Site Profile

Total Page:16

File Type:pdf, Size:1020Kb

Site Profile CHARACTERIZATION OF THE JACQUES COUSTEAU NATIONAL ESTUARINE RESEARCH RESERVE A Profile Report Jacques Cousteau National Estuarine Research Reserve 130 Great Bay Boulevard Tuckerton, New Jersey 08087 TABLE OF CONTENTS Page EXECUTIVE SUMMARY 7 INTRODUCTION 13 SYSTEM-WIDE MONITORING PROGRAM 15 Abiotic Monitoring 17 Meteorological Monitoring 19 Biotic Monitoring 20 Land-Use and Habitat Change Characterizations 21 JACQUES COUSTEAU NATIONAL ESTUARINE RESEARCH RESERVE 23 Field and Laboratory Facilities 27 JCNERR Outreach and Education Programs 29 Coastal Training Program 29 Small Motorized Watercraft Workshop 2000 29 Stormwater Management Roundtables 30 Coastal Hazards Mitigation Outreach 30 Project Power 31 Adopt-A-Storm Drain Municipal Assistance 31 Online Outreach Training Courses 32 K-12 Education 33 Marine Activities, Resources and Education (MARE) 34 COOL Classroom 35 Shore Bowl 36 2 National Estuaries Day 37 Graduate Research Fellowship Program 37 JCNERR CHARACTERISTICS 38 Physical-Chemical Characterisitics 39 Estuary/Watershed 39 Climate 41 Geology 44 Soils 48 Topography 52 Historical and Cultural History 52 Mullica River Watershed 55 Watershed Build-out 61 Hydrography 63 Rivers and Streams 63 Estuarine Circulation 71 Great Bay 72 Little Egg Harbor 74 Water Quality 78 JCNERR Research and Monitoring Program 79 Benthic Research 84 Bottom Sediments 84 Zooplankton 85 Submerged Aquatic Vegetation 85 3 Nitrogen Enrichment 86 Fisheries 86 Aquatic Habitat Assessment 87 Stream Water Quality 88 Estuary Nutrient Dynamics 92 Estuarine Water Quality 97 Meteorology 104 Water Quality Monitoring - Data Years 1996-1998 108 Water Quality Monitoring - Data Years 1999-2000 110 Temperature 110 Salinity 113 Dissolved Oxygen 115 pH 118 Turbidity 119 Depth 121 Water Quality Discussion 121 Temperature 123 Salinity 123 Dissolved Oxygen 126 pH 128 Turbidity 129 Depth 131 Meteorological Monitoring 131 4 HABITATS 132 Watershed 132 Overview 132 Upland Forests 134 Lowland Vegetation 137 Marshes 144 Freshwater and Brackish Marshes 144 Salt marshes 146 Barrier Islands 148 Open Water 150 Barnegat Bay-Little Egg Harbor Estuary 152 FAUNAL COMMUNITIES 158 Overview 158 Watershed Faunal Communities 160 Amphibians and Reptiles 160 Mammals 171 Birds 172 Fish 185 Insects 190 ESTUARINE BIOTIC COMMUNITIES 193 Phytoplankton 195 Zooplankton 204 Benthic Communities 210 5 Benthic Fauna 212 Benthic Flora 238 Nekton 247 Fish and Crabs 247 Recreational and Commercial Species 252 American Eel 252 Alewife and Blueback Herring 253 Bluefish 255 Striped Bass 256 Summer Flounder 258 Winter Flounder 260 Weakfish 262 Blue Crab 263 Sea Turtles and Marine Mammals 265 ENDANGERED AND THREATENED SPECIES 267 Overview 267 Reserve Species 267 SUMMARY AND CONCLUSIONS 270 SWMP Water Quality Monitoring 271 Mullica River-Great Bay Estuary 275 Current Research 278 REFERENCES 285 APPENDICES 310 6 EXECUTIVE SUMMARY The Jacques Cousteau National Estuarine Research Reserve (JCNERR) is one of the 27 national estuarine reserves created to promote the responsible use and management of the nation's estuaries through a program combining scientific research, education, and stewardship (Figure 1). The JCNERR, which lies on the gently sloping Atlantic Coastal Plain of New Jersey, is the 22nd program site of the National Estuarine Research Reserve System (NERRS), having been officially dedicated on October 20, 1997. It consists of more than 45,000 ha of aesthetic upland, wetland, and open water habitats. The Mullica River watershed is a concentrated patchwork of federal and state lands managed in partnership through a variety of agencies. These land areas are remarkably pristine largely because of the federally protected New Jersey Pinelands, state and federal managed lands surrounding the coastal bays, and only 553 ha of developed landscape (< 2% of the total area). Most of the land of the JCNERR is in public ownership. Upland vegetation in the JCNERR consists of pine-oak forests which are replaced seaward by freshwater-, brackish-, and salt (Spartina) marshes. Marsh habitat covers more than 13,000 ha (> 28%) of the reserve. JCNERR habitats generally exhibit excellent environmental quality, although Little Egg Harbor and Barnegat Bay waters have been identified as highly eutrophic. The JCNERR’s mission is consistent with that of the NERRS, that is, to preserve areas that retain a healthy ecosystem and provide the opportunity to serve the needs of long-term research and monitoring programs. Rich and diverse plant and animal communities inhabit watershed areas of the JCNERR. For example, 275 species of macroinvertebrates, 91 species of fish, and 350 species of algae have been documented in inland habitats of the Mullica River and its 7 tributaries. Watershed habitats support many species of shorebirds, wading birds, waterfowl, raptors, and songbirds. Amphibians, reptiles, and land mammals also utilize wetlands, riparian buffer, and upland habitats of the JCNERR and the contiguous pinelands. Figure 1. Map showing the location and habitats of the Jacques Cousteau National Estuarine Research Reserve (highlighted areas/Legend). Lower right: location of the JCNERR with respect to the state of New Jersey. 8 A wide range of aquatic habitats exists in the JCNERR, the most extensive of which consists of open waters covering more than 27,000 ha (Figure 1). Occurring within the unique New Jersey Pinelands forest ecosystem, the Mullica River-Great Bay Estuary is of special ecological value. Other open waters of the system include Little Egg Harbor, lower Barnegat Bay, Little Bay, Reeds Bay, and Absecon Bay to the south. These estuarine waters support numerous planktonic, nektonic, and benthic organisms. A number of finfish (e.g., bluefish, Brevoortia tyrannus; weakfish, Cynoscion regalis; summer flounder, Paralichthys dentatus; and winter flounder, Pseudopleuronectes americanus) and shellfish (e.g., blue crabs, Callinectes sapidus and hard clams, Mercenaria mercenaria) species are of recreational and commercial importance. Submerged aquatic vegetation (SAV) forms critically important habitat in the coastal bays of the JCNERR. SAV, notably eelgrass (Zostera marina) and widgeon grass (Ruppia maritima), are found in lower Barnegat Bay and Little Egg Harbor. Seagrasses provide vital ecosystem services in the coastal bays, generating considerable primary production, supporting numerous benthic invertebrate populations, and comprising important spawning, nursery, and feeding grounds for an array of finfish species. Some fish (e.g., Acanthuridae and Scaridae), turtles, waterfowl (e.g., American brant, canvasbacks, and green-winged teal) and sea urchins consume SAV. In addition, these vascular plants baffle waves and currents and mitigate substrate 9 erosion, thereby stabilizing bottom sediments. Eelgrass and widgeon grass are confined to the Barnegat Bay-Little Egg Harbor Estuary. In Great Bay and coastal bays to Absecon Bay, benthic macroalgae (e.g., Ulva lactuca and Enteromorpha spp.) proliferate, but seagrass is essentially absent due to elevated turbidity. Eutrophication is an escalating problem in the coastal bays of New Jersey (Kennish and Townsend, 2007). The Barnegat Bay-Little Egg Harbor Estuary has been classified as a highly eutrophic system (Kennish et al, 2007a). Both phytoplankton and benthic algal blooms are becoming more frequent, as evidenced by repeated phytoplankton blooms in the summer months consisting of dinoflagellates, microflagellates, ultraplankton, and pelagophytes, as well as serious macroalgal blooms consisting of sea lettuce and other nuisance forms (Kennish et al., 2008). Picoplankton blooms commonly occur in the estuary, being dominated by Nannochloris atomus and Aureococcus anophagefferens. During bloom events, the phytoplankton cell counts often exceed 106 cells/ml. Brown tides composed of A. anophagefferens have been most intense and widespread in Little Egg Harbor, but they have also been documented in Barnegat Bay and Great Bay (Olsen and Mahoney, 2001). These phytoplankton blooms are problematic because they cause a brownish water discoloration and shading effects that can be detrimental to SAV. 10 Nutrient enrichment fuels rapid phytoplankton growth in the summer months. Phytoplankton productivity in JCNERR coastal bays rivals or exceeds that of many other coastal bays in the U.S. and abroad (Seitzinger et al., 2001; Kennish et al., 2007a). Phytoplankton directly supports zooplankton and benthic invertebrate populations in the bays. Calanoid and harpacticoid copepods are major components of the zooplankton community in JCNERR estuaries. Meroplankton and ichthyoplankton are also important constituents and provide forage for benthic invertebrate and finfish populations. The benthic invertebrate community is well represented in estuarine waters of the JCNERR. More than 150 benthic invertebrate species have been recorded in Great Bay, and more than 200 benthic invertebrate species, in the Barnegat Bay-Little Egg Harbor Estuary. The composition of bottom sediments, particularly the grain size, strongly influences the distribution and abundance of the benthic organisms. The amount of silt and clay is significant in this regard. Finfish assemblages are abundant in estuarine wates of the system, especially during the warmer seasons of the year. These assemblages can be divided into several major finfish groups, specifically resident species, warm-water migrants, cool-water migrants, and stray species. Forage species, such as the bay anchovy (Anchoa mitchilli) and Atlantic silverside (Menidia
Recommended publications
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Cape Sable Seaside Sparrow Ammodramus Maritimus Mirabilis
    Cape Sable Seaside Sparrow Ammodramus maritimus mirabilis ape Sable seaside sparrows (Ammodramus Federal Status: Endangered (March 11, 1967) maritimus mirabilis) are medium-sized sparrows Critical Habitat: Designated (August 11, 1977) Crestricted to the Florida peninsula. They are non- Florida Status: Endangered migratory residents of freshwater to brackish marshes. The Cape Sable seaside sparrow has the distinction of being the Recovery Plan Status: Revision (May 18, 1999) last new bird species described in the continental United Geographic Coverage: Rangewide States prior to its reclassification to subspecies status. The restricted range of the Cape Sable seaside sparrow led to its initial listing in 1969. Changes in habitat that have Figure 1. County distribution of the Cape Sable seaside sparrrow. occurred as a result of changes in the distribution, timing, and quantity of water flows in South Florida, continue to threaten the subspecies with extinction. This account represents a revision of the existing recovery plan for the Cape Sable seaside sparrow (FWS 1983). Description The Cape Sable seaside sparrow is a medium-sized sparrow, 13 to 14 cm in length (Werner 1975). Of all the seaside sparrows, it is the lightest in color (Curnutt 1996). The dorsal surface is dark olive-grey and the tail and wings are olive- brown (Werner 1975). Adult birds are light grey to white ventrally, with dark olive grey streaks on the breast and sides. The throat is white with a dark olive-grey or black whisker on each side. Above the whisker is a white line along the lower jaw. A grey ear patch outlined by a dark line sits behind each eye.
    [Show full text]
  • Albemarle-Pamlico Estuarine Study
    Report No. 90-16 FOOD AND FEEDING OF YOUNG FINFISH SPECIES IN THE LOWER ROANOKE RIVER, BATCHELOR BAY, AND WESTERN ALBEMARLE SOUND, NORTH CAROLINA, 1982-1988 Volume I - Text Roger A. Rulifson. John E. Cooper, Donald W. Stanley, Marsha E. Shepherd, Scott F. Wood, and Deborah A. Daniel l .. .;' ~ ·~ - -~ ' ' . ' u r: ,' . , . C1 h· !1. :.· •. II j 509;F68 )\y}., 1 • I It ! I 1 f 'f I I ., I ' I ' 1994 I ALBEMARLE-PAMLICO ESTUARINE STUDY NC O..patlment ot Environmental Environment, Heollh, Protection Agency and Nolurol Resources =~81~ Notional Esluory Program Food and Feeding of Young Finfish Species in the Lower Roanoke River, Batchelor Bay, and Western Albemarle Sound, North Carolina, 1982-1988 Volume I - Text By 1 2 1 1 2 Roger A. Rulifson • , John E. Cooper , Donald W. Stanley • , Marsha E. Shepherd3, Scott F. Wood 1•2, and Deborah A. Daniel2 1/nstitute for Coastal and Marine Resources 2Department ofBiology 3Academic Computing East Carolina University Greenville, NC 27858-4353 (ICMR Contribution Series, No. ICMR-93-04) The research on which the report is based was financed, in part, by the United States Environmental Protection Agency and the North Carolina Department of Environment, Health, and Natural Resources, through the Albemarle-Pamlico Study. Additional support was provided by the U.S. Department of the Interior, Fish and Wildlife Service, under the Wallop-Breaux Amendment to the Sport Fish Restoration Act. Contents of the publication do not necessarily reflect the views and policies of the United States Environmental Protection Agency, the North Carolina Department of Environment, Health, and Natural Resources, nor does mention of trade names or commercial products constitute their endorsement by the United States or North Carolina governments.
    [Show full text]
  • MVG 21 – Other Grasslands, Herblands, Sedgelands and Rushlands
    NVIS Fact sheet MVG 21 – Other grasslands, herblands, sedgelands and rushlands Australia’s native vegetation is a rich and fundamental • communities and support a large range of species, partly element of our natural heritage. It binds and nourishes as a result of their geographical range, and variation in our ancient soils; shelters and sustains wildlife, protects soils and site conditions streams, wetlands, estuaries, and coastlines; and absorbs • include many plant species capable of vegetative carbon dioxide while emitting oxygen. The National reproduction by rhizomes, or stolons Vegetation Information System (NVIS) has been developed • can comprise associated species that may include and maintained by all Australian governments to provide perennial forbs or/and short-lived ephemeral plants that a national picture that captures and explains the broad proliferate after seasonal or cyclonic rains, to longer-term diversity of our native vegetation. perennials that rely on underground organs such This is part of a series of fact sheets which the Australian as rhizomes Government developed based on NVIS Version 4.2 data to • occur on a range of sites including intermittently provide detailed descriptions of the major vegetation groups inundated depressions, margins of perennial freshwater (MVGs) and other MVG types. The series is comprised of lagoons and brackish tidal or inland wetlands. Ferns tend a fact sheet for each of the 25 MVGs to inform their use by to dominate specific humid areas where the environment planners and policy makers. An additional eight MVGs are is less variable between seasons available outlining other MVG types. • have structurally distinctive features of landscape that provide a variety of habitats for faunal species For more information on these fact sheets, including its limitations and caveats related to its use, please see: • may be associated with an overstorey of scattered and ‘Introduction to the Major Vegetation Group (MVG) isolated trees fact sheets’.
    [Show full text]
  • JJB 079 255 261.Pdf
    植物研究雑誌 J. J. Jpn. Bo t. 79:255-261 79:255-261 (2004) Phylogenetic Phylogenetic Analysis of the Tetrasporalean Genus Asterococcus Asterococcus (Chlorophyceae) sased on 18S 18S Ribosomal RNA Gene Sequences Atsushi Atsushi NAKAZA WA and Hisayoshi NOZAKI Department Department of Biological Sciences ,Graduate School of Science ,University of Tokyo , Hongo Hongo 7-3-1 ,Bunkyo-ku ,Tokyo ,113 ・0033 JAPAN (Received (Received on October 30 ,2003) Nucleotide Nucleotide sequences (1642 bp) from 18S ribosomal RNA genes were analyzed for 100 100 strains of the clockwise (CW) group of Chlorophyceae to deduce the phylogenetic position position of the immotile colonial genus Asterococcus Scherffel , which is classified in the Palmellopsidaceae Palmellopsidaceae of Tetrasporales. We found that the genus Asterococcus and two uni- cellular , volvocalean genera , Lobochlamys Proschold & al. and Oogamochlamys Proschold Proschold & al., formed a robust monophyletic group , which was separated from two te 位asporalean clades , one composed of Tetraspora Link and Paulschulzia Sk 吋a and the other other containing the other palme l1 0psidacean genus Chlamydocaps αFot t. Therefore , the Tetrasporales Tetrasporales in the CW group is clearly polyphyletic and taxonomic revision of the order order and the Palmellopsidaceae is needed. Key words: 18S rRNA gene ,Asterococcus ,Palmellopsidaceae ,phylogeny ,Tetraspor- ales. ales. Asterococcus Asterococcus Scherffel (1908) is a colo- Recently , Ettl and Gartner (1 988) included nial nial green algal genus that is characterized Asterococcus in the family Palmello- by an asteroid chloroplast in the cell and psidaceae , because cells of this genus have swollen swollen gelatinous layers surrounding the contractile vacuoles and lack pseudoflagella immotile immotile colony (e. g.
    [Show full text]
  • Emergency Management Action Plan for the Endangered Cape Sable Seaside Sparrow Ammodramus Maritimus Mirabilis
    Emergency Management Action Plan for the endangered Cape Sable Seaside Sparrow Ammodramus maritimus mirabilis Federal Status Endangered (March 11, 1967) Florida Status Endangered Range Endemic to Florida Everglades Population Estimate ~ 2,000 to 3,500 birds Current Population Trend Stable Habitat Marl prairie Major Threats Habitat loss and degradation, altered hydrology and fire regimes Recovery Plan Objective Down listing from ‘Endangered’ to ‘Threatened’ Develop a decision framework to help rapidly guide sparrow EMAP Goal emergency management actions Identify the situations or events that would trigger an emergency EMAP Objective management action and provide the details for each action. Gary L. Slater1,2 Rebecca L. Boulton1,3 Clinton N. Jenkins4 Julie L. Lockwood3 Stuart L. Pimm4 A report to: U.S. Fish and Wildlife Service South Florida Ecological Services Office Vero Beach, FL 32960 1 Authors contributed equally to report 2 Ecostudies Institute, Mount Vernon, WA 98273; Corresponding author ([email protected]) 3 Department of Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ 08901 4 Environmental Sciences & Policy, Duke University, Durham, NC 27708 Ecostudies Institute committed to ecological research and conservation AUTHORS GARY SLATER; is the founder and research director of Ecostudies Institute, a non-profit organization dedicated to conducting sound science and conservation. Gary's qualifications and experience span two important areas in conservation science: administrative/program management and independent research. Since 1993, he has conducted research on the avifauna of the south Florida pine rocklands, including the last 10 years planning, implementing, and monitoring the reintroduction of the Brown-headed Nuthatch (Sitta pusilla) and Eastern Bluebird (Sialia sialis) to Everglades National Park.
    [Show full text]
  • Southern Pinelands Natural Heritage Trail Scenic Byway Corridor Management Plan
    Southern Pinelands Natural Heritage Trail Scenic Byway Corridor Management Plan Task 3: Intrinsic Qualities November 2008 Taintor & Associates, Inc. Whiteman Consulting, Ltd. Paul Daniel Marriott and Associates CONTENTS PART 1: INTRINSIC QUALITIES................................................................................................. 1 1. Introduction ............................................................................................................................. 3 Overview: Primary, Secondary and Tertiary Intrinsic Qualities............................................................ 3 2. Natural Quality ........................................................................................................................ 5 Introduction........................................................................................................................................... 5 Environmental History and Context...................................................................................................... 6 Indicators of Significance...................................................................................................................... 7 Significance as a Leader in Environmental Stewardship ................................................................... 17 The Major Natural Resources of the Pinelands and Their Significance............................................. 17 3. Recreational Quality ............................................................................................................
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Luronium Natans
    Luronium natans Status UK Biodiversity Action Plan Priority species. Nationally Scarce. Schedule 8, Wildlife & Countryside Act (1981). IUCN Threat category: Least concern (2005). Taxonomy Magnoliopsida: Alismataceae Scientific names: Luronium natans (L.) Raf. Common names: Floating Water-plantain, Dŵr-lyriad Nofiadwy Luronium natans (Alisma natans L.) is a distinct member of the Water-plantain family, and is the only representative of its genus. Biology & Distribution Luronium is under-recorded due to its generally submerged aquatic habitat, shy flowering, great phenotypic plasticity and similarity to other aquatic plants. The leaves do not tend to be caught on NB. Floating grapnels or get washed ashore and often the easiest leaves are way to find it in water is to dive or use a long hooked usually more blunt than pole. It may also be found easily when exposed in Submerged illustrated seasonal ponds. The species can grow in both isolated leaves clumps or extensive lawns on the bottom of canals, lochs, ponds, etc., in water up to 4 m depth. Figure 1. Luronium natans (from J. Sowerby & J. E. Sowerby Although its stronghold is Wales and the Welsh (1902). English Botany. London) borders, it has been found recently in Cumbria, Scotland and Ireland where it is probably an over- that they have flat leaves). In still or gently flowing looked native rather than a recent arrival; it may well water the submerged rosette leaves are typically c. 5-15 be more widespread still. cm long, strongly flattened, linear-triangular, tapering uniformly from a base c. 4-7 mm wide to a fine acute Identification & Field survey tip.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]