Bethany Tanner Who Is the Most Influential Physicist in History? The

Total Page:16

File Type:pdf, Size:1020Kb

Bethany Tanner Who Is the Most Influential Physicist in History? The Bethany Tanner Who is the most influential physicist in history? The world around us is constantly surprising us and inviting us to explore in further depth the universe's wonderful mysteries. Throughout time there have been many great and famous physicists who have helped unravel and explain the puzzling parts of our world and who have had a big impact on our scientific knowledge and understanding. These physicists are all inspirational figures to the young aspiring physicists of today In this essay I will be discussing three physicists from different periods of time who between them have influenced many aspects of modern day physics. I will be providing the rationale to argue who in my opinion is the most influential physicist in history? Starting off with the Greeks and possibly one of the most influential physicists of his time, there is Aristotle (384 to 322 BC). Aristotle was a student of Plato and a teacher to Alexander the great. He initiated a different way of scientific thinking and his expertise stretched much further than being a physicist, with other great work in areas including music, logic, poetry, theatre, biology and most famously his philosophical writings. Aristotle’s work can be thought of as encompassing three different categories, theoretical sciences, practical sciences and scientific method. Theoretical science includes topics such as natural philosophy and metaphysics. The following is a quote from Aristotle on metaphysics, “And here we will have the science to study that which is just as that which is, both in its essence and in the properties which, just as a thing is, it has. The entire preoccupation of the physicist is with things that contain within themselves a principle of movement and rest. And to seek for this is to seek for the second kind of principle that from which comes the beginning of the change”. [1] In metaphysics the aim is to find a link, for example when you drop a ball it moves towards the earth, what is the link that causes this? In metaphysics these links are identified but not necessarily fully understood. Aristotle wanted to understand how things worked and not just that they existed. Aristotle however experienced conflict when he went against the ideas of his teacher, Plato. Plato believed that: “the material universe exists only as an inferior imitation of the forms as they exist in the immaterial world of ideas”. Plato believed that the visible world, the world which is observed by senses, is not actually real and therefore information that is sensed could not be used as a source of knowledge. Plato thought this because firstly the things in the real world are always changing and in a constant state of change (e.g. a river), secondly because any observations made would be subjective (e.g. they would by people’s prior beliefs and experiences) and thirdly because the observations would never be a perfect representation (e.g. a drawing would only represent not replicate an object). Plato believed that knowledge could be best acquired through something intelligible (something we know by thinking not by observing). He valued the exchange and analysis of opinions between intellectuals and thought that by using this approach concepts could be fully understood. Unlike Plato, Aristotle believed that what can be sensed and what is visible is the real world. Aristotle departed from Plato’s view by having a high regard for the physical world as a source of information. He was possibly the first empirical scientist as he believed that concepts could be best understood by means of experimentation. I believe that Aristotle’s most important contribution to Physics is the development of empirical scientific methods which helped improve the process of scientific understanding of many people. His scientific method known as the Organon is composed of six different writings including the Analytica Priora. The fundamentals of this method still form the basis of scientific thinking today. The Analytica Priora method examines two statements and then looks to see if a third coincides with them. When the third statement agrees, Aristotle called this the logical structure of a syllogism. This method is used today for such things Bethany Tanner as working out how much someone should be paid. Although I believe that it was good that Aristotle took the revolutionary step to explore the real world further through observation, perhaps Aristotle was not the most influential physicist in history. Many of the great discoveries have been made after learning from the mistakes of the previous generations and Aristotle had very limited work to build upon. However what he did achieve was the development of a highly organised approach to the development of scientific theories with his methods laying the foundations for future scientists. The second physicist I will discuss is Sir Isaac Newton. Newton was an English man from Kensington who lived from 1643 to 1727. As well as working in physics he was a mathematician, astronomer and similar to Aristotle, a natural philosopher. He has made many contributions to the working world of physics defining the foundations of classical mechanics as well as some of his most famous works on the three laws of motion and universal gravitation. He was even “considered to be the greatest and most influential scientist who ever lived” [2] by Burt Daniel S and has even been given the name of “father of modern society’. Newton was a student at Cambridge but after an outbreak of the plague the university was closed. It was during this time that Newton started to develop his three laws of motion. He built upon Galileo’s principle of inertia in the process of coming up with his first law, improving Galileo ideas to produce a more suitable and correct idea, Newton quotes “If I have seen further than other, it is by standing upon the shoulders of giants”. The first law states: Bodies move in a straight line with a uniform speed, or remain stationary, unless a force acts to change their speed or direction. This law provides us with a basic understanding of force and motion. His second law of motion builds a connection between the size of a force and the acceleration that force may produce. Objects with large inertia need more force to accelerate them than light objects. Expressed algebraically, Newton’s second law can be shown as F=ma so in other words, for constant acceleration, force per unit of mass is also unchanged. So the same amount of force is needed to move a kilogram whether it’s part of a big or a small object. Again Newton used the work of Galileo and proves Galileo’s imaginary experiment of what would hit the ground first if both were dropped at the same time, a cannon ball or a feather? We know that dues to air resistance the cannon ball would hit the ground first because the feather would drift slowly down. However if there was no air, they would fall at the same speed. We have even been able to see this happening when in 1971 the astronauts aboard Apollo 15, drop a feather and a hammer at the same time while on the surface on the moon and found that they did indeed fall at the same speed. Newton’s third law of motion states that every action has and equal and opposite reaction. When a marksman shoots a gun he feels the force of the gun recoiling against his shoulder, this force is equal to the original force that pushed the bullet out. I think that in addition to his work on the three laws of motion his law of gravitation have made an outstanding contribution to physics. It is said that Newton first thought of the idea of gravity after he saw an apple fall from a tree. Whether this is true or not, Newton came up with an idea that stretched his imagination beyond the earth’s boundaries to help work out the laws of gravitation. Newton developed the idea that objects that fall to the ground must have some sort of accelerating force acting upon them. Newton used his laws of motion in trying to work out what this accelerating force was that was making objects fall to the ground. He used the idea of a cannon ball being blasted, the cannon ball will travel a certain distance before it hits the ground. If the cannon ball is fired more quickly it will travel further. Newton kept questioning how the speed at which the ball is fired will affect how long it will travel for. So Bethany Tanner what would happen if the cannon ball was fired so quickly that it travelled far enough in a straight line that the Earth curved beneath it? Newton realised that it would be pulled toward s the Earth by following a circular orbit. Connecting the links even more, Newton thought about how the moon hung in the sky, and concluded that his it must be held in an orbiting position around the earth by gravity, otherwise it would just float off into space. Newton then went through a process of trying to quantify his predictions. He collaborated with other physicists and after an exchange of letters with Robert Hooke, Newton looked at the mathematical side of gravity. He noticed that gravity followed the inverse square law “Every object in the universe attracts every other object along a line of the centres of the objects, proportional to each object’s mass, and inversely proportional to the square of the distance between the objects.”[3] Newton defined the inverse square law of gravity which explains the orbits of all the planets as described in the three laws of Johannes Kepler.
Recommended publications
  • Spinoza and the Sciences Boston Studies in the Philosophy of Science
    SPINOZA AND THE SCIENCES BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE EDITED BY ROBERT S. COHEN AND MARX W. WARTOFSKY VOLUME 91 SPINOZA AND THE SCIENCES Edited by MARJORIE GRENE University of California at Davis and DEBRA NAILS University of the Witwatersrand D. REIDEL PUBLISHING COMPANY A MEMBER OF THE KLUWER ~~~.'~*"~ ACADEMIC PUBLISHERS GROUP i\"lI'4 DORDRECHT/BOSTON/LANCASTER/TOKYO Library of Congress Cataloging-in-Publication Data Main entry under title: Spinoza and the sciences. (Boston studies in the philosophy of science; v. 91) Bibliography: p. Includes index. 1. Spinoza, Benedictus de, 1632-1677. 2. Science- Philosophy-History. 3. Scientists-Netherlands- Biography. I. Grene, Marjorie Glicksman, 1910- II. Nails, Debra, 1950- Ill. Series. Q174.B67 vol. 91 OOI'.Ols 85-28183 101 43.S725J 100 I J ISBN-13: 978-94-010-8511-3 e-ISBN-13: 978-94-009-4514-2 DOl: 10.1007/978-94-009-4514-2 Published by D. Reidel Publishing Company, P.O. Box 17, 3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322, 3300 AH Dordrecht, Holland. 2-0490-150 ts All Rights Reserved © 1986 by D. Reidel Publishing Company Softcover reprint of the hardcover 1st edition 1986 and copyright holders as specified on appropriate pages within No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner FROM SPINOZA'S LETTER TO OLDENBURG, RIJNSBURG, APRIL, 1662 (Photo by permission of Berend Kolk) TABLE OF CONTENTS ACKNOWLEDGEMENTS ix MARJORIE GRENE I Introduction xi 1.
    [Show full text]
  • Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
    omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag.
    [Show full text]
  • The Newton-Leibniz Controversy Over the Invention of the Calculus
    The Newton-Leibniz controversy over the invention of the calculus S.Subramanya Sastry 1 Introduction Perhaps one the most infamous controversies in the history of science is the one between Newton and Leibniz over the invention of the infinitesimal calculus. During the 17th century, debates between philosophers over priority issues were dime-a-dozen. Inspite of the fact that priority disputes between scientists were ¡ common, many contemporaries of Newton and Leibniz found the quarrel between these two shocking. Probably, what set this particular case apart from the rest was the stature of the men involved, the significance of the work that was in contention, the length of time through which the controversy extended, and the sheer intensity of the dispute. Newton and Leibniz were at war in the later parts of their lives over a number of issues. Though the dispute was sparked off by the issue of priority over the invention of the calculus, the matter was made worse by the fact that they did not see eye to eye on the matter of the natural philosophy of the world. Newton’s action-at-a-distance theory of gravitation was viewed as a reversion to the times of occultism by Leibniz and many other mechanical philosophers of this era. This intermingling of philosophical issues with the priority issues over the invention of the calculus worsened the nature of the dispute. One of the reasons why the dispute assumed such alarming proportions and why both Newton and Leibniz were anxious to be considered the inventors of the calculus was because of the prevailing 17th century conventions about priority and attitude towards plagiarism.
    [Show full text]
  • Berkeley's Case Against Realism About Dynamics
    Lisa Downing [Published in Berkeley’s Metaphysics, ed. Muehlmann, Penn State Press 1995, 197-214. Turbayne Essay Prize winner, 1992.] Berkeley's case against realism about dynamics While De Motu, Berkeley's treatise on the philosophical foundations of mechanics, has frequently been cited for the surprisingly modern ring of certain of its passages, it has not often been taken as seriously as Berkeley hoped it would be. Even A.A. Luce, in his editor's introduction to De Motu, describes it as a modest work, of limited scope. Luce writes: The De Motu is written in good, correct Latin, but in construction and balance the workmanship falls below Berkeley's usual standards. The title is ambitious for so brief a tract, and may lead the reader to expect a more sustained argument than he will find. A more modest title, say Motion without Matter, would fitly describe its scope and content. Regarded as a treatise on motion in general, it is a slight and disappointing work; but viewed from a narrower angle, it is of absorbing interest and high importance. It is the application of immaterialism to contemporary problems of motion, and should be read as such. ...apart from the Principles the De Motu would be nonsense.1 1The Works of George Berkeley, Bishop of Cloyne, ed. A.A. Luce and T.E. Jessop (London: Thomas Nelson and Sons, 1948-57), 4: 3-4. In this paper, all references to Berkeley are to the Luce-Jessop edition. Quotations from De Motu are taken from Luce's translation. I use the following abbreviations for Berkeley’s works: PC Philosophical Commentaries PHK-I Introduction to The Principles of Human Knowledge PHK The Principles of Human Knowledge DM De Motu A Alciphron TVV The Theory of Vision Vindicated and Explained S Siris 1 There are good general reasons to think, however, that Berkeley's aims in writing the book were as ambitious as the title he chose.
    [Show full text]
  • Newton and Kant on Absolute Space: from Theology to Transcendental Philosophy
    Newton and Kant on Absolute Space: From Theology to Transcendental Philosophy Michael Friedman Abstract I argue that Einstein’s creation of both special and general relativity instantiates Reichenbach’s conception of the relativized a priori. I do this by show- ing how the original Kantian conception actually contributes to the development of Einstein’s theories through the intervening philosophical and scientific work of Helmholtz, Mach, and Poincaré. In my previous work on Newton and Kant I have primarily emphasized methodo- logical issues: why Kant takes the Newtonian Laws of Motion (as well as certain related propositions of what he calls “pure natural science”) as synthetic a priori constitutive principles rather than mere empirical laws, and how this point is inti- mately connected, in turn, with Kant’s conception of absolute space as a regulative idea of reason – as the limit point of an empirical constructive procedure rather than a self-subsistent “container” existing prior to and independently of all perceptible matter. I have also argued that these methodological differences explain the circum- stance that Kant, unlike Newton, asserts that gravitational attraction must be con- ceived as an “action at a distance through empty space,” and even formulates a (rare) criticism of Newton for attempting to leave the question of the “true cause” of gravitational attraction entirely open. In this paper I emphasize the importance of metaphysical and theological issues – about God, his creation of the material world in space, and the consequences different views of such creation have for the metaphysical foundations of physics. I argue, in particular, that Kant’s differences with Newton over these issues constitute an essential part of his radical transforma- tion of the very meaning of metaphysics as practiced by his predecessors.
    [Show full text]
  • Determinism Is False
    %&5&3.*/*4. Barry Loewer %FUFSNJOJTNJTBDPOUJOHFOUNFUBQIZTJDBMDMBJNBCPVUUIFGVOEBNFOUBMOBUVSBMMBXT UIBUIPMEJOUIFVOJWFSTF*UTBZT The natural laws and the way things are at time t determine the way things will be at later times. 5IF NBUIFNBUJDJBO 1JFSSF4JNPO -BQMBDF FYQSFTTFE IJT CFMJFG UIBU EFUFS- minism is true this way: 8F PVHIU UP SFHBSE UIF QSFTFOU TUBUF PG UIF VOJWFSTF BT UIF FGGFDU PG JUT antecedent state and as the cause of the state that is to follow. An intel- MJHFODF LOPXJOH BMM UIF GPSDFT BDUJOH JO OBUVSF BU B HJWFO JOTUBOU BT XFMM as the momentary positions of all things in the universe, would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the world, provided that its intellect were suf!ciently QPXFSGVMUPTVCKFDUBMMEBUBUPBOBMZTJTUPJUOPUIJOHXPVMECFVODFSUBJO UIF future as well as the past would be present to its eyes. The perfection that the human mind has been able to give to astronomy affords but a feeble outline of such intelligence. 5IF QIZTJDT PG -BQMBDFT EBZ UIF àSTU EFDBEFT PG UIF OJOFUFFOUI DFOUVSZ XBT /FXUPOJBO DMBTTJDBM NFDIBOJDT*TBBD/FXUPOGPSNVMBUFEQSJODJQMFTUIBUIFUIPVHIU FYQSFTTUIFMBXTEFTDSJCJOHIPXGPSDFTEFUFSNJOFUIFNPUJPOTPGCPEJFT F ma) and IPXUIFQPTJUJPOTPGCPEJFTBOEPUIFSGBDUPSTEFUFSNJOFHSBWJUBUJPOBMBOEPUIFSLJOET PGGPSDFT6TJOHUIFTFQSJODJQMFT /FXUPOBOEQIZTJDJTUTGPMMPXJOHIJNXFSFBCMFUP QSFEJDUBOEFYQMBJOUIFNPUJPOTPGDFMFTUJBMBOEUFSSFTUSJBMCPEJFT'PSFYBNQMF UIFTF laws account for the orbits of the planets, the trajectories of cannon balls, and the QFSJPET PG QFOEVMVNT-JLF/FXUPO -BQMBDFEJE OPULOPX BMM UIFGPSDFTUIFSF BSF but he envisioned that, once those forces (and the corresponding force laws) were LOPXO /FXUPOJBO QIZTJDT XPVME CF B complete physical theory. That is, its laws would account for the motions of all material particles. And since he thought that FWFSZUIJOH UIBU FYJTUT JO TQBDF JT DPNQPTFE PG WBSJPVT LJOET PG WFSZ TNBMM NBUFSJBM #"33:-0&8&3 QBSUJDMFT PSBUPNT IFUIPVHIUUIBU/FXUPOJBONFDIBOJDT PODFBMMUIFGPSDFTXFSF LOPXO XPVMECFXIBUUPEBZXFXPVMEDBMMthe theory of everything.
    [Show full text]
  • Newton's Notebook
    Newton’s Notebook The Haverford School’s Math & Applied Math Journal Issue I Spring 2017 The Haverford School Newton’s Notebook Spring 2017 “To explain all nature is too difficult a task for any one man or even for any one age. ‘Tis much better to do a little with certainty & leave the rest for others that come after you.” ~Isaac Newton Table of Contents Pure Mathematics: 7 The Golden Ratio.........................................................................................Robert Chen 8 Fermat’s Last Theorem.........................................................................Michael Fairorth 9 Math in Coding............................................................................................Bram Schork 10 The Pythagoreans.........................................................................................Eusha Hasan 12 Transfinite Numbers.................................................................................Caleb Clothier 15 Sphere Equality................................................................................Matthew Baumholtz 16 Interesting Series.......................................................................................Aditya Sardesi 19 Indirect Proofs..............................................................................................Mr. Patrylak Applied Mathematics: 23 Physics in Finance....................................................................................Caleb Clothier 26 The von Bertalanffy Equation..................................................................Will
    [Show full text]
  • Newton As Philosopher
    This page intentionally left blank NEWTON AS PHILOSOPHER Newton’s philosophical views are unique and uniquely difficult to categorize. In the course of a long career from the early 1670s until his death in 1727, he articulated profound responses to Cartesian natural philosophy and to the prevailing mechanical philosophy of his day. Newton as Philosopher presents Newton as an original and sophisti- cated contributor to natural philosophy, one who engaged with the principal ideas of his most important predecessor, René Descartes, and of his most influential critic, G. W. Leibniz. Unlike Descartes and Leibniz, Newton was systematic and philosophical without presenting a philosophical system, but, over the course of his life, he developed a novel picture of nature, our place within it, and its relation to the creator. This rich treatment of his philosophical ideas, the first in English for thirty years, will be of wide interest to historians of philosophy, science, and ideas. ANDREW JANIAK is Assistant Professor in the Department of Philosophy, Duke University. He is editor of Newton: Philosophical Writings (2004). NEWTON AS PHILOSOPHER ANDREW JANIAK Duke University CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521862868 © Andrew Janiak 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
    [Show full text]
  • The Relationship Between the Aristotelian, Newtonian and Holistic Scientific Paradigms and Selected British Detective Fiction 1980 - 2010
    THE RELATIONSHIP BETWEEN THE ARISTOTELIAN, NEWTONIAN AND HOLISTIC SCIENTIFIC PARADIGMS AND SELECTED BRITISH DETECTIVE FICTION 1980 - 2010 HILARY ANNE GOLDSMITH A thesis submitted in partial fulfilment of the requirements of the University of Greenwich for the Degree of Doctor of Philosophy July 2010 i ACKNOWLEDGEMENTS I would like to acknowledge the help and support I have received throughout my studies from the academic staff at the University of Greenwich, especially that of my supervisors. I would especially like to acknowledge the unerring support and encouragement I have received from Professor Susan Rowland, my first supervisor. iii ABSTRACT This thesis examines the changing relationship between key elements of the Aristotelian, Newtonian and holistic scientific paradigms and contemporary detective fiction. The work of scholars including N. Katherine Hayles, Martha A. Turner has applied Thomas S. Kuhn’s notion of scientific paradigms to literary works, especially those of the Victorian period. There seemed to be an absence, however, of research of a similar academic standard exploring the relationship between scientific worldviews and detective fiction. Extending their scholarship, this thesis seeks to open up debate in what was perceived to be an under-represented area of literary study. The thesis begins by identifying the main precepts of the three paradigms. It then offers a chronological overview of the developing relationship between these precepts and detective fiction from Sir Arthur Conan Doyle’s The Sign of Four (1890) to P.D.James’s The Black Tower (1975). The present state of this interaction is assessed through a detailed analysis of representative examples of the detective fiction of Reginald Hill, Barbara Nadel, and Quintin Jardine written between 1980 and 2010.
    [Show full text]
  • Newton and Hume
    Forthcoming in Springer’s Encyclopedia of Early Modern Philosophy and the Sciences This entry was edited by Zvi Biener. Please quote only from the online edition. Newton and Hume Matias Slavov Visiting Scholar Department of Philosophy University of California, Los Angeles USA 1. Related Topics Newton, Newtonianism, Hume, Experimentalism, Induction, The Metaphysics of Forces, Causation, Space and Time, Cartesianism 2. Introduction We may distinguish two interpretations of the relation between Newton’s natural philosophy and Hume’s science of human nature. The first interpretation can be called ‘traditional,’ the second ‘critical.’ The traditional interpretation (Capaldi 1975; Force 1987; Buckle 2004; De Pierris 2006; Millican 2007; Slavov 2013; Brown and Morris 2014) suggests that in laying the foundations for his science of humanity, Hume imitated Newton’s natural philosophy. He incorporated Newtonian methodology and reasoning in his overall philosophical project. The central tenet in the traditional 1 outlook is Hume’s adoption of Newton’s anti-hypothetical experimentalism. Perhaps the clearest example of a reading like this is provided by Brown and Morris (2014, 19, 23). In their view, “Hume, like Newton, is opposed to philosophers and scientists advancing speculative hypotheses and imposing their conjectures and fancies on us […] Newton’s scientific method provides Hume with a template for introducing the experimental method into the study of human nature, as the subtitle of the Treatise telegraphs.” The critical interpretation (Laudan 1981; Jones 1984; Barfoot 1990; Schliesser 2009; Ducheyne 2009; Boehm 2013, 2016; Hazony 2014) challenges this. According to Miren Boehm (2016, 1-2), “interpreters have actually underestimated how misleading the traditional picture actually is.
    [Show full text]
  • Berkeley, Newton, Explanation, and Causation
    RUCH FILOZOFICZNY LXXIV 2018 4 Richard Brook Bloomsburg University, USA ORCID: 0000-0002-1811-663X e-mail: [email protected] Berkeley, Newton, Explanation, and Causation DOI: http://dx.doi.org/10.12775/RF.2018.034 I argue in this paper that Berkeley’s conception of natural law explana- tions, which echoes Newton’s, fails to solve a fundamental problem, which I label “explanatory asymmetry”; that the model of explanation Berkeley uses does not distinguish between explanations and justifica- tions, particularly since Berkeley denies real (efficient) causes in non- minded nature. At the end, I suggest Berkeley might endorse a notion of understanding, say, in astronomy or mechanics, which could be dis- tinguished from explanation. In De Motu § 37 Berkeley writes: A thing can be said to be explained mechanically then indeed when it is reduced to those most simple and universal principles, and shown by ac- curate reasoning to be in agreement and connection with them. For once the laws of nature have been found out, then it is the philosopher’s task to show that each phenomenon is in constant conformity with those laws, that is, necessarily follows from those principles. In that consist the ex- planation and solution of phenomena and the assigning their cause, i.e. the reason why they take place (my emphasis).1 Some comments on the passage are important: First; “constant con- formity” means showing that the phenomena can be deduced (“solved”) 1 I use the Works of George Berkeley, Bishop of Cloyne, edited by A. A. Luce and T. E. De Motu, vol.
    [Show full text]
  • The Descartes-Newton Paradox: Clashing Theories of Planetary
    Vassar College Digital Window @ Vassar Senior Capstone Projects 2016 The escD artes-Newton paradox: Clashing theories of planetary motion at the turn of the eighteenth century Jean-Seb́ astien Spratt Vassar College Follow this and additional works at: http://digitalwindow.vassar.edu/senior_capstone Recommended Citation Spratt, Jean-Seb́ astien, "The eD scartes-Newton paradox: Clashing theories of planetary motion at the turn of the eighteenth century" (2016). Senior Capstone Projects. Paper 609. This Open Access is brought to you for free and open access by Digital Window @ Vassar. It has been accepted for inclusion in Senior Capstone Projects by an authorized administrator of Digital Window @ Vassar. For more information, please contact [email protected]. THE DESCARTES-NEWTON PARADOX CLASHING THEORIES OF PLANETARY MOTION AT THE TURN OF THE EIGHTEENTH CENTURY By Jean-Sébastien Spratt First Reader: Professor James Challey Second Reader: Professor José Perillán Academic Advisor: Professor Robert McAulay Thesis submitted in partial fulfillment of the requirements for a major in the Program in Science, Technology, and Society (STS) Table Of Contents Timeline 1 Introduction 2 1 Cartesian Mechanical Philosophy 4 1.1 Introducing Descartes 4 1.2 The Cartesian Mechanical Universe 6 2 Newtonian Mathematical Philosophy 11 2.1 Introducing Newton 11 2.2 Newton's Mathematical World 13 3 Reactions to Newton's Work: Introducing Leibniz, Cotes and Clarke 18 3.1 Leibniz's Response to Newton's Principia 18 3.2 Newtonians Retort: Cotes' Preface
    [Show full text]