Theory of Probability Measure Theory, Classical Probability and Stochastic Analysis Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Theory of Probability Measure Theory, Classical Probability and Stochastic Analysis Lecture Notes Theory of Probability Measure theory, classical probability and stochastic analysis Lecture Notes by Gordan Žitkovi´c Department of Mathematics, The University of Texas at Austin Contents Contents 1 I Theory of Probability I 4 1 Measurable spaces 5 1.1 Families of Sets . 5 1.2 Measurable mappings . 8 1.3 Products of measurable spaces . 10 1.4 Real-valued measurable functions . 13 1.5 Additional Problems . 17 2 Measures 19 2.1 Measure spaces . 19 2.2 Extensions of measures and the coin-toss space . 24 2.3 The Lebesgue measure . 28 2.4 Signed measures . 30 2.5 Additional Problems . 33 3 Lebesgue Integration 36 3.1 The construction of the integral . 36 3.2 First properties of the integral . 39 3.3 Null sets . 44 3.4 Additional Problems . 46 4 Lebesgue Spaces and Inequalities 50 4.1 Lebesgue spaces . 50 4.2 Inequalities . 53 4.3 Additional problems . 58 5 Theorems of Fubini-Tonelli and Radon-Nikodym 60 5.1 Products of measure spaces . 60 5.2 The Radon-Nikodym Theorem . 66 5.3 Additional Problems . 70 1 6 Basic Notions of Probability 72 6.1 Probability spaces . 72 6.2 Distributions of random variables, vectors and elements . 74 6.3 Independence . 77 6.4 Sums of independent random variables and convolution . 82 6.5 Do independent random variables exist? . 84 6.6 Additional Problems . 86 7 Weak Convergence and Characteristic Functions 89 7.1 Weak convergence . 89 7.2 Characteristic functions . 96 7.3 Tail behavior . 100 7.4 The continuity theorem . 102 7.5 Additional Problems . 103 8 Classical Limit Theorems 106 8.1 The weak law of large numbers . 106 8.2 An “iid”-central limit theorem . 108 8.3 The Lindeberg-Feller Theorem . 110 8.4 Additional Problems . 114 9 Conditional Expectation 115 9.1 The definition and existence of conditional expectation . 115 9.2 Properties . 118 9.3 Regular conditional distributions . 121 9.4 Additional Problems . 128 10 Discrete Martingales 130 10.1 Discrete-time filtrations and stochastic processes . 130 10.2 Martingales . 131 10.3 Predictability and martingale transforms . 133 10.4 Stopping times . 135 10.5 Convergence of martingales . 137 10.6 Additional problems . 139 11 Uniform Integrability 142 11.1 Uniform integrability . 142 11.2 First properties of uniformly-integrable martingales . 145 11.3 Backward martingales . 147 11.4 Applications of backward martingales . 149 11.5 Exchangeability and de Finetti’s theorem (*) . 150 11.6 Additional Problems . 156 Index 158 2 Preface These notes were written (and are still being heavily edited) to help students with the graduate courses Theory of Probability I and II offered by the Department of Mathematics, University of Texas at Austin. Statements, proofs, or entire sections marked by an asterisk ( ) are not a part of the syllabus ∗ and can be skipped when preparing for midterm, final and prelim exams. GORDAN ŽITKOVIC´ Austin, TX December 2010. 3 Part I Theory of Probability I 4 Chapter 1 Measurable spaces Before we delve into measure theory, let us fix some notation and terminology. denotes a subset (not necessarily proper). • ⊆ A set A is said to be countable if there exists an injection (one-to-one mapping) from A • into N. Note that finite sets are also countable. Sets which are not countable are called uncountable. For two functions f : B C, g : A B, the composition f g : A C of f and g is given • → → ◦ → by (f g)(x)= f(g(x)), for all x A. ◦ ∈ An n N denotes a sequence. More generally, (Aγ)γ Γ denotes a collection indexed by the •{ } ∈ ∈ set Γ. 1.1 Families of Sets Definition 1.1 (Order properties) A (countable) family An n N of subsets of a non-empty set S is { } ∈ said to be 1. increasing if A A for all n N, n ⊆ n+1 ∈ 2. decreasing if A A for all n N, n ⊇ n+1 ∈ 3. pairwise disjoint if A A = for m = n, n ∩ m ∅ 4. a partition of S if An n N is pairwise disjoint and nAn = S. { } ∈ ∪ We use the notation An A to denote that the sequence An n N is increasing and A = nAn. ր { } ∈ ∪ Similarly, An A means that An n N is decreasing and A = nAn. ց { } ∈ ∩ 5 CHAPTER 1. MEASURABLE SPACES Here is a list of some properties that a family of subsets of a nonempty set S can have: S (A1) , ∅∈S (A2) S , ∈S (A3) A Ac , ∈ S ⇒ ∈S (A4) A, B A B , ∈ S ⇒ ∪ ∈S (A5) A, B , A B B A , ∈S ⊆ ⇒ \ ∈S (A6) A, B A B , ∈ S ⇒ ∩ ∈S (A7) A for all n N A , n ∈S ∈ ⇒∪n n ∈S (A8) A , for all n N and A A implies A , n ∈S ∈ n ր ∈S (A9) An , for all n N and An n N is pairwise disjoint implies nAn , ∈S ∈ { } ∈ ∪ ∈S Definition 1.2 (Families of sets) A family of subsets of a non-empty set S is called an S 1. algebra if it satisfies (A1),(A3) and (A4), 2. σ-algebra if it satisfies (A1), (A3) and (A7) 3. π-system if it satisfies (A6), 4. λ-system if it satisfies (A2), (A5) and (A8). Problem 1.3 Show that: 1. Every σ-algebra is an algebra. 2. Each algebra is a π-system and each σ-algebra is an algebra and a λ-system. 3. A family is a σ-algebra if and only if it satisfies (A1), (A3), (A6) and (A9). S 4. A λ-system which is a π-system is also a σ-algebra. 5. There are π-systems which are not algebras. 6. There are algebras which are not σ-algebras (Hint: Pick all finite subsets of an infinite set. That is not an algebra yet, but sets can be added to it so as to become an algebra which is not a σ-algebra.) 7. There are λ-systems which are not π-systems. Definition 1.4 (Generated σ-algebras) For a family of subsets of a non-empty set S, the inter- A section of all σ-algebras on S that contain is denoted by σ( ) and is called the σ-algebra generated A A by . A 6 CHAPTER 1. MEASURABLE SPACES Remark 1.5 Since the family 2S of all subsets of S is a σ-algebra, the concept of a generated σ- algebra is well defined: there is always at least one σ-algebra containing - namely 2S. σ( ) A A is itself a σ-algebra (why?) and it is the smallest (in the sense of set inclusion) σ-algebra that contains . In the same vein, one can define the algebra, the π-system and the λ-system generated A by . The only important property is that intersections of σ-algebras, π-systems and λ-systems A are themselves σ-algebras, π-systems and λ-systems. Problem 1.6 Show, by means of an example, that the union of a family of algebras (on the same S) does not need to be an algebra. Repeat for σ-algebras, π-systems and λ-systems. Definition 1.7 (Topology) A topology on a set S is a family τ of subsets of S which contains ∅ and S and is closed under finite intersections and arbitrary (countable or uncountable!) unions. The elements of τ are often called the open sets. A set S on which a topology is chosen (i.e., a pair (S,τ) of a set and a topology on it) is called a topological space. Remark 1.8 Almost all topologies in these notes will be generated by a metric, i.e., a set A S ⊂ will be open if and only if for each x A there exists ε > 0 such that y S : d(x,y) < ε A. ∈ { ∈ } ⊆ The prime example is R where a set is declared open if it can be represented as a union of open intervals. Definition 1.9 (Borel σ-algebras) If (S,τ) is a topological space, then the σ-algebra σ(τ), generated by all open sets, is called the Borel σ-algebra on (S,τ). Remark 1.10 We often abuse terminology and call S itself a topological space, if the topology τ on it is clear from the context. In the same vein, we often speak of the Borel σ-algebra on a set S. Example 1.11 Some important σ-algebras. Let S be a non-empty set: 1. The set = 2S (also denoted by (S)) consisting of all subsets of is a σ-algebra. S P S 2. At the other extreme, the family = ,S is the smallest σ-algebra on S. It is called the S {∅ } trivial σ-algebra on . S 3. The set of all subsets of S which are either countable or whose complements are countable S is a σ-algebra. It is called the countable-cocountable σ-algebra and is the smallest σ-algebra on S which contains all singletons, i.e., for which x for all x S. { }∈S ∈ 4. The Borel σ-algebra on R (generated by all open sets as defined by the Euclidean metric on R), is denoted by (R). B Problem 1.12 Show that the (R)= σ( ), for any of the following choices of the family : B A A 1. = all open subsets of R , A { } 2. = all closed subsets of R , A { } 7 CHAPTER 1. MEASURABLE SPACES 3. = all open intervals in R , A { } 4. = all closed intervals in R , A { } 5. = all left-closed right-open intervals in R , A { } 6.
Recommended publications
  • Lectures on Fractal Geometry and Dynamics
    Lectures on fractal geometry and dynamics Michael Hochman∗ March 25, 2012 Contents 1 Introduction 2 2 Preliminaries 3 3 Dimension 3 3.1 A family of examples: Middle-α Cantor sets . 3 3.2 Minkowski dimension . 4 3.3 Hausdorff dimension . 9 4 Using measures to compute dimension 13 4.1 The mass distribution principle . 13 4.2 Billingsley's lemma . 15 4.3 Frostman's lemma . 18 4.4 Product sets . 22 5 Iterated function systems 24 5.1 The Hausdorff metric . 24 5.2 Iterated function systems . 26 5.3 Self-similar sets . 31 5.4 Self-affine sets . 36 6 Geometry of measures 39 6.1 The Besicovitch covering theorem . 39 6.2 Density and differentiation theorems . 45 6.3 Dimension of a measure at a point . 48 6.4 Upper and lower dimension of measures . 50 ∗Send comments to [email protected] 1 6.5 Hausdorff measures and their densities . 52 1 Introduction Fractal geometry and its sibling, geometric measure theory, are branches of analysis which study the structure of \irregular" sets and measures in metric spaces, primarily d R . The distinction between regular and irregular sets is not a precise one but informally, k regular sets might be understood as smooth sub-manifolds of R , or perhaps Lipschitz graphs, or countable unions of the above; whereas irregular sets include just about 1 everything else, from the middle- 3 Cantor set (still highly structured) to arbitrary d Cantor sets (irregular, but topologically the same) to truly arbitrary subsets of R . d For concreteness, let us compare smooth sub-manifolds and Cantor subsets of R .
    [Show full text]
  • Vector Measures with Variation in a Banach Function Space
    VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE O. BLASCO Departamento de An´alisis Matem´atico, Universidad de Valencia, Doctor Moliner, 50 E-46100 Burjassot (Valencia), Spain E-mail:[email protected] PABLO GREGORI Departament de Matem`atiques, Universitat Jaume I de Castell´o, Campus Riu Sec E-12071 Castell´o de la Plana (Castell´o), Spain E-mail:[email protected] Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the K¨othe-Bochner function space defined as the set of measurable functions f :Ω→ X such that the nonnegative functions fX :Ω→ [0, ∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the p- variation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE (X) is then studied. It is shown, amongother thingsand with some restriction ∗ ∗ of absolute continuity of the norms, that (E(X)) = VE (X ), that VE (X) can be identified with space of cone absolutely summingoperators from E into X and that E(X)=VE (X) if and only if X has the RNP property. 1. Introduction The concept of variation in the frame of vector measures has been fruitful in several areas of the functional analysis, such as the description of the duality of vector-valued function spaces such as certain K¨othe-Bochner function spaces (Gretsky and Uhl10, Dinculeanu7), the reformulation of operator ideals such as the cone absolutely summing operators (Blasco4), and the Hardy spaces of harmonic function (Blasco2,3).
    [Show full text]
  • Duality for Outer $ L^ P \Mu (\Ell^ R) $ Spaces and Relation to Tent Spaces
    p r DUALITY FOR OUTER Lµpℓ q SPACES AND RELATION TO TENT SPACES MARCO FRACCAROLI p r Abstract. We prove that the outer Lµpℓ q spaces, introduced by Do and Thiele, are isomorphic to Banach spaces, and we show the expected duality properties between them for 1 ă p ď8, 1 ď r ă8 or p “ r P t1, 8u uniformly in the finite setting. In the case p “ 1, 1 ă r ď8, we exhibit a counterexample to uniformity. We show that in the upper half space setting these properties hold true in the full range 1 ď p,r ď8. These results are obtained via greedy p r decompositions of functions in Lµpℓ q. As a consequence, we establish the p p r equivalence between the classical tent spaces Tr and the outer Lµpℓ q spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on Rd. 1. Introduction The Lp theory for outer measure spaces discussed in [13] generalizes the classical product, or iteration, of weighted Lp quasi-norms. Since we are mainly interested in positive objects, we assume every function to be nonnegative unless explicitly stated. We first focus on the finite setting. On the Cartesian product X of two finite sets equipped with strictly positive weights pY,µq, pZ,νq, we can define the classical product, or iterated, L8Lr,LpLr spaces for 0 ă p, r ă8 by the quasi-norms 1 r r kfkL8ppY,µq,LrpZ,νqq “ supp νpzqfpy,zq q yPY zÿPZ ´1 r 1 “ suppµpyq ωpy,zqfpy,zq q r , yPY zÿPZ p 1 r r p kfkLpppY,µq,LrpZ,νqq “ p µpyqp νpzqfpy,zq q q , arXiv:2001.05903v1 [math.CA] 16 Jan 2020 yÿPY zÿPZ where we denote by ω “ µ b ν the induced weight on X.
    [Show full text]
  • Version of 21.8.15 Chapter 43 Topologies and Measures II The
    Version of 21.8.15 Chapter 43 Topologies and measures II The first chapter of this volume was ‘general’ theory of topological measure spaces; I attempted to distinguish the most important properties a topological measure can have – inner regularity, τ-additivity – and describe their interactions at an abstract level. I now turn to rather more specialized investigations, looking for features which offer explanations of the behaviour of the most important spaces, radiating outwards from Lebesgue measure. In effect, this chapter consists of three distinguishable parts and two appendices. The first three sections are based on ideas from descriptive set theory, in particular Souslin’s operation (§431); the properties of this operation are the foundation for the theory of two classes of topological space of particular importance in measure theory, the K-analytic spaces (§432) and the analytic spaces (§433). The second part of the chapter, §§434-435, collects miscellaneous results on Borel and Baire measures, looking at the ways in which topological properties of a space determine properties of the measures it carries. In §436 I present the most important theorems on the representation of linear functionals by integrals; if you like, this is the inverse operation to the construction of integrals from measures in §122. The ideas continue into §437, where I discuss spaces of signed measures representing the duals of spaces of continuous functions, and topologies on spaces of measures. The first appendix, §438, looks at a special topic: the way in which the patterns in §§434-435 are affected if we assume that our spaces are not unreasonably complex in a rather special sense defined in terms of measures on discrete spaces.
    [Show full text]
  • Superadditive and Subadditive Transformations of Integrals and Aggregation Functions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portsmouth University Research Portal (Pure) Superadditive and subadditive transformations of integrals and aggregation functions Salvatore Greco⋆12, Radko Mesiar⋆⋆34, Fabio Rindone⋆⋆⋆1, and Ladislav Sipeky†3 1 Department of Economics and Business 95029 Catania, Italy 2 University of Portsmouth, Portsmouth Business School, Centre of Operations Research and Logistics (CORL), Richmond Building, Portland Street, Portsmouth PO1 3DE, United Kingdom 3 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering Slovak University of Technology 810 05 Bratislava, Slovakia 4 Institute of Theory of Information and Automation Czech Academy of Sciences Prague, Czech Republic Abstract. We propose the concepts of superadditive and of subadditive trans- formations of aggregation functions acting on non-negative reals, in particular of integrals with respect to monotone measures. We discuss special properties of the proposed transforms and links between some distinguished integrals. Superaddi- tive transformation of the Choquet integral, as well as of the Shilkret integral, is shown to coincide with the corresponding concave integral recently introduced by Lehrer. Similarly the transformation of the Sugeno integral is studied. Moreover, subadditive transformation of distinguished integrals is also discussed. Keywords: Aggregation function; superadditive and subadditive transformations; fuzzy integrals. 1 Introduction The concepts of subadditivity and superadditivity are very important in economics. For example, consider a production function A : Rn R assigning to each vector of pro- + → + duction factors x = (x1,...,xn) the corresponding output A(x1,...,xn). If one has available resources given by the vector x =(x1,..., xn), then, the production function A assigns the output A(x1,..., xn).
    [Show full text]
  • Combinatorics in Banach Space Theory Lecture 2
    Combinatorics in Banach space theory Lecture 2 Now, we will derive the promised corollaries from Rosenthal's lemma. First, following [Ros70], we will show how this lemma implies Nikod´ym's uniform boundedness principle for bounded vector measures. Before doing this we need to recall some definitions. Definition 2.4. Let F be a set algebra. By a partition of a given set E 2 F we mean Sk a finite collection fE1;:::;Ekg of pairwise disjoint members of F such that j=1Ej = E. We denote Π(E) the set of all partitions of E. Let also X be a Banach space and µ: F ! X be a finitely additive set function (called a vector measure). The variation of µ is a function jµj: F ! [0; 1] given by ( ) X jµj(E) = sup kµ(A)k: π 2 Π(E) : A2π The semivariation of µ is a function kµk: F ! [0; 1] given by ∗ ∗ kµk = sup jx µj(E): x 2 BX∗ : By a straightforward calculation, one may check that the variation jµj is always finitely additive, whereas the semivariation kµk is monotone and finitely subadditive. Of course, we always have kµk 6 jµj. Moreover, since we know how the functionals on the scalar space (R or C) look like, it is easily seen that for scalar-valued measures the notions of variation and semivariation coincide. By saying that a vector measure µ: F ! X is bounded we mean that kµk is finitely valued. This is in turn equivalent to saying that the range of µ is a bounded subset of X.
    [Show full text]
  • An Introduction to Measure Theory Terence
    An introduction to measure theory Terence Tao Department of Mathematics, UCLA, Los Angeles, CA 90095 E-mail address: [email protected] To Garth Gaudry, who set me on the road; To my family, for their constant support; And to the readers of my blog, for their feedback and contributions. Contents Preface ix Notation x Acknowledgments xvi Chapter 1. Measure theory 1 x1.1. Prologue: The problem of measure 2 x1.2. Lebesgue measure 17 x1.3. The Lebesgue integral 46 x1.4. Abstract measure spaces 79 x1.5. Modes of convergence 114 x1.6. Differentiation theorems 131 x1.7. Outer measures, pre-measures, and product measures 179 Chapter 2. Related articles 209 x2.1. Problem solving strategies 210 x2.2. The Radamacher differentiation theorem 226 x2.3. Probability spaces 232 x2.4. Infinite product spaces and the Kolmogorov extension theorem 235 Bibliography 243 vii viii Contents Index 245 Preface In the fall of 2010, I taught an introductory one-quarter course on graduate real analysis, focusing in particular on the basics of mea- sure and integration theory, both in Euclidean spaces and in abstract measure spaces. This text is based on my lecture notes of that course, which are also available online on my blog terrytao.wordpress.com, together with some supplementary material, such as a section on prob- lem solving strategies in real analysis (Section 2.1) which evolved from discussions with my students. This text is intended to form a prequel to my graduate text [Ta2010] (henceforth referred to as An epsilon of room, Vol. I ), which is an introduction to the analysis of Hilbert and Banach spaces (such as Lp and Sobolev spaces), point-set topology, and related top- ics such as Fourier analysis and the theory of distributions; together, they serve as a text for a complete first-year graduate course in real analysis.
    [Show full text]
  • A Mini-Introduction to Information Theory
    A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding
    [Show full text]
  • Banach Space Properties of V of a Vector Measure
    proceedings of the american mathematical society Volume 123, Number 12. December 1995 BANACHSPACE PROPERTIES OF V OF A VECTOR MEASURE GUILLERMO P. CURBERA (Communicated by Dale Alspach) Abstract. We consider the space L'(i>) of real functions which are integrable with respect to a measure v with values in a Banach space X . We study type and cotype for Lx{v). We study conditions on the measure v and the Banach space X that imply that Ll(v) is a Hilbert space, or has the Dunford-Pettis property. We also consider weak convergence in Lx(v). 1. Introduction Given a vector measure v with values in a Banach space X, Lx(v) denotes the space of (classes of) real functions which are integrable with respect to v in the sense of Bartle, Dunford and Schwartz [BDS] and Lewis [L-l]. This space has been studied by Kluvanek and Knowles [KK], Thomas [T] and Okada [O]. It is an order continuous Banach lattice with weak unit. In [C-l, Theorem 8] we have identified the class of spaces Lx(v) , showing that every order continuous Banach lattice with weak unit can be obtained, order isometrically, as L1 of a suitable vector measure. A natural question arises: what is the relation between, on the one hand, the properties of the Banach space X and the measure v, and, on the other hand, the properties of the resulting space Lx(v) . The complexity of the situ- ation is shown by the following example: the measures, defined over Lebesgue measurable sets of [0,1], vx(A) = m(A) £ R, v2(A) = Xa e £'([0, 1]) and v3 — (]"Ar„(t)dt) £ Co, where rn are the Rademacher functions, generate, order isometrically, the same space, namely 7J([0, 1]).
    [Show full text]
  • FLOWS of MEASURES GENERATED by VECTOR FIELDS 1. Introduction Every Sufficiently Smooth and Bounded Vector Field V in the Euclide
    FLOWS OF MEASURES GENERATED BY VECTOR FIELDS EMANUELE PAOLINI AND EUGENE STEPANOV Abstract. The scope of the paper is twofold. We show that for a large class of measurable vector fields in the sense of N. Weaver (i.e. derivations over the algebra of Lipschitz functions), called in the paper laminated, the notion of integral curves may be naturally defined and characterized (when appropriate) by an ODE. We further show, that for such vector fields the notion of a flow of the given positive Borel measure similar to the classical one generated by a smooth vector field (in a space with smooth structure) may be defined in a reasonable way, so that the measure “flows along” the appropriately understood integral curves of the given vector field and the classical continuity equation is satisfied in the weak sense. 1. Introduction Every sufficiently smooth and bounded vector field V in the Euclidean space E = Rn is well-known to generate a canonical flow of a given finite Borel measure t + t µ in E by setting µt := ϕ µ, t R , where ϕ (x) := θ(t), θ standing for the V # ∈ V unique solution to the differential equation (1.1) θ˙(t)= V (θ(t)) satisfying the initial condition θ(0) = x. Such a flow satisfies the continuity equation ∂µ (1.2) t + div v µ =0 ∂t t t + in the weak sense in E R , where vt : E E is some velocity field (of course, non unique for the given×V , but in particular,→ this equation is satisfied in this case with vt := V ).
    [Show full text]
  • Ergodicity and Metric Transitivity
    Chapter 25 Ergodicity and Metric Transitivity Section 25.1 explains the ideas of ergodicity (roughly, there is only one invariant set of positive measure) and metric transivity (roughly, the system has a positive probability of going from any- where to anywhere), and why they are (almost) the same. Section 25.2 gives some examples of ergodic systems. Section 25.3 deduces some consequences of ergodicity, most im- portantly that time averages have deterministic limits ( 25.3.1), and an asymptotic approach to independence between even§ts at widely separated times ( 25.3.2), admittedly in a very weak sense. § 25.1 Metric Transitivity Definition 341 (Ergodic Systems, Processes, Measures and Transfor- mations) A dynamical system Ξ, , µ, T is ergodic, or an ergodic system or an ergodic process when µ(C) = 0 orXµ(C) = 1 for every T -invariant set C. µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or just an ergodic measure and ergodic transformation, respectively. Remark: Most authorities require a µ-ergodic transformation to also be measure-preserving for µ. But (Corollary 54) measure-preserving transforma- tions are necessarily stationary, and we want to minimize our stationarity as- sumptions. So what most books call “ergodic”, we have to qualify as “stationary and ergodic”. (Conversely, when other people talk about processes being “sta- tionary and ergodic”, they mean “stationary with only one ergodic component”; but of that, more later. Definition 342 (Metric Transitivity) A dynamical system is metrically tran- sitive, metrically indecomposable, or irreducible when, for any two sets A, B n ∈ , if µ(A), µ(B) > 0, there exists an n such that µ(T − A B) > 0.
    [Show full text]
  • Defining Physics at Imaginary Time: Reflection Positivity for Certain
    Defining physics at imaginary time: reflection positivity for certain Riemannian manifolds A thesis presented by Christian Coolidge Anderson [email protected] (978) 204-7656 to the Department of Mathematics in partial fulfillment of the requirements for an honors degree. Advised by Professor Arthur Jaffe. Harvard University Cambridge, Massachusetts March 2013 Contents 1 Introduction 1 2 Axiomatic quantum field theory 2 3 Definition of reflection positivity 4 4 Reflection positivity on a Riemannian manifold M 7 4.1 Function space E over M ..................... 7 4.2 Reflection on M .......................... 10 4.3 Reflection positive inner product on E+ ⊂ E . 11 5 The Osterwalder-Schrader construction 12 5.1 Quantization of operators . 13 5.2 Examples of quantizable operators . 14 5.3 Quantization domains . 16 5.4 The Hamiltonian . 17 6 Reflection positivity on the level of group representations 17 6.1 Weakened quantization condition . 18 6.2 Symmetric local semigroups . 19 6.3 A unitary representation for Glor . 20 7 Construction of reflection positive measures 22 7.1 Nuclear spaces . 23 7.2 Construction of nuclear space over M . 24 7.3 Gaussian measures . 27 7.4 Construction of Gaussian measure . 28 7.5 OS axioms for the Gaussian measure . 30 8 Reflection positivity for the Laplacian covariance 31 9 Reflection positivity for the Dirac covariance 34 9.1 Introduction to the Dirac operator . 35 9.2 Proof of reflection positivity . 38 10 Conclusion 40 11 Appendix A: Cited theorems 40 12 Acknowledgments 41 1 Introduction Two concepts dominate contemporary physics: relativity and quantum me- chanics. They unite to describe the physics of interacting particles, which live in relativistic spacetime while exhibiting quantum behavior.
    [Show full text]