Paleogeographic Evolution and Non

Total Page:16

File Type:pdf, Size:1020Kb

Paleogeographic Evolution and Non SUBJECT INDEX Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3795275/backmatter.pdf by guest on 29 September 2021 SUBJECT INDEX A Casupal Formation 65 3rd order eustatic curves 17 20 Caus Formation 71 60 accommodation space 143 146 147 150 161 162 165 167 170 196 197 Cayman Trough 51 199 206 208 209 Cenomanian 5 48 Agua Salada Group 69 70 paleogeography 303 Alberta Basin 10 13 Stage 185 188 189 Albian Stage 183 184 Cenomanian Turonian Oceanic Anoxic Event 33 Algarobo well 49 Central Cordillera 4748 616267 Algebuckina Sandstone 27 Central Range 45 79 87 92 95 96 98 102 104107 III 113 114 120 Amaime Terrane 46 48 49 123 124 Anaco Fault 70 Cesar Basin 4748 Ancestral Rockies 10 ChaguaramasFormation 74 76 Antarctica 89 20 ChIDk 12 17 25 26 35 ice sheet 19 Chimana Formation 239 249 256 269 271 274 277 278 308 316 ice free topography of 19 Cicuco Field 48 Late Eocene ice sheet 32 Cipero Formation 76 97 Aptian paleogeography 301 climate I 8 10 12 13 AraucaArch 46 67 71 Coche Fault 82 Araya 46 47 55 67 68 69 99 125 Columbus Basin 87 107 Arctic concretion levels 161 180 181 183 197 Early Cretaceous ice sheet 20 condensed section 129 147 149 150 151 152 153 155 156 162 167 173 Areo Formation 63 68 72 179 197 207 Athabasca Tar Sands 10 Coniacian Stage 178 180 189 190 193 Aves Ridge 46 7475 78 Cretaceous passive margin 47 79 81 286 298 299 305 Cuba 60 92 93 98 99 Cuiza Fault 54 B cyclicity I 8 20 Bahamas 59 cyclostratigraphy 161 195 Baja Guajira Basin 69 Barbacoas Platform 46 51 68 70 Barcelona reentrant 52 58 D Barco Formation 66 Dabajuro Platform 53 Barinas Basin 46 51 6162 65 67 7072 74 77 81 Dead SeaVIDley 7 Barranquln Formation 224239 243 247 256 266267 270 275 298 315 Death Valley 7 Beer Head Limestone 25 diamictites 19 20 bentonites 130 143 146 148 149 156 157 dropstones 20 berm 2 Durness Limestone 12 Berriasian Barremian paleogeography 300 Betchworth 25 E Betijoque Formation 70 Early Albian biostratigraphy 88 129 138 141 143 146 149 161 170 171 174 178 paleogeography 301 181 183 185 190 192 195 198 200 201 203 205 208 210 211 Eastern Cordillera 4649 51 57 58 79 Boca de Serpiente Formation 66 70 97 Eastern Venezuela Basin 217 219 220 247 251 256 265 271 274 Bocon6 Fault 46 52 54 70 Eastern Venezuela Cretaceous stratigraphic cross section 310 311 Bogota 143 157 161 165 166 169 180 181 183 185 205 207 212 El Baul Arch 71 7677 Bogota Basin 53 El Cantil Formation 55 221 222 236247 249 254 256 269 271 274 Bohordal Fault 46 80 277 315 316 Bonaire Basin 46 65 68 70 76 EI Cobre Formation 71 Botucual Member 66 EI Copey Formation 47 Bram6n Fault 50 EI Pilar Fault 55 107 219 220 Brasso Formation 69 76 Eocene foredeep 54 Bucaramanga Fault 46 4849 69 Eocene unconformity 73 Espino Graben 47 93 121 equatorial glaciers 19 C Equilibrium Line Altitude Cantaure Formation 69 70 Cretaceous 19 20 Capadare Formation 70 erratic bearing deposits Caparo Fault 50 Australia 21 Capaya Formation 63 Bearpaw Shale 22 Capiricual Formation 63 Blythesdale Sandstone 23 Caracas Group 47 76 125 126 Bulldog Shale 23 27 36 Caracas salient 52 58 72 Cadni Owie Formation 23 27 36 Carapita Formation 63 69 7475 Carboniferous 24 Caratas Formation 63 65 66687071 252 254257 272 278 279 Carolinefjellet Formation 23 35 Carbonera Formation 58 67 71 74 Chalk 21 25 29 35 Caribbean Plate 4547 49 51 53 6064 67 72 73 76 79 81 Danian and Maastrichtian limestones of Denmark 21 Caroni Basin 78 82 90 101 102 106107 Eromanga Basin 23 27 Carupano Platform Basin 46 75 Eucla Basin 23 27 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3795275/backmatter.pdf by guest on 29 September 2021 322 SUBJECT INDEX Gault Clay 21 23 25 35 H Gilsonryggen Formation 22 Heterohelix 140 Great Artesian Basin 23 24 26 35 Hispaniola 60 Hue Shale 22 35 Hue Shale 35 Judith River Formation 22 hypsometry 17 Kakert Formation 22 Kemik Sandstone 24 La Salle Limestone 24 Leederville Formation 23 ice volumes Loongana Sandstone 24 evidence 32 Lower Beaufort Shales 24 35 isotopic ice sheets Lower Chalk 23 Lower Greensand 21 Mesozoic 17 21 Icotea Formation 73 Mackenzie Bay Formation 22 Manahau Formation 23 ikaite 34 Marree Formation 23 impact ejecta 27 in stress 3 9 13 Maruyama Formation 22 plane Mesozoic and Tertiary of Spitsbergen 21 Middle Chalk 22 Monash Formation 23 Mullaman Beds Unit 2 24 Juan Griego Group 47 Mullaman Beds Unit6 23 La Cope Formation 79 Northern Territories 23 24 27 La Luna Formation 12 Osbourne Formation 23 La Pascua Formation 71 72 Pebble Shale 24 La Rosa Formation 73 76 Perth Basin 23 27 La Sierra Formation 71 Piripauan beds 22 Lagunillas Formation 76 Pukemuri Formation 22 Lara Nappes 49 53 54 71 74 82 Downs Formation 23 Rolling Last Glacial Maximum 9 19 Rumbalara Shale 23 27 Latest Cenomanian Coniacian paleogeography 304 Formation 22 Sarkofagen Le6n Formation 74 Snowdon Formation 24 Lesser Antilles 12 45 60 73 75 Soester Griinsand 21 22 Lizard Formation 61 66 South Australia 23 26 Springs Llanos Basin 13 47 57 66 68 71 74 Takaradai Formation 22 Los Cuervos Formation 66 Chalk 22 Upper Los Jabillos Formation 72 256 272 Greensand 21 23 25 35 Upper Lower Beaufort shales 35 Utkholok Formation 22 Lower Basin 48 57 Wallumbilla Formation 23 Magdalena erratics 17 20 eustasy 1 3 6 9 10 12 13 17 19 M Maastrichtian 6162 6667 305 Formation 306 F Machiques macrofossils 129 130 132 138 141 153 173 181 183 189 193 Falc6n Anticlinorium 46 5455 79 53 67 Falc6n Basin 49 50 53 54 71 73 76 78 79 81 82 Magdalena Valley Maraca Formation 308 flexural onlap 2 Maracaibo Basin 47 53 61 656668 7074 7677 81 82 fossil wood 22 23 24 27 35 Maracaibo Tar Belt 71 81 82 Frontera 143 Marcelina Formation 66 Margarita 47 67 70 74 78 Marl Slate 8 G Masparrito Formation 71 Garcia Formation 227 241 243 244 247 256 267 269 274 275 306 315 Mass flow 28 Garrapata Formation 71 Matatere Formation 66 gastroliths 29 35 Maturln Basin 4647 77 78 81 82 geochemistry 129 130 131 154 156 175 189 199 213 Merida Andes 454749 52 5455 57 58 61 71 74 76 78 82 Gippsland basin 27 Merida Arch 47 52 82 eustatic 3 14 20 32 glacio Mermeti Caliza or limestone 143 185 206 210 glauberite 34 Mesozoic paleogeographic development 287 313 glendonite 20 27 34 36 microfossils 130 138 142 153 Gobernador Formation 70 micropaleontology 138 179 212 graphic correlation 130 151 152 154 156 171 179 197 198 Middle to Late Albian Great Artesian Basin 26 27 paleogeography 30 I Greenland Milankovitch cycles 8 175 195 197 200 201 ice sheet 18 Mirador Formation 58 68 7071 Grenada Basin 6768 73 74 125 Misoa Formation 68 7071 73 81 82 Guafita Formation 71 74 Mor6n Fault 76 Guaimaro Shale 306 morphometric variation 130 140 Guarumen Sub basin 46 72 82 Morro Blanco Member 224 226 229 232 266267 275 Guasare Formation 6566 Mt Anna Sandstone Formation 27 Guayuta Group 247 249 251 271 277 mountain glaciers 8 19 Gulf of Paria 47 55 79 82 90 106107 Mucujun Formation 74 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3795275/backmatter.pdf by guest on 29 September 2021 SUBJECT INDEX 323 N rhythmites 20 76 Naricual Formation 74 Roblecito Formation 72 Navet Formation 70 Rodinia 10 North Coast Fault Zone 87 North Slope of Alaska 19 Northern Range 46 55 69 74 78 87 90 92 9495 98 III 113 115 117 S 127 San Antonio Formation 222 239 247 255 257 270272 278 308 316 126 127 Northern Range Group 87 88 90 92 Ill San Fernando Formation 70 72 Northern Range of Trinidad 46 74 78 San Francisco Fault 55 220 230 245 247 250 252 253 256 265 San Jorge Fault 48 San Juan Formation 61 222 248 249 251 255 257 271 272 277 278 316 o San Luis Formation 76 Oca Fault 45 48 50 53 55 76 81 Sans Souci Terrane III Sans Souci 87 88 95 111 127 Oceanic anoxic event OAE 34 129 138 152 156 171 173 181 205 Group Oficina Formation 76 Santa Anita Group 252 256 51 53 57 Oriente Fault 60 Santa Marta Fault 45 4849 Oriente Fault Santa Marta Klippe 48 Cuba 60 Santa Marta Klippe Schist 4849 54 57 Orinoco Delta 47 66 Santa Marta Massif 46 4849 Orinoco River 78 121 Santander High 49 51 57 58 81 Orinoco Tar Belt 76 Santander Massif 4849 Otu Fault 48 Santonian Campanian 305 Otway basin 27 paleogeography Santonian 181 193 oxygen isotopes 32 34 Stage Scotland Formation 74 sea level eustasy and tectonics 1 10 12 14 61 76 208 sedimentation and tectonics Colombia 168 170 P 162 168 170 200 202 203 sequence I 3 10 14 143 146 Formation 71 stratigraphy Pagiiey 205 208 209 events 174 paleobiological SerranIa del Interior 464755 61Q2 74 76 78 82 events 167 171 paleoceanographic SerranIa del Interior Oriental 46 61 74 217 223 256257 265 46 55 56 67 76 165 paleogeography SerranIa 55 characterization of the C T 131 depocenter paleontological boundary Sierra de 45 48 53 54 5657 76 32 Perija paleothermometry Soldado Formation 66 restoration 4546 48 53 82 palinspastic source rocks 13 47 58 72 81 82 87 94 107 Palmar 66 68 7071 Avispa High South Caribbean Foldbelt 45 50 76 78 81 Pangea 5 9 10 12 47 51 Steer s head flexural subsidence 10 Paracotos Formation 65 strand line advance 2 Formation 51 74 77 Parangula Sucre Graben 57 Paria 47 55 79 82 90 106107 125 Sussex White Chalk 33 256 257 261 263 265 273 passive margin 47 55 58 61 79 81 217 219 Pebble Shale 35 pebbly mudstones 20 26 27 Pedernales 61 T Pefias BIancas Formation 71 Tablazo Rift 48 52 peripheral bulge 45 60 6668 71 72 7677 8082 Tachira Depression 266 275 Peroc Formation 74 Taguarumo Member 224 227 238 and 181 physical events 175 178 taphonomy diagenesis Picuda Member 224 226232 266267 275 Tinaco 126 limestone 62 99 255 257 272 plate kinematics 10 55 285 287 Tinajitas Plato Geofracture 57 Tobago 47 75 78 87 125 Plenus Marl 20 33 Tres
Recommended publications
  • Basin Development and Tectonic History of the Llanos Basin, Eastern Cordillera and Middle Magdalena Valley, Colombia
    BASIN DEVELOPMENT AND TECTONIC HISTORY OF THE LLANOS BASIN, EASTERN CORDILLERA AND MIDDLE MAGDALENA VALLEY, COLOMBIA by M.A.Cooper, F.T.Addison, R.Alvarez, M.Coral, R.H.Graham, A.B.Hayward, S.Howe, J.Martinez, J.Naar, R.Penas, A.J.Pulham and A.Taborda AAPG Bulletin, Volume 79, Number 10, October 1995, pages 1421-1443. BP Exploration (Colombia) Ltd., Carrera 9A no 99-02, Piso 9, A.A. 59824, Bogotá, Colombia Correspondence address, PanCanadian Petroleum, 150 9th Ave SW, Calgary, Alberta, Canada T2P 2S5 Telephone (403) 290 2964 E-mail [email protected] REFERENCES USED TO CONSTRUCT THE CHRONOSTRATIGRAPHIC CORRELATION DIAGRAMS AND PALEOGEOGRAPHIC MAPS OF GROSS DEPOSITIONAL ENVIRONMENTS. The locations of the numbered sections that follow each reference are shown on the map of Colombia at the end of this document. The wells referred to are shown on Figures 4 and 5 in the paper. Alfonso, C.A., 1989. Stratigraphy and Regional Structure of the Western Flank of the Cordillera Oriental, Cimitarra Area, Middle Magdalena Basin, Colombia. Unpublished MSc thesis, University of South Carolina, 117pp. Section #1: Cimitarra area. BP Exploration, 1994. Internal well files, Pico-1, Toy-1 & Yavi-1. Wells: Pico-1, Toy-1 & Yavi-1 Bürgl, H., & Dumit, T. 1954. El Cretáceo Inferior En Los Alrededores De Villa De Leiva, Boyacá, El Cretáceo Superior En La Region De Girardot. Boletín Geológico, Ingeominas, Bogotá, v.2, p.23-48. Section #3: Villa De Leyva / Loma La Yesera. Section #4: Girardot - Nariño. Bürgl, H., 1960. El Jurásico e Infracretáceo del rio Batá, Boyacá. Boletín Servicio Geológico Nacional, Bogotá, Informe No.
    [Show full text]
  • Structural Evolution of the Northernmost Andes, Colombia
    Structural Evolution of the Northernmost Andes, Colombia GEOLOGICAL SURVEY PROFESSIONAL PAPER 846 Prepared in coopeTation ·with the lnstituto Nacional de Investigaciones Geologico-MineTas under the auspices of the Government of Colombia and the Agency for International Development) United States DepaTtment of State Structural Evolution of the Northernmost Andes, Colombia By EARL M. IRVING GEOLOGICAL SURVEY PROFESSIONAL PAPER 846 Prepared in cooperation ·with the lnstituto Nacional de Investigaciones Geologico-Min eras under the auspices of the Government of Colombia and the Agency for International Development) United States Department of State An interpretation of the geologic history of a complex mountain system UNITED STATES GOVERNlVIENT PRINTING OFFICE, vVASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Irving, Earl Montgomery, 1911- Structural evolution of the northernmost Andes, Columbia. (Geological Survey professional paper ; 846) Bibliography: p Includes index. Supt. of Docs. no.: I 19.16:846 1. Geology-Colombia. 2. Geosynclines----Colombia. I. Instituto Nacional de Investigaciones Geologico­ Mineras.. II. Title. III. Series: United States. Geological Survey. Professional paper ; 846. QE239.175 558.61 74-600149 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402- Price $1.30 (paper cover) Stock Number 2401-02553 CONTENTS Page Pasre Abstract ----------------------------------------
    [Show full text]
  • Influence of Salt in the Tectonic Development of the Frontal Thrust
    t Special section: Balancing, restoration, and palinspastic reconstruction Influence of salt in the tectonic development of the frontal thrust belt of the eastern Cordillera (Guatiquía area, Colombian Andes) Vanessa Parravano1, Antonio Teixell2, and Andrés Mora3 Abstract Geologic maps, seismic lines, and data from a dry exploration well were used to develop a new structural model for a segment of the eastern foothills of the Eastern Cordillera of Colombia, emphasizing the role of salt tectonics. Milestones in the deformation history of the Guatiquía foothills were studied by sequential section restoration to selected steps. Uncommon structural geometries and sparse salt occurrences were interpreted in terms of a kinematic evolution in which Cretaceous salt migration in extension produced a diapiric salt wall, which was subsequently welded during the main episodes of the Andean compression, when the salt wall was squeezed generating a large overturned flap. Salt-weld strain hardening resulted in breakthrough thrust- ing across the overturned flap in late deformation stages. We have evaluated a pattern of salt tectonics pre- viously unrecognized in the foothills thrust belt, which may be significant in other parts of the external Colombian Andes. Introduction We aim to provide an explanation for differences in The prolific thrust belt of the eastern foothills of the structural style in the EC external thrust belt. Based on Eastern Cordillera (EC) of Colombia has been inten- seismic lines, maps, the occurrences of salt in old sively investigated
    [Show full text]
  • Detrital U–Pb Provenance, Mineralogy, and Geochemistry of the Cretaceous Colombian Back–Arc Basin
    Volume 2 Quaternary Chapter 8 Neogene https://doi.org/10.32685/pub.esp.36.2019.08 Detrital U–Pb Provenance, Mineralogy, and Published online 25 November 2020 Geochemistry of the Cretaceous Colombian Back–Arc Basin Paleogene Javier GUERRERO1* , Alejandra MEJÍA–MOLINA2 , and José OSORNO3 1 [email protected] Abstract The geology of the Cretaceous Colombian back–arc basin is reviewed con- Universidad Nacional de Colombia Cretaceous sidering detrital U–Pb provenance ages, mineralogy, and geochemistry of samples Sede Bogotá Departamento de Geociencias collected from outcrop sections and wells at several localities in the core of the Eastern Carrera 30 n.° 45–03 Bogotá, Colombia Cordillera, Middle Magdalena Valley, and Catatumbo areas. The data set supports previ- 2 [email protected] ous studies indicating a basin with main grabens in the present–day Eastern Cordillera Universidad Yachay Tech Hacienda Urcuquí s/n y Proyecto Yachay Jurassic between the Guaicáramo/Pajarito and Bituima/La Salina border faults, which operated Urcuquí, Ecuador as normal faults during the Cretaceous. Limestones are common on the western and 3 [email protected] Agencia Nacional de Hidrocarburos northern sides of the basin, whereas terrigenous strata predominate on the eastern Calle 26 n.° 59–65, segundo piso and southern sides. After the Berriasian, grabens were connected by marine flooding Bogotá, Colombia during the Valanginian, with two main source areas documented by distinct element * Corresponding author Triassic and mineral contents, one in the Central Cordillera magmatic arc and the other in the Guiana Shield. Some elements present in Lower Cretaceous shales, including scan- Supplementary Information: dium, vanadium, and beryllium, are not related to the sediment supply areas for the S: https://www2.sgc.gov.co/ LibroGeologiaColombia/tgc/ basin but instead are linked to Valanginian to Cenomanian hydrothermal activity and sgcpubesp36201908s.pdf Permian dikes of gabbro, diorite, and tonalite emplaced during the main phase of extension in the basin.
    [Show full text]
  • The Cretaceous Source Rocks from East Venezuela – Trinidad-Guyana/Suriname Basins, NE South America
    The Cretaceous source rocks from East Venezuela – Trinidad-Guyana/Suriname basins, NE South America Francia A. Galea Alvarez, PhD Actus Veritas Geoscience, LLC 1st HGS/EAGE Conference on Latin America: South American Petroleum Play for Future Decades of the Third Millennium. Houston, November 19 – 20, 2019 Abstract The Cretaceous source rocks from East Venezuela - Trinidad - Guyana/Suriname basins, NE South America Galea Alvarez, Francia A. – Actus Veritas Geoscience, LLC The major contribution to the oil fields in East Venezuela and Trinidad are Cretaceous source rocks, Late Albian – Santonian in age. The Querecual Formation, from the Guayuta Group, is the source rock of the oil and gas from the giant and super giant oil fields like Carito, Furrial_Musipan, Quiriquire, Great Oficina, Anaco Trend, and Santa Barbara oil fields, among others. The Orinoco Belt huge deposits of oil are aromatic-asphaltic oils biodegraded interpreted as originated in organic rich carbonate sediments, with some components of siliciclastic, deposited in an anoxic environment as the one described for the Querecual Formation at the type section and outcrops around the Pozuelos Bay, northern Anzoátegui state, southwest of the Cariaco Basin. Studies at the type section of the Querecual Formation described black shales, limestones and marls, rich in foraminifers and other macrofossils, which were used to identify biostratigraphic zones from late Albian to Santonian, and a hiatus at the early Cenomanian. Paleowater depths were interpreted as middle to upper bathyal (based on microfossils content). Mainly microlaminated foraminiferal microfacies were linked to anoxic-dysoxic levels. Total carbon (TC), Total organic Carbon (TOC), inorganic carbon (Cinorg), and total Sulfur (tS), and the calcium carbonate concentration (CaCO3) were measured and interpreted: high values of CaCO3, of the TOC and planktonic foraminifers decreases from base to top, and were identified in strata from late Cenomanian, late Turonian, Coniacian and Santonian.
    [Show full text]
  • Strong Ground Motion
    The Lorna Prieta, California, Earthquake of October 17, 1989-Strong Ground Motion ROGER D. BORCHERDT, Editor STRONG GROUND MOTION AND GROUND FAILURE Thomas L. Holzer, Coordinator U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1551-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication, October 6, 1993 Text and illustrations edited by George A. Havach Library of Congress catalog-card No. 92-32287 For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 CONTENTS Page A1 Strong-motion recordings ---................................. 9 By A. Gerald Brady and Anthony F. Shakal Effect of known three-dimensional crustal structure on the strong ground motion and estimated slip history of the earthquake ................................ 39 By Vernon F. Cormier and Wei-Jou Su Simulation of strong ground motion ....................... 53 By Jeffry L. Stevens and Steven M. Day Influence of near-surface geology on the direction of ground motion above a frequency of 1 Hz----------- 61 By John E. Vidale and Ornella Bonamassa Effect of critical reflections from the Moho on the attenuation of strong ground motion ------------------ 67 By Paul G. Somerville, Nancy F. Smith, and Robert W. Graves Influences of local geology on strong and weak ground motions recorded in the San Francisco Bay region and their implications for site-specific provisions ----------------- --------------- 77 By Roger D.
    [Show full text]
  • Emeralds in the Eastern Cordillera of Colombia
    Emeralds in the Eastern Cordillera of Colombia: Two tectonic settings for one mineralization Yannick Branquet Centre National de la Recherche Scientifique, Centre de Recherches Pétrographiques et Géochimiques, BP 20,54501 Vandœuvre-Lès-NancyCedex, France Bernard Laumonier Ecole des Mines, 54042 Nancy, France Alain Cheilletz Ecole Nationale Supérieure de Géologie and Centre National de la Recherche Scientifique, Centre de Recherches Pétrographiques et Géochimique , BP 20,54501 Vandceuvre-LèGNancyCedex, France Gasto Giuliani Institut de Recherche pour le Développement nd Centre National de la Recherche Scientifique, f 20,54501 Centre de Recherches Pétrographiques et Géochimiques, BP Vandœuvre-Lès-NancyCedex, France ABSTRACT Colombian emeralds are formed through a hydrothermal-sedimentaryprocess. On the western side of the Eastern Cordillera, the deposits are linked by tear faults and associated thrusts developed during a compressive tectonic phase that occurred at the time of the Eocene- Oligocene boundary, prior to the major uplift of the Cordillera during the Andean phase (middle Miocene). On the eastern side of the Cordillera, emerald mineralization occurred earlier, at the time of the Cretaceous-Tertiaryboundary, during a thin-skinned extensional tectonic event linked to evaporite dissolution. This event predates the Andean phase, during which this part of the chain was folded and thrust over the Llanos foreland. INTRODUCTION A very peculiar aspect of the emerald mineralization in the Eastern Like most of other emerald deposits in the
    [Show full text]
  • 8061 Santos C 2008 E
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 264 (2008) 140–146 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Late Eocene marine incursion in north-western South America C. Santos a, C. Jaramillo b,⁎, G. Bayona c, M. Rueda d, V. Torres e a GEMS Ltda. Grupo de Bioestratigrafía — Instituto Colombiano del Petróleo. Kilómetro 6 Vía Piedecuesta. Santander, Colombia b STRI. Smithsonian Tropical Research Institute. P.O. Box 0843 — 03092 Balboa — Ancon, Panama c Corporación Geológica ARES, Calle 57 #24-11 of 202, Bogotá, Colombia d Paleoflora Ltda. Grupo de Bioestratigrafía — Instituto Colombiano del Petróleo. Kilómetro 6 Vía Piedecuesta. Santander, Colombia e Grupo de Bioestratigrafía — Instituto Colombiano del Petróleo. Kilómetro 6 Vía Piedecuesta. Santander, Colombia ARTICLE INFO ABSTRACT Article history: During the late Eocene in the Colombian Subandean basins, one of the most important oil-bearing rocks of Received 20 September 2007 the country was deposited: the Mirador Formation.
    [Show full text]
  • Dating the Mirador Formation in the Llanos Basin of Colombia 29
    BIOSTRATIGRAPHY BREAKING PARADIGMS: DATING THE MIRADOR FORMATION IN THE LLANOS BASIN OF COLOMBIA 29 BIOSTRATIGRAPHY BREAKING PARADIGMS: DATING THE MIRADOR FORMATION IN THE LLANOS BASIN OF COLOMBIA C.A. JARAMILLO Smithsonian Tropical Research Institute, Unit 0946, APO AA 34002, U.S.A. e-mail: [email protected] M. RUEDA ICP, Bucaramanga, Km 7 via Piedecuesta, Colombia G. BAYONA Smithsonian Tropical Research Institute, Unit 0946, APO AA 34002, U.S.A. and Corporación Geológica ARES, Calle 57 24-11 of, 202, Bogotá, Colombia C. SANTOS, P. FLOREZ, AND F. PARRA ICP, Bucaramanga, Km 7 via Piedecuesta, Colombia ABSTRACT: The two major oil fields in Colombia discovered in the last fifty years are the Caño Limón and Cusiana fields. Caño Limón is located in the eastern region of the unfolded Llanos of Colombia, and Cusiana is located in the leading thrust sheet of the Llanos Foothills. Paleogene strata in both areas were part of a large foreland basin active since the latest Cretaceous. In both cases the main reservoir is a quartz arenite unit, informally called the Mirador formation, that has always been assumed to extend as a continuous Eocene sandstone layer from the Llanos Foothills into the Llanos Basin. However, recent palynological data suggested that this unit is diachronous across the Llanos and Llanos Foothills. Here, we dated 44 sections in the Llanos Basin and Llanos Foothills using a new zonation that is proposed for the region. Biostratigraphic results constrain the age of the Mirador Formation in the Llanos Foothills as early to middle Eocene with no evidence of a biostratigraphic gap with underlying early Eocene strata.
    [Show full text]
  • A Middle to Late Miocene Trans-Andean Portal: Geologic Record in the Tatacoa Desert
    Research Collection Journal Article A Middle to Late Miocene Trans-Andean Portal: Geologic Record in the Tatacoa Desert Author(s): Montes, Camilo; Silva, C.A.; Bayona, Germán A.; Villamil, R.; Stiles, E.; Rodriguez-Corcho, A.F.; Beltrán- Triviño, Alejandro; Lamus, Felipe; Muñoz-Granados, M.D.; Perez-Angel, L.C.; Hoyos, N.; Gomez, S.; Galeano, J.J.; Romero, E.; Baquero, Mauricio; Cardenas-Rozo, Andrés L.; von Quadt, Albrecht Publication Date: 2021-01 Permanent Link: https://doi.org/10.3929/ethz-b-000467915 Originally published in: Frontiers in Earth Science 8, http://doi.org/10.3389/feart.2020.587022 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library ORIGINAL RESEARCH published: 12 January 2021 doi: 10.3389/feart.2020.587022 A Middle to Late Miocene Trans-Andean Portal: Geologic Record in the Tatacoa Desert C. Montes 1*, C. A. Silva 2, G. A. Bayona 3, R. Villamil 4, E. Stiles 2,5, A. F. Rodriguez-Corcho 6, A. Beltran-Triviño 7, F. Lamus 1, M. D. Muñoz-Granados 4, L. C. Perez-Angel 8, N. Hoyos 1, S. Gomez 2,7, J. J. Galeano 1, E. Romero 7,2, M. Baquero 3, A. L. Cardenas-Rozo 7 and A. von Quadt 9 1Universidad del Norte, Barranquilla, Colombia, 2Center for Tropical Paleoecology and Archaeology, Smithsonian Tropical Research Institute, Ancón, Panamá, 3Corporación Geologica Ares, Bogotá, Colombia, 4Departamento de Geociencias, Universidad de Los Andes, Bogotá, Colombia,
    [Show full text]
  • 8Th ISAG Programme
    Scientific Programme 8th International Symposium on Andean Geodynamics Quito, September 24-26th, 2019 With the academic and financial support of: With the financial support of: The symposium at a glance September 24th 08h00-08h30 Opening ceremony Salon I: Plenary session 08h30-08h45 L. Audin et al. Ten years of multidisciplinary approaches to unveil the crustal active tectonics in Ecuador 08h45-09h00 A. Alvarado et al. Características de la deformación cortical en el Ecuador 09h00-09h15 F.A. Audemard and H. Mora Páez. Net northeast slip of the North Andes Sliver (NAS) along the Eastern Frontal Fault System (EFFS), northwestern South America (NW SA) 09h15-09h30 S. Beck et al. A tale of two modern flat slabs along the South America Convergent Margin 09h30-09h45 B. Potin et al. Tomography of Chile 09h45-10h00 L. Giambiagi et al. Contemporary stress field, crustal deformation, exhumation and sedimentation during the building of the Central Andes over the last 20 my: Advances in the Central Andean Stress Field Evolution Project 10h00-10h30 Coffee break 10h30-11h15 Keynote. V.A. Ramos. Fifty years of Plate Tectonics in the Andes: Past challenges and future perspectives 11h15-11h30 R. Spikings et al. The Permo-Triassic history of magmatic rocks of the Northern Andes (Colombia and Ecuador): supercontinent assembly and disassembly 11h30-11h45 A. Cardona et al. Clues on the Cenozoic orogenic growth of Southermost Colombian Andes 11h45-12h00 G. Bayona et al. Changes in relative motion between western oceanic plates and the NW corner of South-America: cases of Middle Jurassic and Middle Eocene 12h00-12h15 S.
    [Show full text]
  • Stratigraphy of the Ordovician La Cristalina Formation, Puerto Berrío (Colombia)
    ____________________________ Director Doc. Rer. Nat., P.Doc. Pedro Calixto Patarroyo Gama ____________________________ Codirector Ph.D. José María Jaramillo Mejía II Stratigraphy of the Ordovician La Cristalina Formation, Puerto Berrío (Colombia) Stratigraphy of the Ordovician La Cristalina Formation, Puerto Berrío (Colombia) María Fernanda Almanza Meléndez Geologist, Universidad Nacional de Colombia Sede Bogotá Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Geociencias Bogotá D. C., Colombia 2017 Stratigraphy of the Ordovician La Cristalina Formation, Puerto Berrío (Colombia) María Fernanda Almanza Meléndez Geologist, Universidad Nacional de Colombia-Sede Bogotá Thesis presented as partial requisite to get the title of: Mágister en Ciencias-Geología Director: Doc. Rer. Nat., P.Doc. Pedro Calixto Patarroyo Gama Co-Director: Ph.D. José María Jaramillo Mejía Research field: Stratigraphy Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Geociencias Bogotá D. C., Colombia 2017 To those who enjoy each piece of the cake, who love researching and never forget to be a good human being. To my beloved father, mother and brother Acknowledgments The main reason to do this master theses was the curiosity I had for some poorly-known old rocks. So, I feel deeply grateful with those Ordovician complicated rocks for allowing me discover something new. I am grateful with my advisor Pedro Patarroyo for accompanings me during field work, and with my co-advisor professor José María Jaramillo, firstly, for the enlightining discussions during the best researching-breakfasts, secondly for guiding me to unlock dreams and build this master theses and its related peer-reviewed publications, lastly for introducing me to such metamorphic rocks and to encourage me to study them.
    [Show full text]