Clinical Guidance for Smallpox Vaccine Use in a Postevent Vaccination Program

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Guidance for Smallpox Vaccine Use in a Postevent Vaccination Program Morbidity and Mortality Weekly Report Recommendations and Reports / Vol. 64 / No. 2 February 20, 2015 Clinical Guidance for Smallpox Vaccine Use in a Postevent Vaccination Program Continuing Education Examination available at http://www.cdc.gov/mmwr/cme/conted.html. U.S. Department of Health and Human Services Centers for Disease Control and Prevention Recommendations and Reports CONTENTS Disclosure of Competing Interests Introduction ............................................................................................................2 The expert panelists who participated in the development of this guidance reported no potential competing interests to the Methods ....................................................................................................................2 steering committee with the following exceptions: J. Michael Background .............................................................................................................3 Lane, MD, disclosed that he has worked on data and safety monitoring boards for clinical trials sponsored by the NIH Control and Prevention .......................................................................................5 and by Bavarian Nordic and was supported by Acambis (the ACAM2000 ...............................................................................................................5 manufacturer of ACAM2000 before being purchased by Sanofi Aventis Pasteur Smallpox Vaccine ................................................................ 10 Pasteur) to review photos of the arms of vaccinees in their initial trial of the ACAM2000 vaccine to determine if a major Imvamune ............................................................................................................. 11 or equivocal cutaneous reaction had occurred; Sharon E. Frey, Recommended Uses of Smallpox Vaccine ................................................ 12 MD, disclosed that she has worked on several clinical trials for Guidance for Other Special Populations .................................................... 21 smallpox vaccines in the past that were funded by the current manufacturers of smallpox vaccines (i.e., Sanofi Pasteur and Knowledge Gaps and Future Research....................................................... 23 Bavarian Nordic) and by the NIH, received funding from Acknowledgments ............................................................................................. 23 the current smallpox vaccine manufacturers for past travel References ............................................................................................................. 23 expenses to present at conferences and a training session, and will organize one study site for a clinical trial investigating Imvamune funded by the NIH and Bavarian Nordic. Following the workshop and during the writing of the guidance, Dr. Frey disclosed that she accepted an offer by Bavarian Nordic before initiation of guidance development to serve as the chair of a committee evaluating the ability of smallpox vaccine to induce a major or equivocal cutaneous reaction in participants of a clinical study. This report includes recommendations for two investigational smallpox vaccines (i.e., Imvamune and Aventis Pasteur Smallpox Vaccine [APSV]) that are anticipated to be used under emergency use authorization or investigational new drug protocols in the event of a declared public health emergency involving smallpox. Front cover photo: Transmission electron micrograph depicting smallpox virus virions; magnification approximately 370,000x. (Photo/CDC) The MMWR series of publications is published by the Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30329-4027. Suggested citation: [Author names; first three, then et al., if more than six.] [Title]. MMWR Recomm Rep 2015;64(No. RR-#):[inclusive page numbers]. Centers for Disease Control and Prevention Thomas R. Frieden, MD, MPH, Director Harold W. Jaffe, MD, MA, Associate Director for Science Joanne Cono, MD, ScM, Director, Office of Science Quality Chesley L. Richards, MD, MPH, Deputy Director for Public Health Scientific Services Michael F. Iademarco, MD, MPH, Director, Center for Surveillance, Epidemiology, and Laboratory Services MMWR Editorial and Production Staff (Serials) Sonja A. Rasmussen, MD, MS, Editor-in-Chief Martha F. Boyd, Lead Visual Information Specialist Charlotte K. Kent, PhD, MPH, Executive Editor Maureen A. Leahy, Julia C. Martinroe, Christine G. Casey, MD, Editor Stephen R. Spriggs, Terraye M. Starr Teresa F. Rutledge, Managing Editor Visual Information Specialists David C. Johnson, Lead Technical Writer-Editor Quang M. Doan, MBA, Phyllis H. King Jeffrey D. Sokolow, MA, Project Editor Information Technology Specialists MMWR Editorial Board William L. Roper, MD, MPH, Chapel Hill, NC, Chairman King K. Holmes, MD, PhD, Seattle, WA Matthew L. Boulton, MD, MPH, Ann Arbor, MI Timothy F. Jones, MD, Nashville, TN Virginia A. Caine, MD, Indianapolis, IN Rima F. Khabbaz, MD, Atlanta, GA Jonathan E. Fielding, MD, MPH, MBA, Los Angeles, CA Patricia Quinlisk, MD, MPH, Des Moines, IA David W. Fleming, MD, Seattle, WA Patrick L. Remington, MD, MPH, Madison, WI William E. Halperin, MD, DrPH, MPH, Newark, NJ William Schaffner, MD, Nashville, TN Recommendations and Reports Clinical Guidance for Smallpox Vaccine Use in a Postevent Vaccination Program Prepared by Brett W. Petersen, MD1 Inger K. Damon, MD, PhD1 Carol A. Pertowski, MD2 Dana Meaney-Delman, MD3 Julie T. Guarnizo4 Richard H. Beigi, MD5 Kathryn M. Edwards, MD6 Margaret C. Fisher, MD7 Sharon E. Frey, MD8 Ruth Lynfield, MD9 Rodney E. Willoughby, MD10 1Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, CDC 2Office of the Director, Office of Public Health Preparedness and Response, CDC 3Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases, CDC 4Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, CDC 5Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 6Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee 7The Unterberg Children’s Hospital at Monmouth Medical Center, Barnabas Health, Long Branch, New Jersey 8Center for Vaccine Development, Saint Louis University School of Medicine, Saint Louis, Missouri 9Minnesota Department of Health, St. Paul, Minnesota 10Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin Summary This report outlines recommendations for the clinical use of the three smallpox vaccines stored in the U.S. Strategic National Stockpile for persons who are exposed to smallpox virus or at high risk for smallpox infection during a postevent vaccination program following an intentional or accidental release of the virus. No absolute contraindications exist for smallpox vaccination in a postevent setting. However, several relative contraindications exist among persons with certain medical conditions. CDC recommendations for smallpox vaccine use were developed in consideration of the risk for smallpox infection, risk for an adverse event following vaccination, and benefit from vaccination. Smallpox vaccines are made from live vaccinia viruses that protect against smallpox disease. They do not contain variola virus, the causative agent of smallpox. The three smallpox vaccines stockpiled are ACAM2000, Aventis Pasteur Smallpox Vaccine (APSV), and Imvamune. Surveillance and containment activities including vaccination with replication-competent smallpox vaccine (i.e., vaccine viruses capable of replicating in mammalian cells such as ACAM2000 and APSV) will be the primary response strategy for achieving epidemic control. Persons exposed to smallpox virus are at high risk for developing and transmitting smallpox and should be vaccinated with a replication-competent smallpox vaccine unless severely immunodeficient. Because of a high likelihood of a poor immune response and an increased risk for adverse events, smallpox vaccination should be avoided in persons with severe immunodeficiency who are not expected to benefit from vaccine, including bone marrow transplant recipients within 4 months of transplantation, persons infected with HIV with CD4 cell counts <50 cells/mm3, and persons with severe combined immunodeficiency, complete DiGeorge syndrome, and other severely immunocompromised states requiring isolation. If antivirals are not immediately available, it is reasonable to consider the use of Imvamune in the setting of a smallpox virus exposure in persons with severe immunodeficiency. Persons without a known smallpox virus exposure might still be at high risk for developing smallpox infection depending on the magnitude of the outbreak and the effectiveness of the public health response. Such persons will be defined by public health authorities and should be screened for relative contraindications to smallpox vaccination. Relative contraindications include atopic dermatitis (eczema), HIV infection (CD4 cell counts of 50–199 cells/mm3), other immunocompromised states, and vaccine or vaccine-component allergies. Persons with relative contraindications should be vaccinated with Imvamune when available and authorized for use by the Food and Drug Administration. These Corresponding preparer: Brett W. Petersen, Division of
Recommended publications
  • Accidental Vaccinia Virus Exposure: Information Sheet for Laboratory Workers
    The University of Iowa Vaccinia Vaccination Information Form I understand that due to my occupational exposure to vaccinia virus, I may be at risk of acquiring infection from vaccinia. I have been given the opportunity to be vaccinated with the smallpox vaccine, at no charge to myself. After reading the Medication Guide and information packet from the Centers for Disease Control and Prevention (CDC) I understand there are risks involved in working with vaccinia virus, in addition to risks in receving the vaccination. My signature below indicates that I have: 1. Read the CDC’s Medication Guide that has been provided to me (follows this informational form). 2. Read the CDC’s "Important Information about Vaccinia (Smallpox) Vaccine For Laboratory Workers" that has been provided to me (follows this informational form). 3. Had an opportunity to ask questions about vaccinia with Biosafety Staff in the Environmental Health and Safety Office (EHS) at 335-8501. 4. Had the opportunity to ask questions about the vaccine with University Employee Health Clinic staff at 356-3631. I have decided to: Decline the vaccination at this time. I understand that by declining this vaccine, I continue to be at risk of acquiring an infection from vaccinia. If I continue to have occupational exposure to this virus and decide to be vaccinated in the future, I may request and receive the vaccination, at no charge to myself. Receive the vaccine, provided through the University Employee Health Clinic (UEHC). Signature: Please print name: Date: University ID number: Principal Investigator/Lab Director Name: If consenting, please also complete: Date of Birth: Job Title: List of duties and/or viruses used in lab that may cause exposure to vaccinia virus: Return page 1 of this form to: Associate Biosafety Officer, 100 EHS.
    [Show full text]
  • Vaccines and Autism: What You Should Know | Vaccine Education
    Q A Vaccines and Autism: What you should know Volume& 1 Summer 2008 Some parents of children with autism are concerned that vaccines are the cause. Their concerns center on three areas: the combination measles-mumps-rubella (MMR) vaccine; thimerosal, a mercury-containing preservative previously contained in several vaccines; and the notion that babies receive too many vaccines too soon. Q. What are the symptoms of autism? Q. Does the MMR vaccine cause autism? A. Symptoms of autism, which typically appear during the A. No. In 1998, a British researcher named Andrew Wakefi eld fi rst few years of life, include diffi culties with behavior, social raised the notion that the MMR vaccine might cause autism. skills and communication. Specifi cally, children with autism In the medical journal The Lancet, he reported the stories of may have diffi culty interacting socially with parents, siblings eight children who developed autism and intestinal problems and other people; have diffi culty with transitions and need soon after receiving the MMR vaccine. To determine whether routine; engage in repetitive behaviors such as hand fl apping Wakefi eld’s suspicion was correct, researchers performed or rocking; display a preoccupation with activities or toys; a series of studies comparing hundreds of thousands of and suffer a heightened sensitivity to noise and sounds. children who had received the MMR vaccine with hundreds Autism spectrum disorders vary in the type and severity of of thousands who had never received the vaccine. They found the symptoms they cause, so two children with autism may that the risk of autism was the same in both groups.
    [Show full text]
  • History and Epidemiology of Global Smallpox Eradication Smallpox
    History and Epidemiology of Global Smallpox Eradication Smallpox Three Egyptian Mummies 1570-1085 BC Ramses the Vth Died 1157 BC Early Written Description of Smallpox India 400 AD “Severe pain is felt in the large and small joints, with cough, shaking, listlessness and langour; the palate, lips, and tongue are dry with thirst and no appetite. The pustules are red, yellow, and white and they are accompanied by burning pain. The form soon ripens …the body has a blue color and seems studded with rice. The pustules become black and flat, are depressed in the centre, with much pain.” Smallpox and History • In the Elephant war in Mecca 568 AD, smallpox decimated the Ethiopian soldiers • Introduction of smallpox into the new world (Carribean 1507, Mexico 1520, Peru 1524, and Brazil 1555 ) facilitated Spanish conquest • Smallpox destroys Hottentots (1713) • In 1738, smallpox killed half the Cherokee Indian population • Smallpox disrupted colonial army in 1776 Smallpox Control Strategies • Smallpox hospitals (Japan 982 AD). • Variolation 10th Century. • Quarantine 1650s. • Home isolation of smallpox in Virginia 1667. • Inoculation and isolation (Haygarth 1793). • Jenner and widespread practice of vaccination throughout Europe and rest of the world. • Mass vaccination. • Surveillance containment. Variolation Inoculation with Smallpox Pus • Observations: – Pocked marked persons never affected with smallpox – Persons inoculated with smallpox pustular fluid or dried scabs usually had milder disease • Not ideal control strategy – Case fatality rate still 2% – Can transmit disease to others during illness The 1st Smallpox Vaccination Jenner 1796 Cowpox lesions on the hand of Sarah Nelmes (case XVI in Jenner’s Inquiry), from which material was taken for the vaccination of James Phipps below in 1796 History of Smallpox Vaccination 1805 Growth of virus on the flank of a calf in Italy.
    [Show full text]
  • ACAM2000 Clonal Vero Cell Culture Vaccinia Virus (New York City Board of Health Strain) — a Second-Generation Smallpox Vaccine for Biological Defense
    International Journal of Infectious Diseases (2004) 8S2, S31—S44 http://intl.elsevierhealth.com/journals/ijid ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain) — a second-generation smallpox vaccine for biological defense Thomas P. Monatha,*, Joseph R. Caldwella, Wolfgang Mundtb, Joan Fuscob, Casey S. Johnsonc, Mark Bullerd, Jian Liua, Bridget Gardnera, Greg Downinga, Paul S. Bluma, Tracy Kempa, Richard Nicholsa, Richard Weltzina aAcambis Inc., 38, Sidney Street, Cambridge, MA 02139, USA bBaxter BioScience, USA and Austria cPRA International, Lenexa, KS dSt. Louis University Medical School, St. Louis MO Summary The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax1) by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax1 in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax1 in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions.
    [Show full text]
  • Study Protocol
    Clinical Trial Protocol FY12-19, HP-12-19, POX-MVA-006 A randomized, open-label Phase III non-inferiority trial to compare indicators of efficacy for MVA-BN smallpox vaccine to ACAM2000 in 18-42 year old® healthy vaccinia naïve ®subjects Clinical Trial Protocol Edition 8 29 September 2016 NCT 01913353 Bavarian Nordic Page 1 of 1 Clinical Trial Protocol Doc. No. 92000007 FY12-19, HP-12-19, POX-MVA-006 Edition 8 FY12-19, HP-12-19, POX-MVA-006 A randomized, open-label Phase III non-inferiority trial to compare indicators of efficacy for MVA-BN smallpox vaccine to ACAM2000 in 18-42 year old® healthy vaccinia naïve ®subjects Clinical Trial Protocol Edition 8 29 September 2016 Bavarian Nordic Restricted Business Proprietary Page 1 of 208 Clinical Trial Protocol Doc. No. 92000007 FYI2-19, HP-12-19, POX-MVA-006 Edition 8 29-Sep-20 16 1 General Information 1.1 Principal Investigator Signature Page Herewith I agree that I have read and fully understand this protocol: A randomized, open-label Phase Ill non-inferiority trial to compare indicators of efficacy for MVA BN® smallpox vaccine to ACAM2000® in 18-42 year old healthy vaccinia-naiVe subjects This protocol describes all the information necessary to conduct the trial. I agree that I will conduct the trial according to the instructions given within this protocol. FUithermore, T agree that I will conduct this trial according to rnternational Conference of Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) Good Clinical Practice (GCP), the 2013 version ofthe Declaration ofHelsinki, the Belmont Report, as well as applicable local legal and regulatory requirements in the respective countries.
    [Show full text]
  • IMVANEX, Common Name – Modified Vaccinia Ankara Virus
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions. 1. NAME OF THE MEDICINAL PRODUCT IMVANEX suspension for injection Smallpox vaccine (Live Modified Vaccinia Virus Ankara) 2. QUALITATIVE AND QUANTITATIVE COMPOSITION One dose (0.5 ml) contains: Modified Vaccinia Ankara – Bavarian Nordic Live virus1 no less than 5 x 107 Inf.U * *infectious units 1 Produced in chick embryo cells This vaccine contains trace residues of chicken protein, benzonase, gentamicin and ciprofloxacin (see section 4.3). For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Suspension for injection. Light yellow to pale white, milky suspension. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Active immunisation against smallpox in adults (see sections 4.4 and 5.1). The use of this vaccine should be in accordance with official recommendations. 4.2 Posology and method of administration Posology Primary vaccination (individuals previously not vaccinated against smallpox): A first dose of 0.5 ml should be administered on an elected date. A second dose of 0.5 ml should be administered no less than 28 days after the first dose. See sections 4.4 and 5.1. Booster vaccination (individuals previously vaccinated against smallpox): There are inadequate data to determine the appropriate timing of booster doses. If a booster dose is considered necessary then a single dose of 0.5 ml should be administered. See sections 4.4 and 5.1.
    [Show full text]
  • COVID-19 Vaccinations with an Update from 12/16/2020
    COVID-19 Vaccinations with an Update from 12/16/2020 Michael A. Kaufmann, MD, FACEP, FAEMS State EMS Medical Director Indiana Department of Homeland Security Hot Off The Press • 12/11/2020 • Vaccine advisers to the US Food and Drug Administration voted Thursday to recommend the agency grant emergency use authorization to Pfizer and BioNTech's coronavirus vaccine. • Seventeen members of the Vaccines and Related Biological Products Advisory Committee voted yes, four voted no and one abstained. • "The question is never when you know everything. It's when you know enough and I think we know enough now to say that this appears to be our way out of this awful, awful mess," Dr. Paul Offit, director of the Vaccine Education Center at Children's Hospital of Philadelphia and a member of the committee, told CNN's Wolf Blitzer after the vote. • "That's why I voted yes." FDA Concerns • Several committee members expressed concern about reports of allergic reactions in two people who were vaccinated in Britain, which authorized Pfizer's vaccine ahead of the US. • FDA staff said that, as with any vaccines, paperwork would accompany the Pfizer vaccine to warn against administering it to anyone with a history of severe allergic reactions to vaccines or allergies to any of the ingredients of the vaccine. • The FDA will now decide whether to accept the recommendation, but has signaled that it will issue the EUA for the vaccine. • ACIP has a meeting scheduled for Friday, and expects to vote during a meeting scheduled for Sunday. • Operation Warp Speed officials say they will start shipping the vaccine within 24 hours of FDA authorization.
    [Show full text]
  • Comparison of Host Cell Gene Expression in Cowpox, Monkeypox Or Vaccinia Virus-Infected Cells Reveals Virus-Specific Regulation
    Bourquain et al. Virology Journal 2013, 10:61 http://www.virologyj.com/content/10/1/61 RESEARCH Open Access Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes Daniel Bourquain1†, Piotr Wojtek Dabrowski1,2† and Andreas Nitsche1* Abstract Background: Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell’s gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Results: Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes.
    [Show full text]
  • IMVAMUNE® and ACAM2000® Provide Different Protection Against
    Article IMVAMUNE® and ACAM2000® Provide Different Protection against Disease When Administered Postexposure in an Intranasal Monkeypox Challenge Prairie Dog Model M. Shannon Keckler 1,2 , Johanna S Salzer 1,3, Nishi Patel 1,4, Michael B Townsend 1, Yoshinori J Nakazawa 1, Jeffrey B Doty 1, Nadia F Gallardo-Romero 1, Panayampalli S Satheshkumar 1, Darin S Carroll 1,5, Kevin L Karem 1,6 and Inger K Damon 1,* 1 Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA 30333, USA; [email protected] (M.S.K.); [email protected] (J.S.S.); [email protected] (N.P.); [email protected] (M.B.T.); [email protected] (Y.J.N.); [email protected] (J.B.D.); [email protected] (N.F.G.-R.); [email protected] (P.S.S.); [email protected] (D.S.C.); [email protected] (K.L.K.) 2 Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA 30333, USA 3 Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA 30333, USA 4 Respiratory Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA 30333, USA 5 Office of the Director, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, U.S.
    [Show full text]
  • Myocarditis After SARS-Cov-2 Vaccination: True, True, and … Related? Sean T
    Myocarditis After SARS-CoV-2 Vaccination: True, True, and … Related? Sean T. O’Leary, MD, MPH,a,b Yvonne A. Maldonado, MDc In this month’s issue of Pediatrics, compiled cases through personal Marshall et al report a case series communication rather than through describing seven 14- to 19-year-old a systematic surveillance system. male individuals who developed Clearly, this approach could symptomatic myocarditis after the introduce reporting bias, and a case second dose of the Pfizer-BioNTech series cannot establish causality. coronavirus disease 2019 (COVID- Another critical point to consider is 19) vaccine.1 The authors report that that the reported cases mirror the the symptoms began between 2 and seasonal prevalence, sex, and age 4 days after the second dose and that profile of background cases of aAdult and Child Consortium for Health Outcomes all 7 patients experienced rapid myocarditis, thereby complicating an Research and Delivery Science, Anschutz Medical Campus, resolution of symptoms. This case assessment of a potential association University of Colorado and Children’s Hospital Colorado, Aurora, Colorado, bDepartment of Pediatrics, Anschutz series is published in the context of with SARS-CoV-2 vaccines. The Medical Campus, University of Colorado, Aurora, Colorado, other media reports of myocarditis authors themselves note in their cDepartment of Pediatrics, School of Medicine, Stanford in young adults, mostly male, from discussion the high background rate University, Stanford, California 2 the US military and from Israel as of myocarditis in adolescent and Opinions expressed in these commentaries are those of well as a recent increase in reports young adult male individuals,4 the authors and not necessarily those of the American Academy of Pediatrics or its Committees.
    [Show full text]
  • Diseases Subject to the International Health Regulations
    Diseases Subject to the International Health Regulations Cholera, yellow fever, and plague cases and deaths reported in the Region of the Americas up to 15 October 1980 Country and Yellow fever administrative Cholera Plague subdivision Cases Cases Deaths Cases BOLIVIA - 46 39 15 Cochabamba - 12 8 - La Paz - 32 30 15 Santa Cruz - 1 1 - Tarija - 1 - BRAZIL - 25 22 69 Ceará - - - 62 Goiás - 20 19 Maranhao - 4 2 - Pernambuco - - - 7 Rondónia - 1 1 - CANADA 3 - - - Quebec 1 - - Saskatchewan 2 - - COLOMBIA - 7 7 - Cesar - 1 1 - Guaviare - 1 1 - Meta - 1 1 - Norte de Santander - 1 1 - Putumayo - 3 3 - ECUADOR - 2 - Napo - 2 PERU - 24 19 - Ayacucho - 8 7 - Junín - 7 4 - San Martín - 7 7 - ...- 2 1 - UNITED STATES 8 - - 13 California 6 - 2 Maryland 1 - Nevada - - - 2 New Mexico - - - 9 Pennsylvania 1 - - VENEZUELA - 1 1 - Mérida - 1 1 -None. ... Data not available. I Accidental Smallpox Vaccination in Venezuela On 31 July 1980 a report was received that the previous vaccine (lot No. 48 produced by the National Institute of day a 10-month old child weighing 10 kg, who had been Health), rehydrated in the diluent of the Merieux Lab- taken for measles vaccination in Barquisimeto, Lara oratory measles vaccine. In a way, the accident provided State, had accidentally received in the left arm a sub- an opportunity for reinforcing the principle that those in cutaneous injection of 25 doses of freeze-dried smallpox charge of programs should supervise the immunizations 5 more closely. It also provided an example of what can The fact that smallpox vaccine was administered at all happen, and the state epidemiologists who were attend- prompts yet another important comment.
    [Show full text]
  • Key Messages and Answers About Vaccine Safety MANUAL for HEALTH WORKERS
    Key Messages and Answers about Vaccine Safety MANUAL FOR HEALTH WORKERS Key Messages and Answers about Vaccine Safety MANUAL FOR HEALTH WORKERS Washington, D.C., 2021 Key Messages and Answers about Vaccine Safety. Manual for Health Care Workers PAHO/FPL/IM/COVID-19/21-0027 © Pan American Health Organization, 2021 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO license (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this license, this work may be copied, redistributed, and adapted for non-commercial purposes, provided the new work is issued using the same or equivalent Creative Commons license and it is appropriately cited. In any use of this work, there should be no suggestion that the Pan American Health Organization (PAHO) endorses any specific organization, product, or service. Use of the PAHO logo is not permitted. All reasonable precautions have been taken by PAHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall PAHO be liable for damages arising from its use. ii KEY MESSAGES AND ANSWERS ABOUT VACCINE SAFETY Contents Acknowledgements VI Introduction 1 History of vaccines up to the present 2 Chapter 1. Immunization schedules in the regular program 4 1.1 Key messages 5 1.2 Questions and answers
    [Show full text]