<<

GAMM Annual Meeting 2013 , 18–22, 2013

THE SYMPLECTIC LANCZOS PROCESS FOR HAMILTONIAN-POSITIVE MATRICES (Symplectic Lanczos for Hamiltonian-positive matrices encounters no serious breakdown!)

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory , TU Mathematics in Industry and Technology Chemnitz, Germany Joint work with Ahmed Salam (ULCO, Calais) Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Hamiltonian Eigenproblems

Definition   0 In Let J = , then H ∈ R2n×2n is called Hamiltonian if −In 0 (HJ)T = HJ.

Note: J−1 = JT = −J.

Explicit block form of Hamiltonian matrices

 AB  , where A, B, C ∈ n×n and B = BT , C = C T . C −AT R

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 2/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Hamiltonian Eigenproblems

Definition   0 In Let J = , then H ∈ R2n×2n is called Hamiltonian if −In 0 (HJ)T = HJ.

Note: J−1 = JT = −J.

Explicit block form of Hamiltonian matrices

 AB  , where A, B, C ∈ n×n and B = BT , C = C T . C −AT R

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 2/13 Typical Hamiltonian spectrum

Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Spectral Properties

Hamiltonian Eigensymmetry Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then λ,¯ −λ, −λ¯ are eigenvalues of H, too.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 3/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Spectral Properties

Hamiltonian Eigensymmetry Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then λ,¯ −λ, −λ¯ are eigenvalues of H, too.

Typical Hamiltonian spectrum

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 3/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Hamiltonian Eigenproblems

Goal Structure-preserving algorithm, i.e., if λ˜ is a computed eigenvalue of H, then λ,˜ −λ,˜ −λ˜ should also be computed eigenvalues. Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms! For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition V ∈ R2n×2n is symplectic if V T JV = J, i.e., V −1 = JT V T J. 2n×2k T Vk ∈ R is symplectic or a J-isometry if Vk JnVk = Jk . Lemma If H is Hamiltonian and V is symplectic, then V −1HV is Hamiltonian, too.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 4/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Hamiltonian Eigenproblems

Goal Structure-preserving algorithm, i.e., if λ˜ is a computed eigenvalue of H, then λ,˜ −λ,˜ −λ˜ should also be computed eigenvalues. Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms! For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition V ∈ R2n×2n is symplectic if V T JV = J, i.e., V −1 = JT V T J. 2n×2k T Vk ∈ R is symplectic or a J-isometry if Vk JnVk = Jk . Lemma If H is Hamiltonian and V is symplectic, then V −1HV is Hamiltonian, too.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 4/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Hamiltonian Eigenproblems

Goal Structure-preserving algorithm, i.e., if λ˜ is a computed eigenvalue of H, then λ,˜ −λ,˜ −λ˜ should also be computed eigenvalues. Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms! For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition V ∈ R2n×2n is symplectic if V T JV = J, i.e., V −1 = JT V T J. 2n×2k T Vk ∈ R is symplectic or a J-isometry if Vk JnVk = Jk . Lemma If H is Hamiltonian and V is symplectic, then V −1HV is Hamiltonian, too.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 4/13 Introduction Symplectic Lanczos Hamiltonian-positiv References Introduction Applications Hamiltonian eigenproblems arise in many different applications, e.g.: Systems and control: Solution methods for algebraic and differential Riccati equations. Design of LQR/LQG/H2/H∞ controllers and filters for continuous-time linear control systems. Stability radii and system norm computations; optimization of system norms. Passivity-preserving model reduction based on balancing. Reduced-order control for infinite-dimensional systems based on inertial manifolds. Computational physics: exponential integrators for Hamiltonian dynamics. [Eirola ’03, Lopez/Simoncini ’06, B./Meister ’13] Quantum chemistry: computing excitation energies in many-particle systems using random phase approximation (RPA). Quadratic eigenvalue problems: in particular, gyroscopic systems.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 5/13 Introduction Symplectic Lanczos Hamiltonian-positiv References The Symplectic Lanczos Algorithm

Symplectic Lanczos Algorithm for Hamiltonian operators H is based on transpose-free unsymmetric Lanczos process [Freund ’94]; computes partial J-tridiagonalization; 2n×2k provides a symplectic (J-orthogonal) Lanczos basis Vk ∈ R , T i.e., Vk JnVk = Jk ; was derived in several variants: [Freund/Mehrmann ’94, Ferng/Lin/Wang ’97, B./Faßbender ’97, Watkins ’04]; requires re-J-orthogonalization using, e.g., modified symplectic Gram-Schmidt; can be restarted implicitly using implicit SR steps [B./Faßbender ’97] or Krylov-Schur restarting [B./Faßbender/Stoll ’11] which allows easy locking & purging procedure; does not provide an orthogonal Lanczos basis and is prone to serious breakdown.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 6/13 Introduction Symplectic Lanczos Hamiltonian-positiv References The Hamiltonian J-Tridiagonal Form or Hamiltonian J-Hessenberg Form

 δ1 β1 ζ2   δ2 ζ2 β2 ζ3     .. ..   δ ζ . .   3 3   . . .   . . .   . . . ζn    2n×2n Tn =  δn ζn βn  ∈ R ,    ν1 −δ1     ν2 −δ2     ν3 −δ3     . .   .. ..  νn −δn

−1 can be computed by symplectic similarity Tn = V HV for almost (serious breakdown!) any V1 = V (:, 1), is computed partially by symplectic Lanczos process, based on symplectic Lanczos recursion T HVk = Vk Tk + ζk+1vk+1e2k , Vk = [V (:, 1 : k), V (:, n + 1 : n + k)].

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 7/13 Introduction Symplectic Lanczos Hamiltonian-positiv References The Symplectic Lanczos Algorithm T Algorithm based on symplectic Lanczos recursion HVk = Vk Tk + ζk+1vk+1e2k 2n×2n 2n INPUT: H ∈ R , k ∈ N, and start vectorv ˜1 6= 0 ∈ R . 2k×2k 2n×2k OUTPUT: Tk ∈ R , Vk ∈ R , ζk+1, and vk+1.

1 ζ1 = kv˜1k2 1 2 v1 = v˜1 ζ1 3 FOR m = 1, 2,..., k

(a) t = Hvm (b) δm = ht, vmi % B./Faßbender ’97: δm = 1, Watkins ’04: δm = 0. (c)˜wm = t − δmvm (d) νm = ht, vmiJ 1 (e) wm = w˜m νm (f) u = Hwm (g) βm = −hu, wmiJ (h)˜vm+1 = u − ζmvm−1 − βmvm + δmwm (i) ζm+1 = kv˜m+1k2 1 (j) vm+1 = v˜m+1 ζm+1 ENDFOR

Note: 3(b) yields orthogonality of vk , wk [Ferng/Lin/Wang ’97] and optimal conditioning of Lanczos basis [B. ’03] if kvk2 = 1 is forced.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 8/13 Introduction Symplectic Lanczos Hamiltonian-positiv References The Symplectic Lanczos Algorithm T Algorithm based on symplectic Lanczos recursion HVk = Vk Tk + ζk+1vk+1e2k 2n×2n 2n INPUT: H ∈ R , k ∈ N, and start vectorv ˜1 6= 0 ∈ R . 2k×2k 2n×2k OUTPUT: Tk ∈ R , Vk ∈ R , ζk+1, and vk+1.

1 ζ1 = kv˜1k2 1 2 v1 = v˜1 ζ1 3 FOR m = 1, 2,..., k

(a) t = Hvm (b) δm = ht, vmi % B./Faßbender ’97: δm = 1, Watkins ’04: δm = 0. (c)˜wm = t − δmvm (d) νm = ht, vmiJ 1 (e) wm = w˜m νm (f) u = Hwm (g) βm = −hu, wmiJ (h)˜vm+1 = u − ζmvm−1 − βmvm + δmwm (i) ζm+1 = kv˜m+1k2 1 (j) vm+1 = v˜m+1 ζm+1 ENDFOR

Note: 3(b) yields orthogonality of vk , wk [Ferng/Lin/Wang ’97] and optimal conditioning of Lanczos basis [B. ’03] if kvk2 = 1 is forced.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 8/13 Introduction Symplectic Lanczos Hamiltonian-positiv References The Symplectic Lanczos Algorithm Numerical example: rolling tire Results from [B./Faßbender/Stoll ’08/’11]

Modeling the noise of rolling tires requires to determine the transient vibrations, [Nackenhorst/von Estorff ’01].

FEM model of a deformable wheel rolling on a rigid plane surface results in a gyroscopic system of order n = 124, 992 [Nackenhorst ’04].

Here, use reduced-order model of size n = 2, 635 computed by AMLS [Elssel/Voß ’06].

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 9/13 Introduction Symplectic Lanczos Hamiltonian-positiv References The Symplectic Lanczos Algorithm Numerical example: rolling tire Results from [B./Faßbender/Stoll ’08/’11]

Compare eigs and symplectic Lanczos with Krylov-Schur restarting (HKS) applied to H−1 to compute the 12 smallest eigenvalues. eigs needs 8, HKS 6 iterations. max(cond (SR)) = 331. Eigenvalues scaled by 1,000.

eigs HKS Eigenvalue Residual Eigenvalue Residual 4 · 10−12 +1 .73705142673ı 2 · 10−14 1.73705142671ı 5 · 10−17 −3 · 10−12 +1 .66795405953ı 8 · 10−15 1.66795405955ı 2 · 10−15 2 · 10−13 +1 .66552788164ı 2 · 10−15 1.66552788164ı 1 · 10−16 4 · 10−14 +1 .58209209804ı 1 · 10−16 1.58209209804ı 5 · 10−17 −1 · 10−14 +1 .13657108578ı 8 · 10−17 1.13657108578ı 7 · 10−18 1 · 10−14 +0 .80560062107ı 1 · 10−16 0.80560062107ı 6 · 10−18

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 10/13 Introduction Symplectic Lanczos Hamiltonian-positiv References The Symplectic Lanczos Algorithm Numerical example: rolling tire Results from [B./Faßbender/Stoll ’08/’11]

Compare eigs and HKS applied to H−1 to compute the 180 smallest eigenvalues.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 10/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Lemma [Amodio 2003] All eigenvalues of Hamiltonian-positive matrices are purely imaginary, i.e., Λ(H) ⊂ R.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Comparison of spectra of spd generator and its Hamiltonian

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Example: weakly coupled Hamiltonian systems

p˙ = H , 1   q for Hamiltonian H(p, q) = pT p + qT Kq + 2pT Wq q˙ = −Hp, 2

with kinetic energy determined by K = K T > 0 and weak coupling, i.e., kW k ”small” " # In W S = JT H = > 0 if kW k ”small” enough. W T K

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Theorem There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

2n×2n 2n INPUT: H ∈ R , k ∈ N, and start vectorv ˜1 6= 0 ∈ R . 2k×2k 2n×2k OUTPUT: Tk ∈ R , Vk ∈ R , ζk+1, and vk+1.

1 ζ1 = kv˜1k2 1 2 v1 = v˜1 ζ1 3 FOR m = 1, 2,..., k

(a) t = Hvm (b) δm = ht, vmi % B./Faßbender ’97: δm = 1, Watkins ’04: δm = 0. (c)˜wm = t − δmvm (d) νm = ht, vmiJ 1 (e) wm = w˜m νm (f) u = Hwm (g) βm = −hu, wmiJ (h)˜vm+1 = u − ζmvm−1 − βmvm + δmwm (i) ζm+1 = kv˜m+1k2 1 (j) vm+1 = v˜m+1 ζm+1 ENDFOR

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Theorem There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If vm = 0 =⇒ benign breakdown, else

νm = hHvm, vmiJ

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Theorem There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If vm = 0 =⇒ benign breakdown, else

νm = hHvm, vmiJ T T T T = vm H Jvm = vm J Hvm

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Theorem There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If vm = 0 =⇒ benign breakdown, else

νm = hHvm, vmiJ T T T T = vm H Jvm = vm J Hvm T √ = vm Svm > 0.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

Symplectic Lanczos for Hamiltonian-positive Matrices Hamiltonian-positive Matrices

Definition A Hamiltonian matrix H ∈ R2n×2n is called Hamiltonian-positive if its symmetric generator S = JT H is positive definite.

Theorem There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If vm = 0 =⇒ benign breakdown, else

νm = hHvm, vmiJ T T T T = vm H Jvm = vm J Hvm T √ = vm Svm > 0.

Remark: Hamiltonian-positiveness of Tk can be enforced; T βm = −hu, wmiJ = −u Su < 0.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 11/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

How About Symplectic Arnoldi? Hamiltonian-positive Matrices

Symplectic Arnoldi recursion

HVk = Vk Hk + ζk vk+1,

where Vk is symplectic and orthogonal, Hk is in Hamiltonian Hessenberg form:

" H H #   11 12 T T Hk = with H11 = @ , H12 = H , H21 = hk+1,k ek e . T @ 12 k H21 −H11 @@

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 12/13 Introduction Symplectic Lanczos Hamiltonian-positiv References

How About Symplectic Arnoldi? Hamiltonian-positive Matrices

Symplectic Arnoldi recursion

HVk = Vk Hk + ζk vk+1,

where Vk is symplectic and orthogonal, Hk is in Hamiltonian Hessenberg form:

" H H #   11 12 T T Hk = with H11 = @ , H12 = H , H21 = hk+1,k ek e . T @ 12 k H21 −H11 @@

Theorem [Ammar/Mehrmann ’91]

There exists a symplectic Arnoldi reduction with Hn unreduced, i.e., hj+1,j 6= 0, if and only if ∃ x with

x T JH2k−1x = 0 (k = 1, 2,..., n − 1), x T x = 1,

that is not contained in an H-invariant subspace of dimension ≤ n. For H Hamiltonian-positive, no such vector exists! (Already observed in [Ammar/Mehrmann ’91, page 65].)

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 12/13 Introduction Symplectic Lanczos Hamiltonian-positiv References References

1 G. Ammar and V. Mehrmann. On Hamiltonian and symplectic Hessenberg forms. Linear Algebra Appl., 149:55–72, 1991. 2 P. Amodio. On the computation of few eigenvalues of positive definite Hamiltonian matrices. Future Generation Computer Systems, 22:403–411, 2006. 3 P. Benner. Structured Krylov subspace methods for eigenproblems with spectral symmetries. Workshop Theoretical and Computational Aspects of Matrix Algorithms, Dagstuhl, October 2003. 4 P. Benner and H. Faßbender. An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl., 263:75–111, 1997. 5 P. Benner, H. Faßbender, and M. Stoll. A Krylov-Schur-type algorithm for Hamiltonian eigenproblems based on the symplectic Lanczos process. Linear Algebra Appl., 435(3):578–600, 2011. 6 W. R. Ferng, W. W. Lin, and C. S. Wang. The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations. Comp. Math. Appl., 33(10):23?40, 1997. 7 D. Watkins. On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl., 385:23–45, 2004.

Max-Planck-Institut Magdeburg Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 13/13