpℓ q spaces, introduced by Do and Thiele, are isomorphic to Banach spaces, and we show the expected duality properties between them for 1 ă p ď8, 1 ď r ă8 or p “ r P t1, 8u uniformly in the finite setting. In the case p “ 1, 1 ă r ď8, we exhibit a counterexample to uniformity. We show that in the upper half space setting these properties hold true in the full range 1 ď p,r ď8. These results are obtained via greedy p r decompositions of functions in Lµpℓ q. As a consequence, we establish the p p r equivalence between the classical tent spaces Tr and the outer Lµpℓ q spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on Rd. 1. Introduction The Lp theory for outer measure spaces discussed in [13] generalizes the classical product, or iteration, of weighted Lp quasi-norms. Since we are mainly interested in positive objects, we assume every function to be nonnegative unless explicitly stated. We first focus on the finite setting. On the Cartesian product X of two finite sets equipped with strictly positive weights pY,µq, pZ,νq, we can define the classical product, or iterated, L8Lr,LpLr spaces for 0 ă p, r ă8 by the quasi-norms 1 r r kfkL8ppY,µq,LrpZ,νqq “ supp νpzqfpy,zq q yPY zÿPZ ´1 r 1 “ suppµpyq ωpy,zqfpy,zq q r , yPY zÿPZ p 1 r r p kfkLpppY,µq,LrpZ,νqq “ p µpyqp νpzqfpy,zq q q , arXiv:2001.05903v1 [math.CA] 16 Jan 2020 yÿPY zÿPZ where we denote by ω “ µ b ν the induced weight on X.
    [Show full text]
  • C H a P T E R § Methods Related to the Norm Al Equations
    ¡ ¢ £ ¤ ¥ ¦ § ¨ © © © © ¨ ©! "# $% &('*),+-)(./+-)0.21434576/),+98,:%;<)>=,'41/? @%3*)BAC:D8E+%=B891GF*),+H;I?H1KJ2.21K8L1GMNAPO45Q5R)S;S+T? =RU ?H1*)>./+EAVOKAPM ;<),5 ?H1G;P8W.XAVO4575R)S;S+Y? =Z8L1*)/[%\Z1*)]AB3*=,'Q;<)B=,'41/? @%3*)RAP8LU F*)BA(;S'*)Z)>@%3/? F*.4U ),1G;^U ?H1*)>./+ APOKAP;_),5a`Rbc`^dfeg`Rbih,jk=>.4U U )Blm;B'*)n1K84+o5R.EUp)B@%3*.K;q? 8L1KA>[r\0:D;_),1Ejp;B'/? A2.4s4s/+t8/.,=,' b ? A7.KFK84? l4)>lu?H1vs,+D.*=S;q? =>)m6/)>=>.43KA<)W;B'*)w=B8E)IxW=K? ),1G;W5R.K;S+Y? yn` `z? AW5Q3*=,'|{}84+-A_) =B8L1*l9? ;I? 891*)>lX;B'*.41Q`7[r~k8K{i)IF*),+NjL;B'*)71K8E+o5R.4U4)>@%3*.G;I? 891KA0.4s4s/+t8.*=,'w5R.BOw6/)Z.,l4)IM @%3*.K;_)7?H17A_8L5R)QAI? ;S3*.K;q? 8L1KA>[p1*l4)>)>lj9;B'*),+-)Q./+-)Q)SF*),1.Es4s4U ? =>.K;q? 8L1KA(?H1Q{R'/? =,'W? ;R? A s/+-)S:Y),+o+D)Blm;_8|;B'*)W3KAB3*.4Urc+HO4U 8,F|AS346KABs*.,=B)Q;_)>=,'41/? @%3*)BAB[&('/? A]=*'*.EsG;_),+}=B8*F*),+tA7? ;PM ),+-.K;q? F*)75R)S;S'K8ElAi{^'/? =,'Z./+-)R)K? ;B'*),+pl9?+D)B=S;BU OR84+k?H5Qs4U ? =K? ;BU O2+-),U .G;<)Bl7;_82;S'*)Q1K84+o5R.EU )>@%3*.G;I? 891KA>[ mWX(fQ - uK In order to solve the linear system 7 when is nonsymmetric, we can solve the equivalent system b b [¥K¦ ¡¢ £N¤ which is Symmetric Positive Definite. This system is known as the system of the normal equations associated with the least-squares problem, [ ­¦ £N¤ minimize §* R¨©7ª§*«9¬ Note that (8.1) is typically used to solve the least-squares problem (8.2) for over- ®°¯± ±²³® determined systems, i.e., when is a rectangular matrix of size , .
    [Show full text]
  • Superadditive and Subadditive Transformations of Integrals and Aggregation Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portsmouth University Research Portal (Pure) Superadditive and subadditive transformations of integrals and aggregation functions Salvatore Greco⋆12, Radko Mesiar⋆⋆34, Fabio Rindone⋆⋆⋆1, and Ladislav Sipeky†3 1 Department of Economics and Business 95029 Catania, Italy 2 University of Portsmouth, Portsmouth Business School, Centre of Operations Research and Logistics (CORL), Richmond Building, Portland Street, Portsmouth PO1 3DE, United Kingdom 3 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering Slovak University of Technology 810 05 Bratislava, Slovakia 4 Institute of Theory of Information and Automation Czech Academy of Sciences Prague, Czech Republic Abstract. We propose the concepts of superadditive and of subadditive trans- formations of aggregation functions acting on non-negative reals, in particular of integrals with respect to monotone measures. We discuss special properties of the proposed transforms and links between some distinguished integrals. Superaddi- tive transformation of the Choquet integral, as well as of the Shilkret integral, is shown to coincide with the corresponding concave integral recently introduced by Lehrer. Similarly the transformation of the Sugeno integral is studied. Moreover, subadditive transformation of distinguished integrals is also discussed. Keywords: Aggregation function; superadditive and subadditive transformations; fuzzy integrals. 1 Introduction The concepts of subadditivity and superadditivity are very important in economics. For example, consider a production function A : Rn R assigning to each vector of pro- + → + duction factors x = (x1,...,xn) the corresponding output A(x1,...,xn). If one has available resources given by the vector x =(x1,..., xn), then, the production function A assigns the output A(x1,..., xn).
    [Show full text]
  • A Mini-Introduction to Information Theory
    A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding
    [Show full text]
  • The Column and Row Hilbert Operator Spaces
    The Column and Row Hilbert Operator Spaces Roy M. Araiza Department of Mathematics Purdue University Abstract Given a Hilbert space H we present the construction and some properties of the column and row Hilbert operator spaces Hc and Hr, respectively. The main proof of the survey is showing that CB(Hc; Kc) is completely isometric to B(H ; K ); in other words, the completely bounded maps be- tween the corresponding column Hilbert operator spaces is completely isometric to the bounded operators between the Hilbert spaces. A similar theorem for the row Hilbert operator spaces follows via duality of the operator spaces. In particular there exists a natural duality between the column and row Hilbert operator spaces which we also show. The presentation and proofs are due to Effros and Ruan [1]. 1 The Column Hilbert Operator Space Given a Hilbert space H , we define the column isometry C : H −! B(C; H ) given by ξ 7! C(ξ)α := αξ; α 2 C: Then given any n 2 N; we define the nth-matrix norm on Mn(H ); by (n) kξkc;n = C (ξ) ; ξ 2 Mn(H ): These are indeed operator space matrix norms by Ruan's Representation theorem and thus we define the column Hilbert operator space as n o Hc = H ; k·kc;n : n2N It follows that given ξ 2 Mn(H ) we have that the adjoint operator of C(ξ) is given by ∗ C(ξ) : H −! C; ζ 7! (ζj ξ) : Suppose C(ξ)∗(ζ) = d; c 2 C: Then we see that cd = (cj C(ξ)∗(ζ)) = (cξj ζ) = c(ζj ξ) = (cj (ζj ξ)) : We are also able to compute the matrix norms on rectangular matrices.
    [Show full text]
  • Matrices and Linear Algebra
    Chapter 26 Matrices and linear algebra ap,mat Contents 26.1 Matrix algebra........................................... 26.2 26.1.1 Determinant (s,mat,det)................................... 26.2 26.1.2 Eigenvalues and eigenvectors (s,mat,eig).......................... 26.2 26.1.3 Hermitian and symmetric matrices............................. 26.3 26.1.4 Matrix trace (s,mat,trace).................................. 26.3 26.1.5 Inversion formulas (s,mat,mil)............................... 26.3 26.1.6 Kronecker products (s,mat,kron).............................. 26.4 26.2 Positive-definite matrices (s,mat,pd) ................................ 26.4 26.2.1 Properties of positive-definite matrices........................... 26.5 26.2.2 Partial order......................................... 26.5 26.2.3 Diagonal dominance.................................... 26.5 26.2.4 Diagonal majorizers..................................... 26.5 26.2.5 Simultaneous diagonalization................................ 26.6 26.3 Vector norms (s,mat,vnorm) .................................... 26.6 26.3.1 Examples of vector norms.................................. 26.6 26.3.2 Inequalities......................................... 26.7 26.3.3 Properties.......................................... 26.7 26.4 Inner products (s,mat,inprod) ................................... 26.7 26.4.1 Examples.......................................... 26.7 26.4.2 Properties.......................................... 26.8 26.5 Matrix norms (s,mat,mnorm) .................................... 26.8 26.5.1
    [Show full text]
  • Lecture 5 Ch. 5, Norms for Vectors and Matrices
    KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices — Why? Lecture 5 Problem: Measure size of vector or matrix. What is “small” and what is “large”? Ch. 5, Norms for vectors and matrices Problem: Measure distance between vectors or matrices. When are they “close together” or “far apart”? Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Answers are given by norms. Also: Tool to analyze convergence and stability of algorithms. 2 / 21 Vector norm — axiomatic definition Inner product — axiomatic definition Definition: LetV be a vector space over afieldF(R orC). Definition: LetV be a vector space over afieldF(R orC). A function :V R is a vector norm if for all A function , :V V F is an inner product if for all || · || → �· ·� × → x,y V x,y,z V, ∈ ∈ (1) x 0 nonnegative (1) x,x 0 nonnegative || ||≥ � �≥ (1a) x =0iffx= 0 positive (1a) x,x =0iffx=0 positive || || � � (2) cx = c x for allc F homogeneous (2) x+y,z = x,z + y,z additive || || | | || || ∈ � � � � � � (3) x+y x + y triangle inequality (3) cx,y =c x,y for allc F homogeneous || ||≤ || || || || � � � � ∈ (4) x,y = y,x Hermitian property A function not satisfying (1a) is called a vector � � � � seminorm. Interpretation: “Angle” (distance) between vectors. Interpretation: Size/length of vector. 3 / 21 4 / 21 Connections between norm and inner products Examples / Corollary: If , is an inner product, then x =( x,x ) 1 2 � The Euclidean norm (l ) onC n: �· ·� || || � � 2 is a vector norm. 2 2 2 1/2 x 2 = ( x1 + x 2 + + x n ) . Called: Vector norm derived from an inner product.
    [Show full text]
  • Matrix Norms 30.4   
    Matrix Norms 30.4 Introduction A matrix norm is a number defined in terms of the entries of the matrix. The norm is a useful quantity which can give important information about a matrix. ' • be familiar with matrices and their use in $ writing systems of equations • revise material on matrix inverses, be able to find the inverse of a 2 × 2 matrix, and know Prerequisites when no inverse exists Before starting this Section you should ... • revise Gaussian elimination and partial pivoting • be aware of the discussion of ill-conditioned and well-conditioned problems earlier in Section 30.1 #& • calculate norms and condition numbers of % Learning Outcomes small matrices • adjust certain systems of equations with a On completion you should be able to ... view to better conditioning " ! 34 HELM (2008): Workbook 30: Introduction to Numerical Methods ® 1. Matrix norms The norm of a square matrix A is a non-negative real number denoted kAk. There are several different ways of defining a matrix norm, but they all share the following properties: 1. kAk ≥ 0 for any square matrix A. 2. kAk = 0 if and only if the matrix A = 0. 3. kkAk = |k| kAk, for any scalar k. 4. kA + Bk ≤ kAk + kBk. 5. kABk ≤ kAk kBk. The norm of a matrix is a measure of how large its elements are. It is a way of determining the “size” of a matrix that is not necessarily related to how many rows or columns the matrix has. Key Point 6 Matrix Norm The norm of a matrix is a real number which is a measure of the magnitude of the matrix.
    [Show full text]
  • An Upper Bound on the Size of Diamond-Free Families of Sets
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library An upper bound on the size of diamond-free families of sets Dániel Grósz∗ Abhishek Methuku† Casey Tompkins‡ Abstract Let La(n, P ) be the maximum size of a family of subsets of [n] = {1, 2,...,n} not containing P as a (weak) subposet. The diamond poset, denoted Q2, is defined on four elements x,y,z,w with the relations x < y,z and y,z < w. La(n, P ) has been studied for many posets; one of the major n open problems is determining La(n, Q2). It is conjectured that La(n, Q2) = (2+ o(1))⌊n/2⌋, and infinitely many significantly different, asymptotically tight constructions are known. Studying the average number of sets from a family of subsets of [n] on a maximal chain in the Boolean lattice 2[n] has been a fruitful method. We use a partitioning of the maximal chains and n introduce an induction method to show that La(n, Q2) ≤ (2.20711 + o(1))⌊n/2⌋, improving on the n earlier bound of (2.25 + o(1))⌊n/2⌋ by Kramer, Martin and Young. 1 Introduction Let [n]= 1, 2,...,n . The Boolean lattice 2[n] is defined as the family of all subsets of [n]= 1, 2,...,n , and the ith{ level of 2}[n] refers to the collection of all sets of size i. In 1928, Sperner proved the{ following} well-known theorem. Theorem 1.1 (Sperner [24]).
    [Show full text]
  • A Degeneracy Framework for Scalable Graph Autoencoders
    Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) A Degeneracy Framework for Scalable Graph Autoencoders Guillaume Salha1;2 , Romain Hennequin1 , Viet Anh Tran1 and Michalis Vazirgiannis2 1Deezer Research & Development, Paris, France 2Ecole´ Polytechnique, Palaiseau, France [email protected] Abstract In this paper, we focus on the graph extensions of autoen- coders and variational autoencoders. Introduced in the 1980’s In this paper, we present a general framework to [Rumelhart et al., 1986], autoencoders (AE) regained a sig- scale graph autoencoders (AE) and graph varia- nificant popularity in the last decade through neural network tional autoencoders (VAE). This framework lever- frameworks [Baldi, 2012] as efficient tools to learn reduced ages graph degeneracy concepts to train models encoding representations of input data in an unsupervised only from a dense subset of nodes instead of us- way. Furthermore, variational autoencoders (VAE) [Kingma ing the entire graph. Together with a simple yet ef- and Welling, 2013], described as extensions of AE but actu- fective propagation mechanism, our approach sig- ally based on quite different mathematical foundations, also nificantly improves scalability and training speed recently emerged as a successful approach for unsupervised while preserving performance. We evaluate and learning from complex distributions, assuming the input data discuss our method on several variants of existing is the observed part of a larger joint model involving low- graph AE and VAE, providing the first application dimensional latent variables, optimized via variational infer- of these models to large graphs with up to millions ence approximations. [Tschannen et al., 2018] review the of nodes and edges.
    [Show full text]
  • Contrasting Stochastic and Support Theory Interpretations of Subadditivity
    Error and Subadditivity 1 A Stochastic Model of Subadditivity J. Neil Bearden University of Arizona Thomas S. Wallsten University of Maryland Craig R. Fox University of California-Los Angeles RUNNING HEAD: SUBADDITIVITY AND ERROR Please address all correspondence to: J. Neil Bearden University of Arizona Department of Management and Policy 405 McClelland Hall Tucson, AZ 85721 Phone: 520-603-2092 Fax: 520-325-4171 Email address: [email protected] Error and Subadditivity 2 Abstract This paper demonstrates both formally and empirically that stochastic variability is sufficient for, and at the very least contributes to, subadditivity of probability judgments. First, making rather weak assumptions, we prove that stochastic variability in mapping covert probability judgments to overt responses is sufficient to produce subadditive judgments. Three experiments follow in which participants provided repeated probability estimates. The results demonstrate empirically the contribution of random error to subadditivity. The theorems and the experiments focus on within-respondent variability, but most studies use between-respondent designs. We use numerical simulations to extend the work to contrast within- and between-respondent measures of subadditivity. Methodological implications of all the results are discussed, emphasizing the importance of taking stochastic variability into account when estimating the role of other factors (such as the availability bias) in producing subadditive judgments. Error and Subadditivity 3 A Stochastic Model of Subadditivity People are often called on the map their subjective degree of belief to a number on the [0,1] probability interval. Researchers established early on that probability judgments depart systematically from normative principles of Bayesian updating (e.g., Phillips & Edwards, 1966).
    [Show full text]
  • Lecture 1 1 Introduction 2 How to Measure Information? 3 Notation
    CSE533: Information Theory in Computer Science September 28, 2010 Lecture 1 Lecturer: Anup Rao Scribe: Anup Rao 1 Introduction Information theory is the study of a broad variety of topics having to do with quantifying the amount of information carried by a random variable or collection of random variables, and reasoning about this information. In this course, we shall see a quick primer on basic concepts in information theory, before switching gears and getting a taste for a few domains in computer science where these concepts have been used to prove beautiful results. 2 How to measure information? There are several ways in which one might try to measure the information carried by a random variable. • We could measure how much space it takes to store the random variable, on average. For example, if X is uniformly random n-bit string, it takes n-bits of storage to write down the value of X. If X is such that there is a string a such that Pr[X = a] = 1=2, we can save on the space by encoding X so that 0 represents a and all other strings are encoded with a leading 1. With this encoding, the expected amount of space we need to store X is at most n=2 + 1. • We could measure how unpredictable X is in terms of what the probability of success is for an algorithm that tries to guess the value of X before it is sampled. If X is a uniformly random string, the best probability is 2−n. If X is as in the second example, this probability is 1=2.
    [Show full text]