Nicotiana Rusbyi Grafted on Nicotiana Rustica, Solanu

Total Page:16

File Type:pdf, Size:1020Kb

Nicotiana Rusbyi Grafted on Nicotiana Rustica, Solanu 236 BOTANY: D. KOSTOFF PROC. N. A. S. INDUCED IMMUNITY IN PLANTS By DONTCHO KOSTOrF. BusszY INSTITUTION OF HARVARD UNIVZRSITY Communicated February 15, 1928 A series of experiments on the family Solanaceae has apparently shown that plant tissues can acquire immunity against certain antigenic agents of other species by some type of antibody production. Normal precipitins were found in leaf extracts and stem extracts and these were tested by Uhlenhuth's ring method (1909). A great variability in amount of precipitation was observed when normal plant extracts 'were tested against each other. Powerful precipitation was observed both when the two extracts tested against each other were from plants of the same genus and when plants of different genera were used; but in certain combinations-particularly with different genera- instead of a precipitation ring, a lytic ring (a ring of liquid clearer than the two components) was observed. The precipitation potency of certain species and genera is increased after grafting; moreover, in certain combinations whose extracts show no precipitin reaction before grafting, the capacity to produce precipitins is acquired during the growth of *e graft unions. The highest acquire- ment of precipitins was found between 30 and 45 days after grafting. Acquirement of precipitins after grafting was observed in the following graft unions: Nicotiana Rusbyi grafted on Nicotiana rustica, Solanum tuberosum grafted on Nicotiana rustica, Nicotiana Sandere grafted on Datura ferox, Nicotiana glauca grafted on Capsicum pyramidale, Lycium Barbarum grafted on Solanum Lycopersicum, etc. The precipitins acquired after grafting are usually specific. Thus extract of Nicotiana Rusbyi immunized against Nicotiana rustica by graft- ing always gave the heaviest precipitate when tested against its antigenic extract, namely, the normal extract of Nicotiana rustica. Then followed in order the extracts of Nicotiana paniculata, Nicotiana glauca, F1 (Nicotiana rustica X Nicotiana Tabacum) and Nicotiana Tabacum. It is perhaps important to note in this connection that the three species Nicotiana rustica, Nicotiana paniculata and Nicotiana glauca belong to the subgenus or section Rustica, while the species Nicotiana Rusbyi and Nicotiana Tabacum belong to the section Tabacum (Comes, 1899). Acquired precipitins of Solanum tuberosum against (grafted on) Nico- tiana rustica precipitate the normal extract of Nicotiana rustica, but not the normal extract of Nicotiana Rusbyi. Sometimes, however, the ex- tracts of Nicotiana Rusbyi immunized by grafting against Nicotiana rustica showed increased precipitation potency over the precipitation shown Downloaded by guest on October 2, 2021 VOL. 14, 1928 PHYSIOLOGY: S. HECHT 237 against the normal extract of Nicotiana alata. The latter Nicotiana species belongs to the section Petunioides and the acquired precipitins of Nicotiana Rusbyi cannot be called "specific" but "heterogenetic." In certain graft unions no acquirement of precipitins was found; viz., Nicotiana Tabacum grafted on Nicotiana rustica, Nicotiana rustica grafted on Nicotiana quadrivalvis, Nicotiana Tabacum grafted on Solanum nigrum, Salpiglossis sinuata grafted on Datura fer0x, Solanum Melongena grafted on Solanum nigrum, Nicotiana Tabacum grafted on Solanum Melongena, Nicotiana Tabacum grafted on Solanum tuberosum, Nicotiana glauca grafted on Nicotiana rustica, etc. A decrease of the normal precipitin potency was observed in the following graft unions: Solanum tuberosum grafted on Datura Wrightii, Solanum Lycopersicum grafted on Datura Wrightii, Solanum Melongena grafted on Datura Wrightii, etc. Comes, 0., Monographie du genre Nicotiana, Topographie cooperative, Naples, 1899. Uhlenhuth, P. u. Weidanz, Technik und Methodik des biologischen Eiweissdifferen- zierungsverfahren u.s.w., Gustav Fischer, Jena, 1909. ON THE BINOCULAR FUSION OF COLORS AND ITS RELATION TO THEORIES OF COLOR VISION By SuLIG HzCHT LABORATORY oF BioPHYsics, COLUMBIA UNIVERSITY Communicated January 24, 1928 1. Thomas Young's original idea for the mechanism of color vision rests on the fact that by mixing three selected monochromatic parts of the spectrum all kiiown color sensations may be reproduced. Young' supposed that there are three kinds of "fibers" in the retina each producing a characteristic sensation, one of red, another of green and a third of blue (violet). Each type of fiber is sensitive practically to the entire visible spectrum, but the first possesses a maximum of sensibility in the red, the second in the green and the third in the blue. The various color sensations then result from the relative strengths with which the three different fibers are stimulated by the objective light. Few people today suppose that Young's idea, as here given in its simple form or as elaborated by Helmholtz,2 Koenig,3 v. Kries4 and others, is adequate as a complete theory for the mechanism of color vision. The question, however, has often been raised as to whether it can serve even as the basis for a theory of color vision. Downloaded by guest on October 2, 2021.
Recommended publications
  • Weedsoc.Org.Au
    THE WEED SOCIETY OF NEW SOUTH WALES Inc. Website: www.nswweedsoc.org.au Seminar Papers WEEDS – WOE to GO IV Wednesday 6 September 2006 Metcalfe Auditorium State Library of NSW Macquarie Street , SYDNEY Sponsors Collated / Edited by Copies of this publication are available from: Dr Stephen Johnson THE WEED SOCIETY & Bob Trounce OF NEW SOUTH WALES Inc. PO Box 438 WAHROONGA NSW 2076 THE WEED SOCIETY OF NEW SOUTH WALES Inc. ACKNOWLEDGMENTS Seminar Organising Committee Lawrie Greenup (chair) Mike Barrett Bertie Hennecke Luc Streit Coordinator power point presentations Erica McKay Welcome to speakers and delegates Warwick Felton (President) Summary of the day’s presentations Mike Barrett Collation and preparation of proceedings Stephen Johnson Bob Trounce The committee thanks all who took part and attended the seminar and particularly the speakers for their presentations and supply of written documents for these proceedings. THE WEED SOCIETY OF NEW SOUTH WALES Inc. SEMINAR SERIES: WEEDS WOE TO GO IV “Poisonous and Allergenic Plants Where are they?” Date: Wednesday 6th September 2006 Location: The Metcalfe Auditorium The State Library of NSW Macquarie Street Sydney Time Topic Speaker 9.00 – 9.30 am REGISTRATION & MORNING TEA 9.30 – 9.40 am Welcome Warwick Felton 9.40 – 10.30 am Weeds that make you sick Rachel McFadyen 10.30 – 11.20 am Poisonous, prickly, parasitic, pushy? John Virtue Prioritising weeds for coordinated control programs” 11.20 – 1130 am break 11.30 – 11.50 am Parietaria or Asthma Weed Sue Stevens Education & incentive project
    [Show full text]
  • Plant Molecular Farming: a Viable Platform for Recombinant Biopharmaceutical Production
    plants Review Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production Balamurugan Shanmugaraj 1,2, Christine Joy I. Bulaon 2 and Waranyoo Phoolcharoen 1,2,* 1 Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 2 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-2-218-8359; Fax: +66-2-218-8357 Received: 1 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Pollination Ecology of the Invasive Tree Tobacco Nicotiana Glauca : Comparisons Across Native and Non -Native Ranges
    Journal of Pollination Ecology, 9(12), 2012, pp 85-95 POLLINATION ECOLOGY OF THE INVASIVE TREE TOBACCO NICOTIANA GLAUCA : COMPARISONS ACROSS NATIVE AND NON -NATIVE RANGES Jeff Ollerton 1*, Stella Watts 1,7 , Shawn Connerty 1, Julia Lock 1, Leah Parker 1, Ian Wilson 1, Sheila K. Schueller 2, Julieta Nattero 3,8 , Andrea A. Cocucci 3, Ido Izhaki 4, Sjirk Geerts 5,9 , Anton Pauw 5 and Jane C. Stout 6 1Landscape and Biodiversity Research Group, School of Science and Technology, University of Northampton, Avenue Campus, Northampton, NN2 6JD, UK. 2School of Natural Resources and Environment, University of Michigan 440 Church Street Ann Arbor, MI 48109-1115, USA. 3Instituto Multidisciplinario de Biología Vegetal (IMBIV). Conicet-Universidad Nacional de Córdoba. Casilla de Correo 495. 5000, Córdoba. Argentina. 4Department of Evolutionary and Environmental Biology, Faculty of Science and Science Education, University of Haifa, 31905 Haifa, Israel. 5Dept of Botany and Zoology, Stellenbosch Univ., Private Bag X1, Matieland, 7602, South Africa. 6Trinity Centre for Biodiversity Research and School of Natural Sciences, Trinity College Dublin, Dublin 2, Republic of Ireland. 7Current address: Laboratory of Pollination Ecology, Institute of Evolution, University of Haifa, Haifa 31905, Israel. 8Current address: Cátedra de Introducción a la Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. X5000JJC, Córdoba, Argentina. 9Current Address: South African National Biodiversity Institute, Kirstenbosch National Botanical Gardens, Claremont, South Africa Abstract —Interactions with pollinators are thought to play a significant role in determining whether plant species become invasive, and ecologically generalised species are predicted to be more likely to invade than more specialised species.
    [Show full text]
  • Chemical Constituents in Leaves and Aroma Products of Nicotiana Rustica L
    International Journal of Food Studies IJFS April 2020 Volume 9 pages 146{159 Chemical Constituents in Leaves and Aroma Products of Nicotiana rustica L. Tobacco Venelina T. Popovaa*, Tanya A. Ivanovaa, Albena S. Stoyanovaa, Violeta V. Nikolovab, Margarita H. Dochevab, Tzveta H. Hristevab, Stanka T. Damyanovac, and Nikolay P. Nikolovb a Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies, 26 Maritza blvd., 4002 Plovdiv, Bulgaria b Tobacco and Tobacco Products Institute, 4108 Markovo, Bulgaria c Angel Kanchev University of Russe, Razgrad Branch, 3 Aprilsko vastanie blvd., 7200 Razgrad, Bulgaria *Corresponding author [email protected] Tel: +359-32-603-666 Fax: +359-32-644-102 Received: 4 May 2018; Published online: 18 April 2020 Abstract Nicotiana rustica L. (Aztec tobacco) is the only Nicotiana species, except common tobacco (N. tabacum L.), which is cultivated for tobacco products. The leaves of N. rustica, however, accumulate various specialized metabolites of potential interest. Therefore, the objective of this study was to evalu- ate certain classes of metabolites (by HPLC and GC-MS) in the leaves, the essential oil (EO), concrete and resinoid of N. rustica. Three pentacyclic triterpenes were identified in the leaves (by HPLC): betulin (252.78 µg g−1), betulinic (182.53 µg g−1) and oleanolic (69.44 µg g−1) acids. The dominant free phen- olic acids in the leaves (by HPLC) were rosmarinic (4257.38 µg g−1) and chlorogenic (1714.40 µg g−1), and conjugated forms of vanillic (3445.71 µg g−1), sinapic (1963.11 µg g−1) and syringic (1784.96 µg g−1).
    [Show full text]
  • PLANTS THAT HELP KILL INSECTS 767 As 8 Percent of Anabasinc in Hybrids of Dichloridc, and Then Removing the Sol- A^ Glauca and A', Rustica
    Plants That Help Kill Nicotine is the chief insecticidal principle in tobacco. It belongs to the class of compounds known as alkaloids, Insects which are basic, nitrogen-containing plant products having a marked physi- ological action. Other related alkaloids, Ruth L. Bushey notably nornicotine, also may be pres- ent in tobacco. Nicotine derives its name from Nico- tiajia, the genus of plants to which to- In June 1943, DDT was revealed to bacco belongs. The genus was named the American public. Floods of pub- for Jean Nicot, who introduced tobac- licity told of its amazing powers as an co into France in 1560. Chemically, insect killer. Announcements of other nicotine is 1 -methyl-2- ( 3-pyridyl) pyr- synthetic insecticides have followed in rolidine. Most preparations that con- rapid succession. It is not surprising tain it have a strong tobaccolike smell. that many who read those accounts as- Its boiling point is 477° F., yet it evap- sumed that insecticides of natural oi'ates rather rapidly at ordinary room origin, derived from plants, arc out- or outdoor summer temperatures. It is moded and of little importance now- peculiar in that between 140° and adays. The assumption is far from true. 248° F. it is soluble in water in all pro- As each new synthetic ins(x:ticide is portions, but above and below those studied and the ramifications of its temperatures its solubility is limited. It toxicity to man and animals explored, is highly toxic to warm-blooded ani- the problems of removing its residues mals and to most insects, but because of from foods encountered, and its pos- its volatility it disappears rapidly from sible injurious effects on plants exam- products that have been sprayed or ined, we appreciate the value of insecti- dusted with it.
    [Show full text]
  • Study on Analytical Characteristics of Nicotiana Tabacum L., Cv. Solaris
    www.nature.com/scientificreports OPEN Study on analytical characteristics of Nicotiana tabacum L., cv. Solaris biomass for potential uses in nutrition and biomethane production Antonella Fatica 1*, Francesco Di Lucia2, Stefano Marino1, Arturo Alvino1, Massimo Zuin3, Hayo De Feijter2, Boudewijn Brandt2, Sergio Tommasini2, Francesco Fantuz4 & Elisabetta Salimei 1 In order to limit the smoking tobacco sector crisis, a new non-GMO Nicotiana tabacum L. cv. Solaris was proposed as oil seed crop. Residues of oil extraction were successfully used in swine nutrition. The aim of this study was to explore the full potential of this innovative tobacco cultivar as multitasking feedstock non interfering with the food chain. In the triennium 2016–2018, samples from whole plant, inforescence and stem-leaf biomass were collected in three experimental sites and analysed for chemical constituents, including fbre fractions, sugars and starch, macro-minerals and total alkaloids. The KOH soluble protein content and the amino-acid profle were also investigated as well as the biochemical methane potential. All the analyses were performed according to ofcial methods and results were compared with values reported in literature for conventional lignocellulosic crops and agro-industry residues. The average protein content, ranging from 16.01 to 18.98 g 100 g−1 dry matter respectively for stem-leaf and whole plant samples, and their amino-acid profle are consistent with values reported for standard grass plant. These fndings suggest the potential use of cv. Solaris in industrial food formulations. Moreover, considering the average content of both fbre available for fermentations (72.6% of Neutral Detergent Fibre) and oils and fats (7.92 g 100 g−1 dry matter), the whole plant biomass of cv.
    [Show full text]
  • A Família Solanaceae Juss. No Município De Vitória Da Conquista
    Paubrasilia Artigo Original doi: 10.33447/paubrasilia.2021.e0049 2021;4:e0049 A família Solanaceae Juss. no município de Vitória da Conquista, Bahia, Brasil The family Solanaceae Juss. in the municipality of Vitória da Conquista, Bahia, Brazil Jerlane Nascimento Moura1 & Claudenir Simões Caires 1 1. Universidade Estadual do Sudoeste Resumo da Bahia, Departamento de Ciências Naturais, Vitória da Conquista, Bahia, Brasil Solanaceae é uma das maiores famílias de plantas vasculares, com 100 gêneros e ca. de 2.500 espécies, com distribuição subcosmopolita e maior diversidade na região Neotropical. Este trabalho realizou um levantamento florístico das espécies de Palavras-chave Solanales. Taxonomia. Florística. Solanaceae no município de Vitória da Conquista, Bahia, em área ecotonal entre Nordeste. Caatinga e Mata Atlântica. Foram realizadas coletas semanais de agosto/2019 a março/2020, totalizando 30 espécimes, depositados nos herbários HUESBVC e HVC. Keywords Solanales. Taxonomy. Floristics. Foram registradas 19 espécies, distribuídas em nove gêneros: Brunfelsia (2 spp.), Northeast. Capsicum (1 sp.), Cestrum (1 sp.), Datura (1 sp.), Iochroma (1 sp.) Nicandra (1 sp.), Nicotiana (1 sp.), Physalis (1 sp.) e Solanum (10 spp.). Dentre as espécies coletadas, cinco são endêmicas para o Brasil e 11 foram novos registros para o município. Nossos resultados demonstram que Solanaceae é uma família de elevada riqueza de espécies no município, contribuindo para o conhecimento da flora local. Abstract Solanaceae is one of the largest families of vascular plants, with 100 genera and ca. 2,500 species, with subcosmopolitan distribution and greater diversity in the Neotropical region. This work carried out a floristic survey of Solanaceae species in the municipality of Vitória da Conquista, Bahia, in an ecotonal area between Caatinga and Atlantic Forest.
    [Show full text]
  • El Polen De Especies Del Género Nicotiana (Solanaceae)
    Bol. Soc. Argent. Bot. 51 (1) 2016 K. Collao-Alvarado et al. - Polen de especies de NicotianaISSN 0373-580 en Chile X Bol. Soc. Argent. Bot. 51 (1): 135-152. 2016 El polen de especies del género Nicotiana (Solanaceae) presentes en Chile: Evaluación de la utilidad de sus caracteres morfológicos como biomarcadores en estudios arqueológicos KATHY COLLAO-ALVARADO¹, MARÍA TERESA PLANELLA2 y HERMANN M. NIEMEYER¹ Summary: Pollen of species from the genus Nicotiana (Solanaceae) present in Chile: Evaluation of the usefulness of morphological characters as biomarkers in archaeological studies. The alkaloid nicotine is taken up when Nicotiana plants are smoked, chewed or snuffed. The use of tobacco has been detected by the presence of nicotine in the residues of archaeological pipes and also in mummified human hair; however, the lack of species-specific markers has made it impossible to determine theNicotiana species involved. Pollen has been used as a reliable biomarker for identifications at the family or genus levels. We report herein the study of pollen from 10 native species of Nicotiana from Chile, including the wild N. glauca and the cultivated N. tabacum, using both optical and scanning electron microscopy. The results show minimal interspecific qualitative differences. Although the mean values of ratio polar and equatorial diameters in an equatorial view, colpus length and exine thickness show statistically significant differences, the data variance does not allow its use in the identification of Nicotiana at the species level and therefore the usefulness of pollen as a biomarker is limited at the species level. Key words: Tobacco, nicotin, biomarker, pollen. Resumen: Diversas sociedades americanas prehispánicas han utilizado el tabaco (Nicotiana spp.) en contextos sagrados, medicinales o recreativos.
    [Show full text]
  • The Only African Wild Tobacco, Nicotiana Africana: Alkaloid Content and the Effect of Herbivory
    The Only African Wild Tobacco, Nicotiana africana: Alkaloid Content and the Effect of Herbivory Danica Marlin1, Susan W. Nicolson1, Abdullahi A. Yusuf1, Philip C. Stevenson2,3, Heino M. Heyman4, Kerstin Kru¨ ger1* 1 Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria, South Africa, 2 Royal Botanic Gardens, Kew, Surrey, United Kingdom, 3 Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom, 4 Department of Plant Sciences, University of Pretoria, Private Bag X20, Pretoria, South Africa Abstract Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 mg/g dry mass) followed by anabasine (4.9 mg/g) and nicotine (0.6 mg/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae.
    [Show full text]
  • Regulation of the Government of Indonesia Number 109 of 2012 Concerning
    Unofficial Translation PRESIDENT REPUBLIC OF INDONESIA REGULATION OF THE GOVERNMENT OF INDONESIA NUMBER 109 OF 2012 CONCERNING CONTROL OF MATERIALS THAT CONTAIN ADDICTIVE SUBSTANCES IN TOBACCO PRODUCTS IN THE INTERESTS OF HEALTH WITH THE BLESSINGS OF GOD ALMIGHTY THE PRESIDENT OF THE REPUBLIC OF INDONESIA, Considering : that to implement the provisions of Article 116 of Law Number 36 of 2009 concerning Health, it is necessary to issue a Regulation of the Government concerning Control of Materials that Contain Addictive Substances in Tobacco Products in the Interests of Health; Bearing in mind : 1. Article 5 clause (2) of the 1945 Constitution of the Republic of Indonesia; 2. Law Number 36 of 2009 concerning Health (State Gazette of the Republic of Indonesia of 2009 Number 144, Supplement to the State Gazette of the Republic of Indonesia Number 5063); HAS DECIDED: To issue: REGULATION OF THE GOVERNMENT CONCERNING CONTROL OF MATERIALS THAT CONTAIN ADDICTIVE SUBSTANCES IN TOBACCO PRODUCTS IN THE INTERESTS OF HEALTH. 1 Unofficial Translation CHAPTER I GENERAL PROVISIONS Article 1 In this Regulation of the Government: 1. Addictive Substance means a substance that causes addiction or dependence which endangers health, marked by behavioral and cognitive changes and physiological phenomena, a strong desire to consume the substance, difficulty in controlling its use, prioritizing the use of the substance over other activities, increased tolerance, and that can cause withdrawal symptoms. 2. Tobacco Product means a product that is wholly or partly made of tobacco leaf as its raw material that is processed for use by burning, sucking, and inhaling or chewing. 3. Smokeable means a Tobacco Product intended to be burned and sucked and/or its smoke inhaled, including kretek [clove] cigarettes, white cigarettes, cigars or other forms produced from the nicotiana tabacum, nicotiana rustica, and other species of plants or their synthesized equivalents which contain nicotine and tar, with or without additives.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]