<<

Supplement of Earth Syst. Dynam., 11, 755–774, 2020 https://doi.org/10.5194/esd-11-755-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of storage dynamics in the world’s large systems from GRACE: uncertainty and role of extreme

Mohammad Shamsudduha and Richard G. Taylor

Correspondence to: Mohammad Shamsudduha ([email protected])

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Supplementary Table S1. Characteristics of the world’s 37 large aquifer systems according to the WHYMAP database including aquifer area, total number of population, proportion of groundwater (GW)-fed , mean aridity index, mean annual rainfall, variability in rainfall and total terrestrial mass (ΔTWS), and correlation coefficients between monthly ΔTWS and precipitation with reported lags. ) 2

2) Correlation between between Correlation precipitation TWS and (lag in month) GW irrigation (%) (%) GW irrigation on based zones Climate Aridity indices Mean (2002-16) annual precipitation (mm) Rainfall variability (%) (cm TWS variance WHYMAP aquifer number name Aquifer Continent (million)Population area (km Aquifer

Nubian Sandstone Hyper- 1 Africa 86.01 2,176,068 1.6 30 12.1 1.5 0.16 (13) Aquifer System arid Northwestern 2 Sahara Aquifer Africa 5.93 1,007,536 4.4 Arid 69 17.3 1.9 0.19 (8) System Murzuk-Djado Hyper- 3 Africa 0.35 483,817 2.3 8 36.6 1.3 0.20 (-8) Basin arid Taoudeni- Hyper- 4 Africa 0.35 720,991 0.0 66 14.6 1.2 0.46 (1) Tanezrouft Basin arid Senegal- Semi- 5 Africa 17.77 294,613 1.0 540 14.6 31.9 0.73 (2) Mauritanian Basin arid Iullemmeden- 6 Irhazer Aquifer Africa 21.57 580,870 0.4 Arid 302 11.7 6.9 0.66 (2) System 7 Lake Chad Basin Africa 32.25 1,516,233 0.4 Arid 415 9.5 16.8 0.82 (2) Umm Ruwaba Semi- 8 Aquifer (Sudd Africa 10.52 509,174 0.0 789 10.7 44.4 0.86 (2) arid Basin) 9 Ogaden-Juba Basin Africa 20.27 1,080,953 0.3 Arid 393 14.2 2.7 0.48 (1)

10 Congo Basin Africa 34.74 1,487,858 0.0 Humid 1,566 5.6 33.0 0.66 (2)

Upper Kalahari- Semi- 11 Cuvelai-Zambezi Africa 6.02 1,000,812 0.1 819 10.0 145.1 0.66 (2) arid Basin Lower Kalahari- 12 Africa 0.76 426,487 0.6 Arid 297 24.1 5.3 0.47 (2) Stampriet Basin Semi- 13 Karoo Basin Africa 14.53 568,213 2.1 479 17.6 6.5 0.30 (2) arid Northern Great North Sub- 14 6.62 1,507,325 14.5 461 9.7 24.5 0.45 (10) Plains Aquifer America humid Cambro-Ordovician North 15 13.86 129,588 91.7 Humid 880 11.6 35.1 0.39 (10) Aquifer System America California Central North Semi- 16 Valley Aquifer 8.10 71,430 57.8 515 32.0 176.5 0.53 (2) America arid System North Semi- 17 2.44 501,374 86.8 507 16.1 19.7 0.39 (9) (High Plains) America arid

2 Atlantic and Gulf North 18 Coastal Plains 65.38 1,125,968 55.8 Humid 1,230 11.4 43.1 0.43 (8) America Aquifer South 19 Amazon Basin 8.93 2,279,522 1.0 Humid 2,505 8.3 347.2 0.84 (2) America South 20 Maranhao Basin 10.81 592,680 32.6 Humid 1,502 15.7 217.2 0.82 (2) America South 21 System (Parana 47.84 1,834,681 20.5 Humid 1,450 10.6 40.5 0.61 (3) America Basin) Arabian Aquifer 22 Asia 27.43 1,782,954 7.2 Arid 65 15.0 6.1 0.12 (0) System Semi- 23 Indus River Basin Asia 155.85 308,436 31.0 375 16.2 13.0 0.56 (1) arid Ganges- 24 Asia 596.44 616,422 55.8 Humid 1,391 12.1 255.6 0.73 (2) Brahmaputra Basin West Siberian 25 Asia 12.71 2,703,532 3.4 Humid 483 8.1 39.1 0.71 (8) Artesian Basin

26 Tunguss Basin Asia 0.43 1,241,981 0.1 Humid 432 9.8 38.1 0.66 (8)

27 Angara-Lena Basin Asia 2.50 620,591 1.3 Humid 472 7.9 21.6 0.55 (8)

28 Yakut Basin Asia 0.63 861,053 0.7 Humid 386 8.2 19.5 0.58 (-4)

North China Plains 29 Asia 336.70 438,954 37.1 Humid 826 10.0 32.8 0.32 (2) Aquifer System

30 Song-Liao Plain Asia 54.49 279,044 53.5 Humid 514 17.0 19.5 0.20 (1)

31 Tarim Basin Asia 7.69 454,288 2.8 Arid 90 23.6 1.9 0.50 (0)

32 Paris Basin Europe 28.58 178,513 82.3 Humid 727 10.8 32.9 0.24 (6)

East European 33 Europe 100.22 2,859,962 16.6 Humid 606 6.2 35.3 0.54 (7) Aquifer System North Caucasus Semi- 34 Europe 13.30 294,821 4.2 524 11.6 49.2 0.30 (10) Basin arid

35 Pechora Basin Europe 0.19 220,245 0.0 Humid 559 9.5 51.2 0.60 (7)

Great Artesian Semi- 36 0.20 1,765,830 0.9 444 28.9 20.2 0.55 (2) Basin arid

37 Canning Basin Australia 0.01 432,774 0.4 Arid 443 21.2 50.3 0.47 (2)

3 Supplementary Table S2. Characteristics of the world’s 37 large aquifer systems according to the WHYMAP database including mean annual rainfall, mean aridity index, and variability in total terrestrial water mass (ΔTWS), and correlation coefficients between ΔTWS and annual precipitation. The variance (cm2) in the ensemble GRACE ΔTWS and the proportion of variance explained by and snow water equivalent combined (SWS+SNS), soil moisture storage (SMS) and groundwater storage (GWS) are tabulated. ) 2 Correlation between between Correlation TWS in changes annual precipitation annual and by explained TWS variance (%) SWS+SNS combined by explained TWS variance (%) SMS by explained TWS variance GWS (%) Mean (2002–2016) Annual precipitation (mm) on based zones Climate Aridity indices (cm TWS variance WHYMAP aquifer number name Aquifer Nubian Sandstone 1 30 Hyper-arid 1.5 0.32 0.5 32.4 67.1 Aquifer System Northwestern Sahara 2 69 Arid 1.9 0.62 0.9 14.2 84.9 Aquifer System

3 Murzuk-Djado Basin 8 Hyper-arid 1.3 0.08 1.6 1.5 96.9

Taoudeni-Tanezrouft 4 66 Hyper-arid 1.2 0.21 6 14.3 79.6 Basin Senegal-Mauritanian 5 540 Semi-arid 31.9 0.65 14.6 56.6 28.8 Basin Iullemmeden-Irhazer 6 302 Arid 6.9 0.36 12.4 55.7 32 Aquifer System

7 Lake Chad Basin 415 Arid 16.8 0.50 14.8 66.6 18.6

Umm Ruwaba 8 789 Semi-arid 44.4 0.76 1.7 72.9 25.5 Aquifer (Sudd Basin)

9 Ogaden-Juba Basin 393 Arid 2.7 0.14 1.7 35.9 62.3

10 Congo Basin 1,566 Humid 33.0 0.53 15.6 23.7 60.7

Upper Kalahari- 11 Cuvelai-Zambezi 819 Semi-arid 145.1 0.78 0.2 45.6 54.3 Basin Lower Kalahari- 12 297 Arid 5.3 0.68 5.7 44.3 50 Stampriet Basin

13 Karoo Basin 479 Semi-arid 6.5 0.72 3.3 1 95.7

Northern 14 461 Sub-humid 24.5 0.60 4.8 26.5 68.7 Aquifer Cambro-Ordovician 15 880 Humid 35.1 0.75 1.5 60.1 38.3 Aquifer System

4 California Central 16 Valley Aquifer 515 Semi-arid 176.5 0.46 2.8 56 41.2 System Ogallala Aquifer 17 507 Semi-arid 19.7 0.80 2.6 14.6 82.8 (High Plains) Atlantic and Gulf 18 Coastal Plains 1,230 Humid 43.1 0.61 33.8 51.6 14.6 Aquifer

19 Amazon Basin 2,505 Humid 347.2 0.28 30.6 48.9 20.5

20 Maranhao Basin 1,502 Humid 217.2 0.92 27.5 64.2 8.3

Guarani Aquifer 21 System (Parana 1,450 Humid 40.5 0.38 21 52.3 26.7 Basin) Arabian Aquifer 22 65 Arid 6.1 0.57 5.2 56.7 38.1 System

23 Indus River Basin 375 Semi-arid 13.0 0.39 4 32.4 63.5

Ganges-Brahmaputra 24 1,391 Humid 255.6 0.69 17.7 62.7 19.5 River Basin West Siberian 25 483 Humid 39.1 0.71 36.8 11.8 51.4 Artesian Basin

26 Tunguss Basin 432 Humid 38.1 0.71 57.2 1.9 40.9

27 Angara-Lena Basin 472 Humid 21.6 0.71 23.3 27.1 49.6

28 Yakut Basin 386 Humid 19.5 0.47 26 12 61.9

North China Plains 29 826 Humid 32.8 0.22 0.3 65.4 34.3 Aquifer System

30 Song-Liao Plain 514 Humid 19.5 0.62 9.4 59.5 31.1

31 Tarim Basin 90 Arid 1.9 0.32 3 8.3 88.7

32 Paris Basin 727 Humid 32.9 0.86 8.9 57.4 33.7

East European 33 606 Humid 35.3 0.75 39.3 41.2 19.5 Aquifer System North Caucasus 34 524 Semi-arid 49.2 0.86 2.7 59.1 38.2 Basin

35 Pechora Basin 559 Humid 51.2 0.56 70 1.8 28.1

36 444 Semi-arid 20.2 0.89 17.6 55 27.3

37 Canning Basin 443 Arid 50.3 0.85 3 49.1 47.9

5 Supplementary Table S3. Characteristics of the relationships between CRU precipitation and GRACE ΔGWS in the world’s 37 large aquifer systems.

GWS Δ percentile) over th percentile precipitation th 90 ≥ GRACE period (2002–2016) change in non-linear Positive in GRACE- trends over2002–2016 of the period between values reported and (cm) years consecutive two WHYMAP aquifer number name Aquifer Mean(1901 to 2016)annual year) (hydrological precipitation (mm) 90 (period: 1901–2016) year calendar season: Rainy or hydrological (Jan–Dec) (Aug–Jul) year years hydrological Extreme (

Nubian Sandstone 2014 (0.43) 1 33 41 Jan–Dec 2014 (51st) Aquifer System 2015 (0.63) Northwestern Sahara 2003–2004 2005–2006 (0.25) 2 72 92 Aug–Jul Aquifer System 2005–2006 2015–2016 (0.41) 2015 (0.83) 3 Murzuk-Djado Basin 8 11 Jan–Dec 2015 (78th) 2016 (0.70) Taoudeni-Tanezrouft 2014 (0.30) 4 63 75 Jan–Dec 2010 Basin 2015 (0.31) Senegal-Mauritanian 2010 (1.96) 5 548 703 Jan–Dec 2010 Basin 2011 (1.53) Iullemmeden-Irhazer 2010 (0.75) 6 301 377 Jan–Dec 2010 (68th) Aquifer System 2011 (0.86) 2012 (0.45) 7 Lake Chad Basin 392 460 Jan–Dec 2012 2013 (0.69) 2007 (87th) 2008 (0.83) Umm Ruwaba 8 788 889 Jan–Dec 2008 (78th) 2013 (0.98) Aquifer (Sudd Basin) 2014 (60th) 2014 (1.27) 2006 (0.92) 9 Ogaden-Juba Basin 376 465 Jan–Dec 2013 2013 (0.69) 2013–2014 (5.15) 10 Congo Basin 1632 1740 Aug–Jul 2015–2016 (56th) 2015–2016 (2.93) Upper Kalahari- 2008-2009 (74th) 2008–2009 (3.05) 11 Cuvelai-Zambezi 800 935 Aug–Jul 2010-2011 (70th) 2010–2011 (5.12) Basin Lower Kalahari- 2006–2007 (0.80) 12 286 386 Aug–Jul 2010–2011 Stampriet Basin 2010–2011 (0.78) 2010–2011 (1.86) 13 Karoo Basin 500 623 Aug–Jul 2010–2011 2011–2012 (1.50) 2005 (1.71) Northern Great Plains 14 429 487 Jan–Dec 2005, 2010, 2013 2010 (2.70) Aquifer 2011 (2.42) Cambro-Ordovician 2010 (2.70) 15 819 960 Jan–Dec 2010, 2013, 2015 Aquifer System 2011 (2.42) California Central 2004–2005 (3.92) 16 Valley Aquifer 567 772 Aug–Jul 2005–2006 2005–2006 (4.15) System 2010–2011 (2.05) Ogallala Aquifer 2008 (2.26) 17 489 578 Jan–Dec 2015 (High Plains) 2009 (1.83) 2009 (1.40) Atlantic and Gulf 18 1205 1356 Jan–Dec 2009, 2013, 2015 2013 (0.80) Coastal Plains Aquifer 2015 (0.55)

6 2005–2006 2007–2008 (2.58) 19 Amazon Basin 2416 2627 Aug–Jul 2007–2008 2011–2012 (3.31) 2008–2009 2008–2009 2003–2004 (2.45) 20 Maranhao Basin 1470 1762 Aug–Jul 2010–2011 2009–2010 (1.83) Guarani Aquifer 2009–2010 2010–2011 (1.65) 21 System (Parana 1384 1573 Aug–Jul 2015–2016 2015–2016 (5.78) Basin) Arabian Aquifer 2003 (0.15) 22 74 87 Jan–Dec 2004 (40th) System 2004 (0.12) 2014 (0.93) 23 Indus River Basin 330 452 Jan–Dec 2010, 2015 2015 (0.82) Ganges-Brahmaputra 24 1483 1663 Jan–Dec 2011 (59th) 2011 (1.44) Basin 2013 (2.57) West Siberian 25 452 505 Jan–Dec 2013, 2014, 2015 2014 (3.08) Artesian Basin 2015 (2.17) 2005 (3.25) 26 Tunguss Basin 415 461 Jan–Dec 2007, 2008, 2015 2006 (3.25) 2013 (4.49) 2006 (1.71) 27 Angara-Lena Basin 456 512 Jan–Dec 2006, 2008, 2009 2013 (1.80) 2005, 2006, 2007, 2005 (1.89) 28 Yakut Basin 342 402 Jan–Dec 2008, 2013 2006 (2.15) North China Plains 2003 (3.21) 29 793 916 Jan–Dec 2003 Aquifer System 2004 (3.73) 2013 (2.14) 30 Song-Liao Plain 531 629 Jan–Dec 2012, 2013 2014 (1.57) 2003, 2005, 2010, 2015 (0.74) 31 Tarim Basin 78 105 Jan–Dec 2013 2016 (1.04) 2013–2014 (2.34) 2006–2007 32 Paris Basin 724 862 Aug–Jul 2014-2015 (1.84) 2015–2016 2015–2016 (1.53) East European 2005 (1.84) 33 585 638 Jan–Dec 2004, 2012 Aquifer System 2006 (2.17) 2004 (3.32) 34 North Caucasus Basin 514 602 Jan–Dec 2004 2005 (3.21) 2013 (3.37) 35 Pechora Basin 490 583 Jan–Dec 2003, 2007, 2014 2014 (3.21) 2009–2010 2009–2010 (1.72) 36 Great Artesian Basin 438 584 Aug–Jul 2010–2011 2010–2011 (3.34) 2005–2006 2010–2011 (1.46) 37 Canning Basin 377 547 Aug–Jul 2010–2011 2011–2012 (2.37) 2013–2014

7 Supplementary Table S4. Characteristics of the relationships between GPCC precipitation and GRACE ΔGWS in the world’s 37 large aquifer systems.

GWS Δ percentile) over th percentile precipitation th 90 ≥ GRACE period (2002–2016) change in non-linear Positive in GRACE- trends over2002–2016 of the period between values reported and (cm) years consecutive two WHYMAP aquifer number name Aquifer Mean(1901 to 2016)annual year) (hydrological precipitation (mm) 90 (period: 1901–2016) year calendar season: Rainy or hydrological (Jan–Dec) (Aug–Jul) year years hydrological Extreme (

Nubian Sandstone 2014 (61st) 2014 (0.43) 1 32 44 Jan–Dec Aquifer System 2015 (72nd) 2015 (0.63) 2003–2004 Northwestern Sahara 2005–2006 (0.25) 2 68 94 Aug–Jul 2005–2006 Aquifer System 2015–2016 (0.41) 2008–2009 2013 (74th) 2015 (0.83) 3 Murzuk-Djado Basin 15 23 Jan–Dec 2015 (34th) 2016 (0.70) Taoudeni-Tanezrouft 2014 (0.30) 4 91 125 Jan–Dec 2010 Basin 2015 (0.31) Senegal-Mauritanian 2010 (1.96) 5 511 655 Jan–Dec 2010 Basin 2011 (1.53) Iullemmeden-Irhazer 2010 (0.75) 6 275 350 Jan–Dec 2010 (75th) Aquifer System 2011 (0.86) 2012 (0.45) 7 Lake Chad Basin 385 452 Jan–Dec 2012 2013 (0.69) 2006, 2007 (66th), 2008 (0.83) Umm Ruwaba 2008 (83rd), 2009 8 778 882 Jan–Dec 2013 (0.98) Aquifer (Sudd Basin) (87th), 2011 (84th) 2014 (1.27) 2014 (81st) 2006 (0.92) 9 Ogaden-Juba Basin 393 481 Jan–Dec 2006 2013 (0.69) 2013–2014 (5.15) 10 Congo Basin 1657 1750 Aug–Jul 2015–2016 (48th) 2015–2016 (2.93) Upper Kalahari- 2005–2006 2008–2009 (3.05) 11 Cuvelai-Zambezi 840 952 Aug–Jul 2008–2009 (87th) 2010–2011 (5.12) Basin 2010–2011 (84h) Lower Kalahari- 2006–2007 2006–2007 (0.80) 12 303 409 Aug–Jul Stampriet Basin 2010–2011 2010–2011 (0.78) 2010–2011 (1.86) 13 Karoo Basin 500 620 Aug–Jul 2010–2011 2011–2012 (1.50) 2005 (1.71) Northern Great Plains 14 427 484 Jan–Dec 2005, 2010 2010 (2.70) Aquifer 2011 (2.42) Cambro-Ordovician 2010 (2.70) 15 834 969 Jan–Dec 2008, 2010 Aquifer System 2011 (2.42) California Central 2004–2005 (3.92) 16 Valley Aquifer 552 749 Aug–Jul 2005–2006 2005–2006 (4.15) System 2010–2011 (2.05) Ogallala Aquifer 2008 (2.26) 17 501 602 Jan–Dec 2015 (High Plains) 2009 (1.83)

8 2009 (1.40) Atlantic and Gulf 18 1215 1372 Jan–Dec 2004, 2009, 2015 2013 (0.80) Coastal Plains Aquifer 2015 (0.55) 2005–2006 2007–2008 2007–2008 (2.58) 19 Amazon Basin 2500 2661 Aug–Jul 2008–2009 2011–2012 (3.31) 2013–2014 2003–2004 (2.45) 20 Maranhao Basin 1421 1703 Aug–Jul 2008–2009 2009–2010 (1.83) 2003–2004 Guarani Aquifer 2009–2010 2010–2011 (1.65) 21 System (Parana 1378 1535 Aug–Jul 2014–2015 2015–2016 (5.78) Basin) 2015–2016 2003 (66th) Arabian Aquifer 2003 (0.15) 22 81 99 Jan–Dec 2005 (52nd) System 2004 (0.12) 2013 (88th) 2014 (0.93) 23 Indus River Basin 336 466 Jan–Dec 2011, 2015 2015 (0.82) 2007 (89th) Ganges-Brahmaputra 24 1490 1650 Jan–Dec 2008 (78th) 2011 (1.44) Basin 2011 (39th) 2013 (2.57) West Siberian 2002, 2007, 25 443 497 Jan–Dec 2014 (3.08) Artesian Basin 2014, 2015 2015 (2.17) 2005 (3.25) 2002, 2007, 2008, 26 Tunguss Basin 389 434 Jan–Dec 2006 (3.25) 2011, 2014, 2015 2013 (4.49) 2004, 2005, 2006, 2006 (1.71) 27 Angara-Lena Basin 422 471 Jan–Dec 2008, 2009 2013 (1.80) 2004, 2005, 2006, 2005 (1.89) 28 Yakut Basin 316 363 Jan–Dec 2007, 2008, 2012 2006 (2.15) 2013 North China Plains 2003 (3.21) 29 795 933 Jan–Dec 2003 Aquifer System 2004 (3.73) 2013 (2.14) 30 Song-Liao Plain 534 636 Jan–Dec 2012, 2013 2014 (1.57) 2003, 2005, 2010, 2015 (0.74) 31 Tarim Basin 48 66 Jan–Dec 2013, 2015 2016 (1.04) 2013–2014 (2.34) 2006–2007 32 Paris Basin 750 914 Aug–Jul 2014-2015 (1.84) 2015–2016 2015–2016 (1.53) East European 2005 (1.84) 33 561 624 Jan–Dec 2004, 2012 Aquifer System 2006 (2.17) 2004 (3.32) 34 North Caucasus Basin 488 584 Jan–Dec 2004 2005 (3.21) 2002, 2003, 2005, 2013 (3.37) 35 Pechora Basin 470 565 Jan–Dec 2006, 2007, 2012 2014 (3.21) 2009–2010 2009–2010 (1.72) 36 Great Artesian Basin 429 568 Aug–Jul 2010–2011 2010–2011 (3.34) 2011–2012 2004–2005 2010–2011 (1.46) 37 Canning Basin 438 587 Aug–Jul 2010–2011 2011–2012 (2.37)

9 Supplementary Table S5. The breakdown of 20 realisations for GRACE-derived GWS estimates using a range of gridded GRACE products (CSR, JPL-Mascons, GRGS) and an ensemble mean of ΔTWS and individual storage component of ΔSMS and ΔSWS from 4 Land Surface Models (LSMs: CLM, Noah, VIC, Mosaic), and a single ΔSNS from Noah model (GLDAS version 2.1).

The breakdown of 20 realisations is given below with 12 realisations being the primary products, whereas the remaining 8 realisations derive from a combination of GRACE ΔTWS and different LSMs to demonstrate the range of uncertainty in the estimation of ΔGWS using GRACE-derived ΔTWS and GLDAS LSMs:

GRACE product Surface water and Snow water No of for terrestrial soil moisture storage storage model realisation water storage models

3 GRACE TWS 4 LSMs (SWS, SMS) 1 LSM (SNS) 12 realisations

1 CSR GRACE 1 mean LSMs (SWS, 1 LSM (SNS) 1 realisation TWS SMS)

1 JPL GRACE 1 mean LSMs (SWS, 1 LSM (SNS) 1 realisation TWS SMS)

1 GRGS GRACE 1 mean LSMs (SWS, 1 LSM (SNS) 1 realisation TWS SMS)

1 Mean GRACE 4 LSMs (SWS, SMS) 1 LSM (SNS) 4 realisations TWS

1 Mean GRACE 1 mean LSMs (SWS, 1 LSM (SNS) 1 realisation TWS SMS)

10 Supplementary Figure captions

Fig. S1-S36. Time-series data of terrestrial water storage anomaly (ΔTWS) from GRACE and individual water stores from GLDAS Land Surface Models (LSMs): (a) Ensemble monthly GRACE ΔTWS from three solutions (CSR, Mascons, GRGS), (b-c) ensemble monthly ΔSMS and ΔSWS + ΔSNS from four GLDAS LSMs (CLM, Noah, VIC, Mosaic), (d) computed monthly ΔGWS and (e) monthly precipitation from August 2002 to July 2016 for WHYMAP large aquifer systems from no. 1 to 37, except for the High Plains Aquifer System in the USA (no. 17) which is shown as Fig. 2. Values in the Y-axis of the top four panels show monthly water-storage anomalies (cm) and the bottom panel shows monthly precipitation (cm).

Fig. S37. (a) STL decomposition of ensemble GRACE−TWS signal High Plains Aquifer System (17); (b) various S window smoothing parameters; and (c) various T window parameters and fitted. The p-value in each panel derives from a Shapiro-Wilk normality test of the residuals after fitting the STL smooth line.

Fig. S38. Comparison of ΔGWS time series datasets from GRACE and in situ piezometric observations. ΔGWS time-series records in the unconsolidated, alluvial aquifer within the humid Bengal Basin of Bangladesh (a), and a weathered crystalline rock aquifer in the semi- arid Limpopo Basin in South Africa (b). Shaded bands in light-pink and light-blue around ΔGWS lines denote the standard deviation of the estimated mean value. Monthly precipitation records are shown as stair-step lines in blue on both panels with a dashed blue line indicating the long-term monthly mean value.

Fig. S39. Time-series data of terrestrial water storage anomaly (ΔTWS) from GRACE and individual water stores from GLDAS Land Surface Models (LSMs): (a) Ensemble monthly GRACE ΔTWS from three solutions (CSR, Mascons, GRGS), (b-c) ensemble monthly ΔSMS and ΔSWS + ΔSNS from four GLDAS LSMs (CLM, Noah, VIC, Mosaic), (d) computed monthly ΔGWS and (e) monthly precipitation from August 2002 to July 2016 for the Bengal Basin of Bangladesh.

Fig. S40. Time-series data of terrestrial water storage anomaly (ΔTWS) from GRACE and individual water stores from GLDAS Land Surface Models (LSMs): (a) Ensemble monthly GRACE ΔTWS from three solutions (CSR, Mascons, GRGS), (b-c) ensemble monthly ΔSMS and Δ SWS + ΔSNS from four GLDAS LSMs (CLM, Noah, VIC, Mosaic), (d)

11 computed monthly ΔGWS and (e) monthly precipitation from August 2002 to July 2016 for the Limpopo Basin of South Africa.

Fig. S41-S77. Decomposition of time-series components of GRACE ΔGWS data for all 37 large aquifer systems using a non-parametric, Seasonal-Trend decomposition procedure based on Loess (STL) technique. The graph on the top shows monthly anomaly data and decomposed time-series components of the series into seasonal, trend and remainder components. The graph also shows monthly precipitation records from CRU data along with annual total precipitation values (cm) written next to each annual cycle. The pie chart at the bottom shows the proportion of variance (%) in GRACE ΔGWS explained by the time-series components (S=seasonal, T=trend, R=residual/remainder).

Fig. S78. Time series of ensemble mean GRACE ΔTWS (red), GLDAS ΔSMS (green), ΔSWS + ΔSNS (blue) and computed GRACE ΔGWS (black) showing the calculation of anomalously negative or positive values of GRACE ΔGWS that deviate substantially from underlying trends. Cases for the Upper Kalahari-Cuvelai-Zambezi Basin (11) under a semi- arid climate, the Congo Basin (10) under a tropical humid climate, and the Angara-Lena Basin (27) in given in Fig. 6.

Fig. S79. Uncertainty in the estimates of GRACE-derived GWS from 20 realisations using 3 GRACE (CSR, JPL-Mascons, GRGS) products and 4 LSMs (CLM, Noah, VIC, Mosaic) and their ensemble means for the WHYMAP large aquifer systems from no. 1 to 37, except for the High Plains Aquifer System in the USA (no. 17) which is shown as Fig. 2.

Fig. S80. (a) Location of four boreholes in northwestern Indo-Gangetic Basin, and (b) Long- term in-situ groundwater-level records (n=4) (source: MacDonald et al. (2016)).

Fig. S81. Long-term in-situ groundwater-level records from Makutapora Wellfield in central Tanzania (n=5) and Limpopo Basin in South Africa (n=4). Groundwater levels of from Makutapora site are referenced to a fixed datum (mean sea level, msl) and thus indicate piezometric heads; records in Limpopo Basin are plotted below groundwater level (bgl), hence the negative sign. The frequency of these multi-decadal groundwater-level records varies from daily to monthly with irregular time intervals. Annual rainfall time-series records are shown below each graph with a dashed, grey line denoting the mean of the time series.

Supplementary Fig. S1–S81:

12 Water storage (cm) −1.5 −1.0 −0.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.0 0.5 1.0 −4 −2 −4 −2 0 2 4 6 8 0 2 4 6 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S1:NubianSandstoneAquifer System(1) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 13 Linear trend Water storage (cm) 0.0 0.1 0.2 0.3 0.0 0.5 1.0 1.5 2.0 2.5 −2 −6 −4 −2 −6 −4 −2 0 2 4 0 2 4 0 2 4 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S2: Northwestern Sahara Aquifer System(2) Fig. S2:Northwestern (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 14 Linear trend Water storage (cm) 0.0 0.5 1.0 1.5 0.0 0.2 0.4 0.6 0.8 −1 −6 −4 −2 −6 −4 −2 0 1 2 0 2 4 6 0 2 4 6 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S3:Murzuk−DjadoBasin(3) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 15 Linear trend Water storage (cm) 0.0 0.1 0.2 0.3 0.4 0.5 −5 −2 −5 0 1 2 3 4 0 5 0 2 4 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S4:Taoudeni−Tanezrouft Basin(4) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 16 Linear trend Water storage (cm) −10 −10 −5 −5 10 10 15 20 25 10 10 15 0 1 2 3 4 5 0 0 5 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S5: Senegal−Mauritanian Basin(5) Fig. S5:Senegal−Mauritanian (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 17 Linear trend Water storage (cm) 0.0 0.5 1.0 1.5 2.0 −5 −5 −4 −2 10 15 10 10 0 5 0 5 0 5 0 2 4 6 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S6:Iullemmeden−Irhazer Aquifer System(6) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 18 Linear trend Water storage (cm) −0.5 0.0 0.5 1.0 1.5 2.0 2.5 −5 −5 −5 10 15 10 10 0 5 0 5 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S7:Lake ChadBasin(7) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 19 Linear trend Water storage (cm) −10 −20 −10 −5 10 20 10 15 20 10 10 0 1 2 3 0 0 5 0 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S8:UmmRuwaba Aquifer (SuddBasin)(8) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 20 Linear trend Water storage (cm) 0.0 0.5 1.0 1.5 2.0 −4 −2 −4 −2 −6 −4 −2 10 0 5 0 2 4 6 0 2 4 6 0 2 4 6 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S9:Ogaden−Juba Basin(9) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 21 Linear trend Water storage (cm) −10 −10 −10 −1 10 20 30 10 10 15 20 25 10 20 0 0 5 0 0 1 2 3 4 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S10:CongoBasin(10) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 22 Linear trend Water storage (cm) −10 −20 −10 −30 −20 −10 10 15 10 20 30 40 10 20 30 10 15 20 10 20 30 0 5 0 0 0 5 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S11:UpperKalahari−Cuvelai−Zambezi Basin(11) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 23 Linear trend Water storage (cm) −5 −5 −5 10 10 10 10 0 5 0 1 2 0 5 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S12: Lower Kalahari−Stampriet Basin(12) Fig. S12:Lower Kalahari−Stampriet (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 24 Linear trend Water storage (cm) −0.5 0.0 0.5 1.0 1.5 −5 −5 −5 10 10 10 0 5 0 5 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S13:KarooBasin(13) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 25 Linear trend Water storage (cm) −10 −10 −5 10 20 10 12 10 20 10 0 2 4 6 0 0 2 4 6 8 0 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S14: Northern GreatPlainsAquifer (14) Fig. S14:Northern (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 26 Linear trend Water storage (cm) −10 −20 −10 −10 10 20 10 10 15 20 10 0 2 4 6 0 0 5 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S15:Cambro−Ordovician Aquifer System(15) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 27 Linear trend Water storage (cm) −10 −40 −20 −30 −20 −10 −5 10 15 20 20 10 15 20 10 20 0 1 2 3 4 0 5 0 0 5 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S16:California Central Valley Aquifer System(16) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 28 Linear trend Water storage (cm) −15 −10 −20 −15 −10 −5 −5 −5 10 10 15 10 0 1 2 3 0 5 0 5 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S17:OgallalaAquifer (HighPlains)(17) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 29 Linear trend Water storage (cm) −10 −10 −10 −5 10 20 10 20 10 15 20 10 0 2 4 0 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S17:AtlanticandGulfCoastalPlainsAquifer (18) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 30 Linear trend Water storage (cm) −30 −20 −10 −20 −10 −5 10 20 30 40 10 20 20 10 20 10 15 0 0 0 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S18:Amazon Basin (19) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 31 Linear trend Water storage (cm) −20 −20 −10 10 20 20 40 60 20 40 10 20 30 40 10 20 0 0 0 0 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S19:Maranhao Basin(20) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 32 Linear trend Water storage (cm) −10 −10 −10 −5 −2 10 20 10 20 10 15 20 25 10 15 10 0 0 5 0 5 0 2 4 6 8 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S20:Guarani Aquifer System(Parana Basin)(21) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 33 Linear trend Water storage (cm) −10 −10 0.0 0.5 1.0 1.5 0.5 1.0 1.5 −5 −5 −2 −1 0 5 0 5 0 1 2 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S21:(22) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 34 Linear trend Water storage (cm) −10 −15 −10 −5 10 10 20 10 15 10 15 0 1 2 3 4 5 6 0 5 0 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S22:IndusRiver Basin(23) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 35 Linear trend Water storage (cm) −20 −10 −40 −20 −40 −20 10 10 20 30 20 10 20 30 40 50 20 0 5 0 0 0 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S23:Ganges−Brahmaputra River Basin(24) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 36 Linear trend Water storage (cm) −10 −20 −10 −15 −10 −10 −5 −5 10 15 20 10 20 10 15 10 20 30 0 5 0 0 5 2 4 6 8 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S24: West Siberian Artesian Basin(25) Fig. S24:West Artesian Siberian (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 37 Linear trend Water storage (cm) −20 −10 −10 −10 −5 10 10 20 10 20 30 40 10 0 0 2 4 6 8 0 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S25:Tunguss Basin(26) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 38 Linear trend Water storage (cm) −10 −15 −10 −10 −5 −5 −5 10 10 10 10 10 15 0 5 0 5 0 5 0 2 4 6 8 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S26:Angara−Lena Basin(27) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 39 Linear trend Water storage (cm) −10 −10 −10 −5 −5 −4 −2 10 10 10 10 20 0 5 0 5 0 2 4 6 8 0 0 2 4 6 8 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S27:Yakut Basin (28) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 40 Linear trend Water storage (cm) −15 −10 −20 −10 −20 −10 −5 −2 10 10 10 15 20 25 10 0 5 0 0 5 0 0 2 4 6 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S28: North ChinaPlainsAquifer System(29) Fig. S28:North (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 41 Linear trend Water storage (cm) −10 −5 −5 −5 10 15 10 15 20 10 10 0 1 2 3 4 0 5 0 5 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S29:Song−LiaoPlain(30) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 42 Linear trend Water storage (cm) −10 −10 0.0 0.2 0.4 0.6 0.8 1.0 −5 −5 −1 0 5 0 1 2 3 0 5 0 1 2 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S30:Tarim Basin(31) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 43 Linear trend Water storage (cm) −10 −10 −15 −10 −5 10 20 10 10 15 10 0 1 2 0 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S31:Paris Basin(32) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 44 Linear trend Water storage (cm) −20 −10 −15 −10 −10 −5 −5 10 20 10 10 10 10 15 0 0 5 2 4 6 8 0 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S32:EastEuropeanAquifer System(33) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 45 Linear trend Water storage (cm) −15 −10 −20 −10 −20 −10 −5 10 10 20 10 0 2 4 6 0 5 0 2 4 6 8 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S33: North CaucasusBasin(34) Fig. S33:North (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 46 Linear trend Water storage (cm) −10 −30 −20 −10 −10 −20 −10 10 20 10 20 10 20 10 10 20 30 0 0 0 2 4 6 8 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S34:Pechora Basin(35) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 47 Linear trend Water storage (cm) −10 −10 −5 −5 −5 10 15 10 15 10 10 0 1 2 3 0 5 0 5 0 5 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S35: Great Artesian Basin(36) Fig. S35:GreatArtesian (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 48 Linear trend Water storage (cm) −10 −10 −5 10 20 10 15 20 10 10 15 0 1 2 3 4 5 0 0 5 0 0 5 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S36:CanningBasin(37) (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 49 Linear trend Fig. S37: (a) STL decomposition of ensemble GRACE−TWS signal High Plains Aquifer System (17); (b) various S window smoothing parameters; and (c) various T window parameters and fitted. The p‐value in each panel derives from a Shapiro‐ Wilk normality test of the residuals after fitting the STL line.

(a)

50

(b)

51

(c)

52 Fig. S38 (a)

(b)

53 Water storage (cm) −10 −20 −30 −20 −10 100 10 15 10 20 40 20 40 60 80 10 20 0 5 0 0 0 0 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 (c) Ensemble (SWS+SNS) Fig. S39:BengalBasin Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 54 Linear trend Water storage (cm) 0.0 0.5 1.0 1.5 −4 −2 −5 −4 −2 10 15 20 10 0 5 0 2 4 6 0 5 0 2 4 6 Basin−averaged 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S40:LimpopoBasin (c) Ensemble (SWS+SNS) Non−linear trend (d) Ensemble GWS (a) Ensemble TWS (b) Ensemble SMS (e) Precipitation 55 Linear trend Groundwater storage (cm)

−3 −2 −1 0 1 2 3 3 4 4 3 3 3 4 3 3 3 4 3 3 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S41:NubianSandstoneAquifer System(1) data T= 30% Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 56 R= 49% esnlremainder seasonal S= 21%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−4 −2 0 2 081 0577576 7 5 7 7 5 10 7 8 10 8 10 8 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 56% Fig. S42: Northwestern SaharaAquifer System(2) Fig. S42:Northwestern data Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 57 esnlremainder seasonal R= 29% S= 15%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−4 −2 0 2 1 1 2 1 1 1 1 1 1 1 1 1 1 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 31% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S43:Murzuk−DjadoBasin(3) Proportion ofvariance trend 58 esnlremainder seasonal R= 39% S= 29%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−4 −3 −2 −1 0 1 2 7 7 6 6 6 9 7 6 7 6 6 7 7 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 32% data Fig. S44:Taoudeni−Tanezrouft Basin(4) Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 59 R= 46% esnlremainder seasonal S= 22%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−5 0 5 10 94 75 55 17 85 74 51 47 57 58 48 71 61 58 45 51 57 47 59 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 52% data Fig. S45:Senegal−MauritanianBasin(5) Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 60 esnlremainder seasonal S= 27% R= 21%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−4 −2 0 2 4 72 02 13 83 63 92 31 28 29 37 26 32 28 32 31 28 30 29 37 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S46: Iullemmeden−Irhazer AquiferFig. S46:Iullemmeden−Irhazer System(6) data T= 53% Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 61 esnlremainder seasonal R= 37% S= 10%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−6 −4 −2 0 2 4 6 8 84 34 64 54 94 84 42 40 38 48 39 46 35 44 46 42 43 40 38 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 data Seasonal−Trend−Remainder (GRACE GWS) T= 13% Fig. S47:LakeChadBasin(7) S= 62% Proportion ofvariance trend 62 esnlremainder seasonal R= 25%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−15 −10 −5 0 5 10 15 46 18 98 78 77 08 75 82 80 77 77 86 67 87 89 81 71 66 84 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 S= 82% Fig. S48:UmmRuwabaAquifer (Sudd Basin)(8) data Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 63 esnlremainder seasonal T= 7% R= 11%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−4 −2 0 2 4 74 64 13 73 13 34 44 40 53 39 41 36 37 38 41 42 36 45 37 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 42% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S49:Ogaden−Juba Basin(9) Proportion ofvariance trend 64 esnlremainder seasonal R= 40% S= 18%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−10 −5 0 5 10 15 20 6 5 6 6 6 6 6 6 5 6 6 6 159 161 161 166 150 168 165 168 164 162 162 154 166 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 data T= 45% Seasonal−Trend−Remainder (GRACE GWS) Fig. S50:CongoBasin(10) Proportion ofvariance trend 65 R= 42% esnlremainder seasonal S= 13%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−30 −20 −10 0 10 20 30 18 38 28 78 68 88 75 87 78 85 86 88 87 81 82 89 73 88 81 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 63% Fig. S51:UpperKalahari−Cuvelai−ZambeziBasin(11) data Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 66 esnlremainder seasonal R= 22% S= 15%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−4 −2 0 2 4 6 63 93 43 73 12 13 24 36 21 29 41 38 27 32 24 39 29 31 26 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S52:Lower Kalahari−StamprietBasin(12) data T= 41% Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 67 R= 44% esnlremainder seasonal S= 15%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−5 0 5 10 44 75 15 65 74 85 45 50 48 41 67 53 46 53 51 51 47 47 44 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 83% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S53:Karoo Basin(13) Proportion ofvariance trend 68 esnlremainder seasonal R= 11% S= 6%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−5 0 5 10 15 14 03 84 45 94 24 46 46 52 43 49 52 44 46 48 39 50 46 41 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 76% data Fig. S54: Northern GreatPlainsAquifer (14) Fig. S54:Northern Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 69 esnlremainder seasonal S= 13% R= 11%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−15 −10 −5 0 5 10 15 28 08 19 09 77 0 597 95 105 73 87 99 90 97 91 86 70 88 72 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 42% Fig. S55:Cambro−Ordovician Aquifer System(15) data Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 70 esnlremainder seasonal R= 29% S= 29%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−30 −20 −10 0 10 20 25 88 34 36 54 23 47 30 42 44 65 62 43 44 33 84 78 56 62 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S56:California CentralValley Aquifer System(16) T= 64% data Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 71 esnlremainder seasonal S= 24% R= 12%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−10 −5 0 5 25 24 55 45 43 85 67 55 48 33 44 55 54 55 55 47 52 58 42 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 77% data Fig. S57:OgallalaAquifer (HighPlains)(17) Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 72 esnlremainder seasonal R= 14% S= 9%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−5 0 5 3 3 1 1 0 2 3 0 1 2 4 2 149 125 140 125 111 104 137 122 106 112 113 134 131 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S58:AtlanticandGulfCoastalPlainsAquifer (18) data T= 51% Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 73 esnlremainder seasonal R= 39% S= 10%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−20 −10 0 10 20 30 6 5 4 8 5 9 7 3 3 2 3 4 238 246 236 228 235 237 275 290 253 283 248 252 269 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 data S= 72% Seasonal−Trend−Remainder (GRACE GWS) Fig. S59:AmazonBasin(19) Proportion ofvariance trend 74 esnlremainder seasonal T= 16% R= 12%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−20 −10 0 10 3 6 3 5 5 6 7 4 7 3 4 6 134 160 147 135 178 140 179 163 151 153 139 169 136 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 14% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S60:MaranhaoBasin(20) Proportion ofvariance trend 75 R= 48% esnlremainder seasonal S= 39%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−5 0 5 10 15 5 3 3 2 5 3 2 7 3 3 3 5 160 157 138 136 136 178 126 130 151 126 137 135 158 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S61:GuaraniAquifer System(Parana Basin)(21) data T= 57% Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 76 esnlremainder seasonal R= 36% S= 7%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−6 −4 −2 0 2 7 8 7 7 7 7 7 6 9 7 7 8 7 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 90% data Fig. S62:ArabianAquifer System(22) Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 77 esnlremainder seasonal R= 7% S= 3%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−10 −5 0 5 22 74 04 84 93 83 46 33 38 32 39 49 28 42 40 44 37 28 42 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 34% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S63:IndusRiverBasin(23) Proportion ofvariance trend 78 R= 43% esnlremainder seasonal S= 23%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−30 −20 −10 0 10 20 30 4 3 2 3 4 4 2 3 5 4 5 2 146 126 151 149 152 138 124 148 147 131 124 137 147 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S64: Ganges−Brahmaputra RiverBasin(IGB)(24) Fig. S64:Ganges−Brahmaputra data Seasonal−Trend−Remainder (GRACE GWS) T= 45% Proportion ofvariance trend 79 S= 48% esnlremainder seasonal R= 7%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−20 −10 0 10 20 45 54 25 64 94 15 57 54 51 43 49 48 46 50 52 48 45 50 44 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 data Fig. S65:West Basin(25) SiberianArtesian Seasonal−Trend−Remainder (GRACE GWS) S= 55% Proportion ofvariance trend T= 40% 80 esnlremainder seasonal R= 5%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−10 0 10 20 30 34 13 94 04 53 24 48 46 42 36 45 46 40 49 49 38 41 45 43 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 84% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S66:Tunguss Basin(26) Proportion ofvariance trend 81 esnlremainder seasonal S= 9% R= 7%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−10 −5 0 5 10 55 05 35 44 54 24 45 43 52 46 45 47 54 52 43 52 50 51 45 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 49% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S67:Angara−LenaBasin(27) Proportion ofvariance trend 82 esnlremainder seasonal R= 35% S= 16%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−10 −5 0 5 10 15 64 34 34 83 74 33 34 35 43 40 37 37 38 43 43 41 43 40 36 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 54% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S68:Yakut Basin(28) Proportion ofvariance trend 83 esnlremainder seasonal S= 35% R= 11%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−20 −15 −10 −5 0 5 10 1 08 59 38 68 57 991 79 72 75 81 86 88 83 92 75 89 90 111 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 55% Fig. S69: North ChinaPlainsAquifer System(29) Fig. S69:North data Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 84 esnlremainder seasonal S= 25% R= 20%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−5 0 5 84 55 15 36 76 73 51 37 67 64 47 62 53 50 41 53 55 48 58 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 49% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S70:Song−LiaoPlain(30) Proportion ofvariance trend 85 esnlremainder seasonal R= 31% S= 20%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−4 −2 0 2 4 381 0971 01 10 7 11 10 6 12 7 9 10 8 14 8 13 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 15% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S71:Tarim Basin(31) Proportion ofvariance trend 86 S= 47% esnlremainder seasonal R= 38%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−10 −5 0 5 10 86 06 87 36 18 38 68 83 83 81 71 68 73 77 88 66 70 65 78 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 60% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S72:Paris Basin(32) Proportion ofvariance trend 87 esnlremainder seasonal S= 21% R= 19%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−20 −15 −10 −5 0 5 10 15 16 76 26 25 96 25 60 55 62 69 59 57 62 63 62 61 57 67 61 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Fig. S73:EastEuropean Aquifer System(33) data S= 68% Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 88 T= 18% esnlremainder seasonal R= 14%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−15 −10 −5 0 5 10 15 26 75 35 95 64 74 49 48 57 46 56 56 59 51 43 53 57 66 52 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 39% data Fig. S74: North CaucasusBasin(34) Fig. S74:North Seasonal−Trend−Remainder (GRACE GWS) Proportion ofvariance trend 89 esnlremainder seasonal S= 39% R= 23%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−20 −10 0 10 20 30 15 85 85 35 75 26 59 61 52 57 47 58 53 57 68 57 58 53 61 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 data T= 52% Seasonal−Trend−Remainder (GRACE GWS) Fig. S75:Pechora Basin(35) Proportion ofvariance trend 90 esnlremainder seasonal S= 40% R= 8%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−5 0 5 10 14 44 74 36 05 33 41 32 33 53 70 60 53 45 37 45 34 44 31 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 71% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S76: Great Artesian Basin(36) Fig. S76:GreatArtesian Proportion ofvariance trend 91 esnlremainder seasonal R= 23% S= 6%

0 10 20 30 40 50 60 Rainfall (cm) Groundwater storage (cm)

−15 −10 −5 0 5 10 15 95 45 54 93 64 75 35 57 37 43 66 33 39 40 45 58 24 57 49 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 T= 81% data Seasonal−Trend−Remainder (GRACE GWS) Fig. S77:CanningBasin(37) Proportion ofvariance trend 92 esnlremainder seasonal R= 15% S= 4%

0 10 20 30 40 50 60 Rainfall (cm) Storage anomaly (cm) Storage anomaly (cm) Storage anomaly (cm) Storage anomaly (cm) Storage anomaly (cm) −10 −5 0 5 −4 0 2 4 6 8 −4 −2 0 2 4 −4 0 2 4 6 8 −3 −1 0 1 2 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 TWS Iullemmeden−Irhazer Aquifer System(6) Lower Kalahari−Stampriet Basin(12) Lower Kalahari−Stampriet Ogallala Aquifer (HighPlains)(17) Taoudeni−Tanezrouft Basin(4) Ogaden−Juba Basin(9) SMS Legend W+N GWS SWS+SNS 93

0 5 10 15 20 25 30 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 30 0 5 Precipitation (cm) Precipitation (cm) Precipitation (cm) Precipitation (cm) Precipitation (cm) Iullemmeden−Irhazer Aquifer System(6) Lower Kalahari−Stampriet Basin(12) Lower Kalahari−Stampriet 03021. 2015.0 2014.0 2013.0 2012.0 2011.0 2010.0 04021. 2016.0 2015.0 2014.0 2010.0 2009.0 2008.0 2012.0 2011.0 2010.0 −10 −5 0 5 Ogallala Aquifer (HighPlains)(17) −4 −2 0 2 4 −4 −2 0 2 4 −2 0 2 4 6 −3 −2 −1 0 1 2 Taoudeni−Tanezrouft Basin(4) Ogaden−Juba Basin(9) Precipitation

0 5 10 15 20 25 30 0 5 10 15 0 5 10 15 0 5 10 15 20 25 30 0 5 GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−5 0 5 10 −15 −10 −5 0 5 10 15 −5 0 5 −5 0 5 10 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Nubian SandstoneAquifer System(1) Senegal−Mauritanian Basin(5) Senegal−Mauritanian Murzuk−Djado Basin(3) Lake Chad Basin(7) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 94 GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−25 −15 −5 0 5 10 15 20 −5 0 5 10 −5 0 5 −5 0 5 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 Northwestern Sahara Aquifer System(2) Northwestern Iullemmeden−Irhazer Aquifer System(6) Umm Ruwaba Aquifer (SuddBasin)(8) Taoudeni−Tanezrouft Basin(4) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−20 −10 0 5 10 15 20 25 −10 −5 0 5 10 15 −50 −35 −20 −5 5 15 25 35 −5 0 5 Upper Kalahari−Cuvelai−Zambezi Basin(11) 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Cambro−Ordovician Aquifer System(15) Ogaden−Juba Basin(9) Karoo Basin(13) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 95 GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−50 −35 −20 −5 5 15 25 35 −15 −5 0 5 10 15 20 25 −10 −5 0 5 10 −35 −25 −15 −5 5 15 25 California Central Valley Aquifer System(16) 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 Lower Kalahari−Stampriet Basin(12) Lower Kalahari−Stampriet Northern GreatPlainsAquifer (14) Northern Congo Basin(10) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−50 −35 −20 −5 5 15 25 35 −10 −5 0 5 −45 −30 −15 −5 5 15 25 35 −15 −10 −5 0 5 10 15 20 Ganges−Brahmaputra River Basin(IGB)(24) Atlantic andGulfCoastalPlainsAquifer (18) 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Arabian Aquifer System (22) Maranhao Basin(20) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 96 GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−30 −20 −10 0 10 20 30 40 −20 −15 −10 −5 0 5 10 15 20 −15 −5 0 5 10 15 20 25 −30 −20 −10 0 5 15 25 35 Guarani Aquifer System(Parana Basin)(21) 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 West Siberian Artesian Basin(25) West Artesian Siberian Indus River Basin(23) Amazon Basin(19) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−25 −15 −5 0 5 10 15 20 −10 −5 0 5 10 −15 −5 0 5 10 15 20 25 30 −20 −10 0 10 20 30 40 50 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Song−Liao Plain(30) Tunguss Basin(26) Yakut Basin(28) Paris Basin(32) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 97 GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm) GWS anomaly (cm)

−20 −10 0 5 10 20 30 −15 −10 −5 0 5 10 −30 −20 −10 0 5 10 15 20 −15 −10 −5 0 5 10 15 20 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 North ChinaPlainsAquifer System(29) North East EuropeanAquifer System(33) Angara−Lena Basin(27) Tarim Basin(31) 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% GWS anomaly (cm) GWS anomaly (cm)

−15 −10 −5 0 5 10 15 20 −30 −20 −10 0 5 10 15 20 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 2016 2014 2012 2010 2008 2006 2004 North CaucasusBasin(34) North Great Artesian Basin(36) Great Artesian 5% 50% 95% 5% 50% 95% 98 GWS anomaly (cm) GWS anomaly (cm)

−20 −10 −5 0 5 10 15 20 −35 −25 −15 −5 5 15 25 35 45 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 0420 0821 0221 2016 2014 2012 2010 2008 2006 2004 Canning Basin(37) Pechora Basin(35) 5% 50% 95% 5% 50% 95% Fig. S80

99 Fig. S81  !"# $%& '() "0 1234"5 36 32

B B B B  B 9@A8 8  7     

         

E!"F2G'('("0 1234"H(%&I"PQ)2R

ST ST ST ST  9@A8 8 CD 7 B B B      

    

100