Aircraft Icing Study Using Integrated Observations and Model Data

Total Page:16

File Type:pdf, Size:1020Kb

Aircraft Icing Study Using Integrated Observations and Model Data VOLUME 34 WEATHER AND FORECASTING JUNE 2019 Aircraft Icing Study Using Integrated Observations and Model Data FAISAL BOUDALA Observation Based Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada GEORGE A. ISAAC Weather Impacts Consulting Incorporated, Barrie, Ontario, Canada DI WU Observation Based Research Section, Environment and Climate Change Canada, Toronto, Ontario, Canada (Manuscript received 19 March 2018, in final form 21 February 2019) ABSTRACT Light (LGT) to moderate (MOD) aircraft icing (AI) is frequently reported at Cold Lake, Alberta, but forecasting AI has been a big challenge. The purpose of this study is to investigate and understand the weather conditions associated with AI based on observations in order to improve the icing forecast. To achieve this goal, Environment and Climate Change Canada in cooperation with the Department of National Defence deployed a number of ground-based instruments that include a microwave radiometer, a ceilometer, disdrometers, and conventional present weather sensors at the Cold Lake airport (CYOD). A number of pilot reports (PIREPs) of icing at Cold Lake during the 2016/17 winter period and associated observation data are examined. Most of the AI events were LGT (76%) followed by MOD (20%) and occurred during landing and takeoff at relatively warm temperatures. Two AI intensity algorithms have been tested based on an ice 21 accumulation rate (IAR) assuming a cylindrical shape moving with airspeed ya of 60 and 89.4 m s ,andthe Canadian numerical weather prediction model forecasts. It was found that the algorithms IAR2 with ya 5 21 21 89.4 m s and IAR1 with ya 5 60 m s underestimated (overestimated) the LGT (MOD) icing events, 21 respectively. The algorithm IAR2 with ya 5 60 m s appeared to be more suitable for forecasting LGT icing. Over all, the hit rate score was 0.33 for the 1200 UTC model run and 0.6 for 0000 UTC run for both algorithms, but based on the individual icing intensity scores, the IAR2 did better than IAR1 for forecasting LGT icing events. 1. Introduction and duration of exposure to the icing environment. The Federal Aviation Administration (FAA) certification rule, Inflight icing occurs when an airfoil impacts with based on the Code of Federal Regulations Title 14, supercooled liquid drops that freeze on the surface, which Chapter 1, Part 25, Appendix C (FAR 25-C), only in- can degrade the performance of an aircraft to the point cludes the smaller drops with a mean effective diameter of lost control. The type of icing, such as clear, rime, or less than 40 mm, and was developed for accretion of ice mixed, depends on the cloud particle size distribution 2 on a nonrotating cylinder moving at 89.4 m s 1 (174 kt or N(D) of the supercooled drops and temperature. The se- 2 200 mi h 1) with a diameter of 3 in. (Jeck 2001,and verity or intensity of icing is usually characterized as trace, references therein). Now there is recognition of the light, moderate, and heavy, but the definition varies. The importance of larger drops (.50 mm) usually referred to icing intensity definitions for pilot reports (PIREPs), which as supercooled large drops (SLD) as described in Cober appear in the Aeronautical Information Manual (AIM), et al. (2001, 2009) and Cober and Isaac (2012). Currently are very complex. They depend on many factors including these finding are incorporated into the Appendix O icing the size and shape of the aircraft, ice accumulation rate, envelope for SLD (https://www.gpo.gov/fdsys/pkg/FR- 2014-11-04/pdf/2014-25789.pdf). Corresponding author: Dr. Faisal Boudala, faisal.boudala@ The icing intensity scale (IIS) that was originally canada.ca adapted in the 1940s by the U.S. Weather Bureau [now DOI: 10.1175/WAF-D-18-0037.1 Ó 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). 485 Unauthenticated | Downloaded 09/30/21 08:47 PM UTC 486 WEATHER AND FORECASTING VOLUME 34 incorporated into the National Oceanic and Atmospheric the instrumentation are given. A brief description of the 2 2 Administration (NOAA)] was defined as 0–1 g cm 2 h 2 HRDPS model is given in section 3. Comparisons of the 2 2 2 2 [trace (TR)], 1–6 g cm 2 h 2 [light (LGT)], 6–12 g cm 2 h 2 observed bulk microphysical quantities at the ground 2 2 [moderate (MOD)], or .12 g cm 2 h 2 [heavy or severe level against the HRDPS model predictions are pro- (SEV)]. The FAA Aviation Weather Research Program vided in section 4.Insection 5, the description of the ice Inflight Icing Product Development Team proposed a new accumulation algorithms is given along with some case approach for determining icing intensity that depends on an studies, and finally the data analysis results are discussed alternative ice accumulation rate in centimeters per hour in section 6. using several airfoil shapes including a cylinder (Politovich 2 2009). Using this method, the IIS is defined as 0.6–2.5 cm h 1 2 2 2. Study location and instrumentation (light), 2.5–7.5 cm h 1 (moderate), and .7.5 cm h 1 (severe). This is the definition used in the FAA Pilot The study area, the Cold Lake Regional Airport Guide: Flight in Icing Conditions (AC 91-74B, dated (CYOD), is located in northeastern Alberta, Canada 8 October 2015) and hence, this IIS is adapted in (541 m MSL; 548N, 1108W). The location and climatol- this paper. ogy of the area are described in Boudala et al. (2017). The implementation of these methods requires accu- The geographical locations of CYOD and the sur- rate prediction or measurements of cloud microphysical rounding areas are shown in Fig. 1. Figure 1b shows a quantities, such as the median volume diameter (MVD), collocated permanent meteorological hourly observa- liquid water content (LWC), and other standard mete- tion (METAR) site used by the Department of National orological quantities. Although numerical weather pre- Defence (DND). To the west and northwest of the air- diction (NWP) models can be sophisticated enough to port, there are a number of lakes (Marie, Ethel, Crane, be able to predict these quantities, the accuracy of their and Hilda) including large lakes to the northeast of the prediction is still a big challenge, and hence methodol- site (Cold and Primrose). These lakes are known to ogies were developed in the United States that incorporate contribute to the formation of precipitation and other more information such as satellite, surface station, and weather phenomena when the flow is from a north- radar data for predicting icing potential (e.g., Bernstein easterly direction. The west and southwest sides of the et al. 2005). There have been improvements in the NWP airport are surrounded by the Beaver River valley with models, but they are not adequately tested for their an east–west orientation, which is also known to con- ability to predict icing intensity. Thompson et al. (2017), tribute to the formation of various weather conditions at using the U.S. Weather Bureau ice intensity scale the airport. mentioned earlier and WRF Model data, found that The meteorological instruments used in this study are their method overestimated the TR and SEV icing events shown in Fig. 2 and include a PARSIVEL disdrometer and underestimated the LGT and MOD icing events that measures particles size and velocity in the size range when compared with PIREPs. For this study, pilot reports (0.2–20 mm) (Loffler-Mang and Lahak 2001; Loffler- confirming icing events and freezing precipitation that Mang and Joss 2000), a Jenoptic CM15K ceilometer, occurred at Cold Lake, Alberta, Canada, during the 2016/ and the Vaisala FS11P and PWD22 present weather 17 winter periods are examined with data collected during sensors that measure visibility, precipitation intensity Pr the same period using a multifrequency microwave and type, etc. The complete descriptions of the instruments radiometer (MWR), a ceilometer, and other specialized are given elsewhere (Boudala et al. 2017, 2014). Here brief instruments such as conventional weather sensors and discussions of the MWR, the Meteorological Particle disdrometers. The icing events are also examined using Spectrometer (MPS), and the Fog Monitoring Device aircraft icing intensity estimated using the two ice ac- (FMD) model (FM-120) are given. cumulation models mentioned above with the relevant The Radiometric MWR model MP-3000A uses 35 fre- forecasts obtained from the Canadian High Resolution quency channels to obtain vertical profiles of temperature Regional Deterministic Prediction System (HRDPS). T, relative humidity (RH), LWC, and absolute humidity The main objectives of this study include 1) to test the ry at about 3-min intervals and vertical resolutions of ability of the HRDPS model to predict bulk micro- 50 m from the surface to 500 m, 100 m from 500 m to physical quantities and associated mean particle size 2 km, and 250 m from 2 to 10 km. The Radiometric ra- distribution N(D) as observed at ground level, 2) to test diometer uses statistical methods, with retrievals being the ability of the MWR to detect reported icing events, performed using a standard back-propagation algo- and 3) to test the ability of the HRDPS model to forecast rithm for training and a standard feed-forward network reported icing events. The sections are organized as for profile determination, as described by Solheim et al. follows. In section 2 a description of the study area and (1998). The training datasets can be historical rawinsonde Unauthenticated | Downloaded 09/30/21 08:47 PM UTC JUNE 2019 B O UDALA ET AL.
Recommended publications
  • Climate Data Sources in Connecticut Patricia A
    University of Connecticut OpenCommons@UConn College of Agriculture, Health and Natural Storrs Agricultural Experiment Station Resources 1-1982 Climate Data Sources in Connecticut Patricia A. Palley University of Connecticut - Storrs David R. Miller University of Connecticut - Storrs Follow this and additional works at: https://opencommons.uconn.edu/saes Part of the Climate Commons, Environmental Monitoring Commons, and the Meteorology Commons Recommended Citation Palley, Patricia A. and Miller, David R., "Climate Data Sources in Connecticut" (1982). Storrs Agricultural Experiment Station. 80. https://opencommons.uconn.edu/saes/80 Storrs Agricultural Experiment Station Bulletin 461 Climate Data Sources in Connecticut By Patricia A Palley, Assistant State Climatologist and David R. Miller, Associate Professor of Natural Resources JAN 1982 STORRS AGRICULTURAL EXPERI MENT STATION COLLEGE OF AGRICULTURE AND NATURAL RESOURCES THE UNIVERSITY OF CONNECTICUT, STORRS. CT 06268 TABLE OF CONTENTS Int roduction . 1 Types of Weather Stations 2 Parameters Measur ed 3 Summary of Climate Observations in Connecticu t 5 How to Use the Maps and Site Reports • • • • • 7 Table I Record Lengths, by parameter, of all weather stat ions i n Conn., state summary 8 Table II Record Lengths , by parame ter, of all weather stations in Conn . , by county . 9 Table III Record Lengths, by paramet er, of Nationa l Wea ther Service operat ed and coope rative stations in Conn., by county . • . 10 Table IV Re cord Lengths , by par ameter , of pr ivate data collect ors i n Conn ., by county . • . 11 Figure I Distribution of stations t hat measure rainfall . 12 Figur e II Distribution of stations t hat meas ure s nowf all .
    [Show full text]
  • AWOS) for Initiated By: AJW-144 Change: 1 NON-FEDERAL APPLICATIONS
    Advisory Circular U.S. Department of Transportation Federal Aviation Administration Subject: AUTOMATED WEATHER Date: 01/31/2019 AC No: 150/5220-16E OBSERVING SYSTEMS (AWOS) FOR Initiated by: AJW-144 Change: 1 NON-FEDERAL APPLICATIONS 1. PURPOSE. This change contains updates that provide additional clarification and flexibility regarding technician training and responsibilities. These changes expand on the use of on site training or on the job training (OJT), based on statements regarding equivalent performance and maintenance standards in FAA Order 6700.20, Non-Federal Navigational Aids, Air Traffic Control Facilities, and Automated Weather Systems and discussion of on the job training in FAA Order 3000.57, Air Traffic Organization Technical Operations Training and Personnel Certification Programs. 2. PRINCIPAL CHANGES. Changed text is indicated by vertical bars in the margins. The primary revisions are contained in chapter 2, chapter 4 and the addition of appendix 2. Remove Page Date Insert Page Date i 03/10/2017 i 01/31/2019 ii 03/10/2017 ii 01/31/2019 v 03/10/2017 v 01/31/2019 vii 03/10/2017 vii 01/31/2019 8 03/10/2017 8 01/31/2019 12 03/10/2017 12 01/31/2019 18 03/10/2017 18 01/31/2019 64 03/10/2017 64 01/31/2019 A1-1 and A1-2 03/10/2017 A1-1 and A1-2 01/31/2019 A2-1 and A2-2 01/31/2019 David E. Spencer Director Operations Support, AJW-1 01/31/2019 AC 150/5220-16E CHG 1 Advisory Circular U.S.
    [Show full text]
  • Project #Cc20-065, Runway 17/35 Reconstruction – Phase Iii
    PROJECT #CC20-065, RUNWAY 17/35 RECONSTRUCTION – PHASE III April 20, 2020 ADDENDUM #6 The attached constitutes additional information and serves to clarify issues considered to be part of the Southern California Logistics Airport Authority “Runway 17/35 Reconstruction Project Number CC20-065”. STATEMENTS 1. Based upon current conditions and funding, the bid opening for the Project has been extended. Sealed Bid Proposals will be received until 2:30 p.m. PST on May 20, 2020. The location and method for submitting Bid Proposals and all other provisions of Paragraph II, Sealed Bids in the Notice Inviting Bids, and Paragraph I, Sealed Bids in the Instructions to Bidders remain unchanged. 2. As a result of extending the bid opening, the last day to submit requests for information, explanation, or interpretation of the Contract Documents has been extended. All requests must be received on or before May 11, 2020 at 12:00 p.m. PST. All other provisions of Paragraph III, Project Questions in the Instructions to Bidders remain unchanged. 3. Given recent changes with regard to federal funding opportunities the scope of the Runway 17/35 Reconstruction Project – Phase III has changed to include a broader scope of work. Specifically, the construction of an Automated Weather Observation System (AWOS) has been added as well as additional runway reconstruction. Consequently, the previous Bid Proposal Price Schedule Forms are replaced in their entirely by the attached Bid Proposal Price Schedule Forms labeled “Addendum 6”. The “Addendum 6” Bid Proposal Price Schedule Forms include: a re-scoped Base Bid (Base Bid 100 schedule); a re-scoped Runway Shortening (Base Bid schedule 200); a re-scoped Base Bid (Base Bid schedule 300); a re-scoped Base Bid (Base Bid schedule 400); and a new Base Bid schedule for the AWOS project (Base Bid schedule 500).
    [Show full text]
  • AC 150/5220-16E, Automated Weather Observing Systems (AWOS)
    Advisory Circular U.S. Department of Transportation Federal Aviation Administration Subject: AUTOMATED WEATHER Date: 03/10/2017 AC No: 150/5220-16E OBSERVING SYSTEMS (AWOS) FOR Initiated by: AJW-144 Change: NON-FEDERAL APPLICATIONS 1. PURPOSE. This advisory circular (AC) contains the Federal Aviation Administration’s (FAA) standard for the non-Federal AWOS. This AC applies to anyone proposing to design, manufacture, procure, install, activate or maintain an AWOS for aviation purposes. This advisory circular also contains site location and implementation criteria that must be met before the installed system can be commissioned and become an approved source of aviation weather information. It also contains maintenance and annual inspection criteria that must be met throughout the system’s life cycle in order for the system to continue to be an approved source of aviation weather information. 2. CANCELLATION. AC 150/5220-16D, Automated Weather Observing Systems (AWOS) for Non-Federal Applications, dated 04/28/2011, is canceled. 3. DEFINITION. An AWOS is defined to be an “air navigation facility” distributing weather information, in Title 49 USC Section 40102, and consists of a computerized system that automatically measures one or more weather parameters, analyzes the data, prepares a weather observation that consists of the parameter(s) measured, provides dissemination of the observations and broadcasts the observation to the pilot in the vicinity of the AWOS, typically using an integral very high frequency (VHF) radio or an existing navigational aid (NAVAID), or Automatic Terminal Information Service (ATIS). Observations may also be available by telephone dial-up service. In addition, the Non-Federal AWOS is a Non-Federal facility as defined in Appendix 1 of the latest edition of FAA Order 6700.20.
    [Show full text]
  • Term Paper on Stevenson Screen
    TERM PAPER ON STEVENSON SCREEN (GROUP F) BY ADESIDA, ADEYEMI CHARLES (ARC.99.2369) EGIGBA, AVWEROSUGHENE KINGSLEY (ARC.99.2382) OSO, OLUWANIYI OLUWAGBEMI (ARC.99.2395) MASTER OF TECHNOLOGY (M.TECH) DEGREE IN ARCHITECTURE TERM PAPER SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF MASTEROF TECHNOLOGY IN ARCHITECTURE TO THE DEPARTMENT OF ARCHITECTURE SCHOOL OF POST GRADUATE STUDIES FEDERAL UNIVERSITY OF TECHNOLOGY, AKURE MARCH, 2007 TABLE OF CONTENT Title Page i Table of Content ii List of Figures iii List of Plates iii List of Table iii CHAPTER ONE 1.0.0 INTRODUCTION 1 1.2.0 DEFINITION OF TERMS. 1 1.3.0 RESEARCH METHODOLOGY. 2 1.4.0 LIMITATIONS 2 CHAPTER TWO 2.0.0 STEVENSON SCREEN 3 2.0.1 History 3 2.0.2 Composition 4 2.0.3 Size 4 2.0.4 Sitting 7 2.1.0 STEVENSON SCREEN 7 2.2.0 RESULTS AND DISCUSSION 8 CONCLUSIONS 11 APPENDIX 12 REFFERNCES 13 ii LIST OF FIGURES FIGURES PAGE NO Figure 2.1 Back of Stevenson Screen prototype constructed by Brian Burley. 5 Figure 2.2 Bottom of Stevenson Screen prototype constructed by Brian Burley. 5 Figure 2.3 Front Door of Stevenson Screen prototype constructed by Brian Burley. 6 Figure 2.4 Louvered detail and Roof of Stevenson Screen prototype constructed by Brian Burley 6 Figure 2.5 The average difference between the temperature in the small Stevenson screen and all other measurements of temperature. 9 Figure 2.6 The difference in the monthly average temperatures for the louvered Screens.
    [Show full text]
  • Callaway Plant, Unit 1, Revised Site
    CALLAWAY - SA TABLE OF CONTENTS CHAPTER 2.0 SITE CHARACTERISTICS Section Page 2.1 GEOGRAPHY AND DEMOGRAPHY ............................................................. 2.1-1 2.1.1 SITE LOCATION AND DESCRIPTION ..................................................... 2.1-1 2.1.1.1 Specification of Location ...................................................................... 2.1-1 2.1.1.2 Site Area Map....................................................................................... 2.1-1 2.1.1.3 Boundaries for Establishing Effluent Release Limits............................ 2.1-9 2.1.2 EXCLUSION AREA AUTHORITY AND CONTROL .................................. 2.1-9 2.1.2.1 Authority ............................................................................................... 2.1-9 2.1.2.2 Control of Activities Unrelated to Plant Operation................................ 2.1-9 2.1.2.3 Arrangements for Traffic Control........................................................ 2.1-10 2.1.2.4 Abandonment or Relocation of Roads ............................................... 2.1-10 2.1.3 POPULATION AND POPULATION DISTRIBUTION .............................. 2.1-10 2.1.3.1 Population Within 10 Miles................................................................. 2.1-11 2.1.3.2 Population Between 10 and 50 Miles................................................. 2.1-12 2.1.3.3 Transient Population .......................................................................... 2.1-13 2.1.3.4 Low Population Zone.........................................................................
    [Show full text]
  • Dew Point Hygrometer with Constant Resistance Humidity Transducer
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1969 Dew Point Hygrometer With Constant Resistance Humidity Transducer Curtis B. Campbell Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Life Sciences Commons Recommended Citation Campbell, Curtis B., "Dew Point Hygrometer With Constant Resistance Humidity Transducer" (1969). All Graduate Theses and Dissertations. 2957. https://digitalcommons.usu.edu/etd/2957 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DEW POINT HYGROMETER WITH CONSTANT RESISTANCE HUMIDITY TRANSDUCER by Curtis B. Campbell A thesis submitted in partial fulfillme nt of the r e quirements for t he degree of MASTER OF SCIENCE in Meteorology UTAH STATE UNIVERSITY Logan, Utah 1969 ii TABLE OF CONTENTS Page LIST OF FIGURES iv A BSTRACT vi INTRODUCTION LITERATURE REVIEW 2 Historical note 2 State of the art 2 Limitations of current instruments 18 Desirable specifications for future work 21 Wate r in the atmosphere 23 Lithium chloride as a hygros copic a ge nt 27 Definition of the l ithium chl oride problem 31 ELECTRICAL AND HYGROSCOPIC PROPERTIES OF LITHIUM CHLORIDE 33 Some observations . 33 Electri cal r es istance of lithium chl oride as a f unction of solution concentration 33 Electrical resistance of lithium c hloride solution as a function of temperature 39 Hygroscopic charac t e ristics of dry lithium c hlorid e .
    [Show full text]
  • Geophysical Monitoring for Climatic Change No.1 11972
    Geophysical Monitoring for Climatic Change No.1 11972 l II .S. OEPARTMENT Of COMMERCE NU IONA l OCEAN IC AND AT MOSPHERIC ADMINISTRATION ,....... '" """~ ENVIRONMUITAl •fi\ • IIESEAIICH \ ' I LABORATORIES '. ........ ·, U.S. DEPAR TM ENT OF COMM ERCE NATIO NA L OCE AN IC ANO AlMOSPHERIC AOMINISlRAtlON Robe., M While. Adm ;nhuOIO' (rNl1IOM\OE N141 R E~H LototOU IOIll S "',1_, N H.... ();'RIO' GEO PHYSICAl MONITORING FOR CLI MATIC CHANGE NO. 1 SUMMARY REPORT . 1972 John M. Miller , Editor Cont ributors Barry A.. Sodhatne Douglas V Hoyt Ronald Fegley Walter D. Komhyr Rober t Grass Be rn ard G. Mendonca Tho mas B Hams Sam 011 mans GalY A. He lbelt Donald H Pack Challes P Turner BOULDER. COI.O. DISCLAIMER The Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the Environmental Research Laboratories or to this publication furnished by the Environmental Research Labora­ tories in any advertising or sales promotion which would in­ dicate or imply that the Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the adver­ tised product to be used or purchased because of this Envi­ ronmental Research Laboratories pUblication. i i CONTENTS Page 1. INTRODUCTION 1 2. DESCRIPTION OF BASELINE STATIONS 3 2.1 Mauna Loa (MLO) 3 2.2 Antarctica (Amundsen-Scott Station - South Pole) 9 2.3 Barrow, Alaska (BRW) 10 2.4 Samoa (SMO) 14 2.5 Planned Stations 18 3.
    [Show full text]
  • NCAR/TN-237+IA Instructor's Handbook On
    NCAR/TN-237+IA NCAR TECHNICAL NOTE II - I I I - - I - II - I II II- I II --- II I -I - - June 1984 Instructor's Handbook on Meteorological Instrumentation Fred V. Brock, Editor Carol E. Nicolaidis, Assistant Editor ATMOSPHERIC TECHNOLOGY DIVISION -I I -··~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~e - --I NATIONAL CENTER FOR ATMOSPHERIC RESEARCH BOULDER, COLORADO iii CONTRIBUTORS C. Bruce Baker University of Michigan William Bradley Oregon State University Fred Brock National Center for Atmospheric Research Harold Cole National Center for Atmospheric Research Ulrich Czapski State University of New York at Albany Anders Daniels University of Hawaii at Manoa Russell Dickerson University of Maryland Don Dickson University of Utah Claude E. Duchon University of Oklahoma C. W. Fairall Pennsylvania State University L. Keith Hendrie Illinois Dept. of Energy and Natural Resources John H. Hirsch South Dakota School of Mines and Technology George L. Huebner Texas A&M University James F. Kimpel University of Oklahoma Warren W. Knapp Cornell University G. Garland Lala New York Atmospheric Sciences Research Center Albert J. Pallmann St. Louis University Julian Pike National Center for Atmospheric Research Hans Richner Laboratory for Atmospheric Physics of the Swiss Federal Institute of Technology William Shaw Naval Postgraduate School John T. Snow Purdue University Steve Stage Florida State University Alfred Stamm State University of New York at Oswego Eugene S. Takle Iowa State University Dennis W. Thomson Pennsylvania State University PREFACE The objective in preparing this Instructor's Handbook is to pro- vide useful material to assist instructors in teaching meteorological instrumentation. It is intended to provide flexibility in meeting the needs of individual teaching programs.
    [Show full text]
  • New Developments in Observations and Instrumentation in the Weather Bureau
    550 BULLETIN AMERICAN METEOROLOGICAL SOCIETY New Developments in Observations and Instrumentation in the Weather Bureau VAUGHN D. ROCKNEY United States Weather Bureau, Washington, D. C. (Manuscript received 28 February 1959) ABSTRACT A review is made of programs for the development, procurement, and installation of new observing instruments by the Weather Bureau. Some new observational techniques which will be used with the new instruments are also described. The article deals with four main fields of observations—surface, upper-air, radar, and marine. 1. Introduction expect to see the high-intensity runway lights. "Approach-light contact height" is defined as the The Weather Bureau, at the present time, is height above the ground at which a pilot making engaged in bringing about improvements in obser- a final approach along the glide path can expect to vations in four major fields—surface, radar, ma- establish visual contact with the approach lights. rine, and upper-air. Many new and improved To obtain runwray visual range, the transmissom- instruments which have been developed by our In- eter indicator which normally reads runway visi- strumental Engineering Division are being placed bility is recalibrated and the values of "RVR" are in use. This article will describe recent develop- read directly. To obtain the approach-light con- ments in the observational field and will give some- tact height, indications of the rotating-beam ceil- thing of the outlook for the future in this field. ometer, transmissometer, and an illuminometer as well as the brightness setting of the approach lights 2. Surface instruments and observations are all considered. Values of "ALCH" are com- One of the most important developments in sur- puted using empirically-derived charts.
    [Show full text]
  • Download The
    A STUDY OF.THE ENERGY BALANCE OF A DOUGLAS-FIR FOREST by KEITH G. McNAUGHTON B.Sc. (Hons.)} Monash University, 1966 B.A., Monash University, 1969 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of SOIL SCIENCE We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 1974 In presenting this thesis in partial fulfilment of the require• ments for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. KEITH G. McNAUGHTON Department of Soil Science The University of British Columbia Vancouver 8, Canada Date ABSTRACT This thesis is in the form of four self contained papers that report aspects of a study of the energy balance of a young Douglas-fir forest growing at the University of British Columbia Research Forest at Haney, B.C. The chapters discuss the experimen• tal methods used and special instrumentation developed, the data analysis, and some attempts to understand the relationships observed by employing simple forest models and ideas on boundary layer equilibration processes. Chapter 1. The psychrometric apparatus design for Bowen ratio determination reported by Sargeant and Tanner was modified and a new apparatus built.
    [Show full text]
  • IGCSE Geography Class Notes
    UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education(IGCSE) IGCSE GEOGRAPHY CLASS NOTE For Private Circulation only Copyright©storing in any form and photocopying without the prior permission from the compiler is strictly prohibited Compiled and Edited by ©Dr. R. B. Thohe Pou HoD, Dept. of Geography 2016 © R.B. Thohe Pou M.A. PhD, HoD, Dept. of Geography (Class Notes for students only) Page 1 Contents Topic Page No. 1. Theme 1: Population and Settlement 1.1 Population Dynamics 3 1.2 Over-population and under-population 1.3: Migration 13 1.4: Population Distribution and Density 1.5: Population structure 18 1.6: Rural Settlements 25 1.7: Urban Settlements 1.8: Urbanisation 32 1.9: Urban Problems 1.10: Urban Sprawl 37 Theme 2: The Natural Environment 2.1: Plate tectonic movement 41 2.2. Volcanoes 2.3 Earthquake 47 2.4 River system 51 2.5 Coastal system 58 2.6 Coral reef 65 2.7 Weather Instruments and measurements 67 2.8 Climate and natural vegetation 69 2.9 Tropical Rainforest 72 2.10 Tropical Hot desert 78 Theme 3: Economic development 3.1 Development 80 3.2 Food production – Agricultural system 88 3.3 Food Shortages 92 3.4 Industry 96 3.5 Hi-tech Industry 102 3.6 Tourism 103 3.7 Energy 106 3.8 Water Resources 113 3.9 Environmental risks of economic development 120 Syllabus IGCSE © R.B. Thohe Pou M.A. PhD, HoD, Dept. of Geography (Class Notes for students only) Page 2 Paper 1: Theme 1 Population and Settlement Topic 1.1: Population dynamics Key Term: 1.
    [Show full text]