Biomechanics of Terrestrial Locomotion: Asymmetric Octopedal and Quadrupedal Gaits

Total Page:16

File Type:pdf, Size:1020Kb

Biomechanics of Terrestrial Locomotion: Asymmetric Octopedal and Quadrupedal Gaits SCUOLA DI DOTTORATO IN SCIENZE MORFOLOGICHE, FISIOLOGICHE E DELLO SPORT DIPARTIMENTO DI FISIOLOGIA UMANA DOTTORATO DI RICERCA IN FISIOLOGIA CICLO XXIV Biomechanics of terrestrial locomotion: asymmetric octopedal and quadrupedal gaits SETTORE SCIENTIFICO DISCIPLINARE BIO-09 PhD Student: Dott. Carlo M. Biancardi Matricola: R08161 Tutor: Prof. Alberto E. Minetti Coordinatore: Prof. Paolo Cavallari Anno Accademico 2010-2011 Table of Contents Abstract...................................................................................................... 5 Introduction ...............................................................................................8 Foreword.................................................................................................................. 8 Objectives .................................................................................................................8 Thesis structure........................................................................................................ 8 Terrestrial legged locomotion ..................................................................9 Introduction .............................................................................................................9 Energetics and mechanics of terrestrial legged locomotion ................................10 Limbs mechanics ..........................................................................................................10 Size differences .............................................................................................................14 Speed............................................................................................................................ 17 Gaits .............................................................................................................................18 Biomechanics of the spine............................................................................................ 23 Forces and energy........................................................................................................ 24 Instruments of investigation .................................................................................25 Evolution of terrestrial locomotion....................................................................... 28 References ..............................................................................................................31 Biomechanics of octopedal locomotion .................................................39 Introduction ...........................................................................................................40 Methods ..................................................................................................................41 Results ....................................................................................................................46 Discussion ..............................................................................................................51 References ..............................................................................................................60 Biomechanical determinants of transverse and rotary gallop in cursorial mammals .................................................................................65 Introduction ...........................................................................................................66 Materials and methods ..........................................................................................67 Results ....................................................................................................................74 2 Discussion ..............................................................................................................92 References ............................................................................................................101 Conclusions............................................................................................ 107 Final remarks....................................................................................................... 107 Perspectives ..........................................................................................................109 References ............................................................................................................111 Acknowledgements ...............................................................................113 3 “If you really want something, and really work hard, and take advantage of opportunities, and never give up, you will find a way” Jane Goodall “Quadrupedante putrem sonitu quatit ungula campum” Publius Vergilius Maro - Aeneis “Ci sono adolescenze che si innescano a novanta anni” Alda Merini - La vita facile 4 Abstract The main goal of this dissertation is to investigate the biomechanics of octopedal and quadrupedal locomotion in terrestrial animals, common determinants, advantages and limits, in particular of the asymmetric gaits. Two different approach have been chosen: i) a kinematic study of a terrestrial spider, the Brazilian giant tawny-red tarantula, an octopods predator species that hide in burrows, ambush and rapidly bounce the prey with a sprint, and ii) a comparative study of the two types of gallop of the cursorial terrestrial mammals. Eight-legs locomotion has been one of the first travelling modes on land, and spiders display one of the most versatile locomotor repertoire: they move at slow and fast speed, forward-backward-sideways, they climb and even jump, both on firm terrain and from the water surface. Spiders can walk in the two senses at the same speed, just by reversing their diagonal footfall scheme. They turn on the spot like an armoured tank, with opposite direction of the two treads of limbs. Also, the high number of limbs ensures an increased locomotor versatility on uneven and rough terrains, particularly in the likely unawareness of each endpoint location on the ground. The aims of this first part were: i) identifying the principal octopod gaits, ii) calculating the mechanical external and internal work at the different speeds/gaits, iii) assessing any tendency to exchange potential and kinetic energy of the body centre of mass, as in pendulum-like gaits, and iv) evaluating how spiders’ mechanical performance and variables allometrically compare to other species. Another question was: can the octopod gaits be considered as different combinations of two quadrupeds’ locomotion? In this investigation we used inverse dynamics to study the locomotor performance of a terrestrial spider. 9 reflective markers have been placed on the tip of the 8 legs and on the cephalothorax, and their position recorded at a frequency of 50 Hz and digitized through a motion analysis system. Data have been processed using LabView (National Instruments, USA) specific development. The 3D trajectories of the body centre of mass in local coordinates, as during locomotion on a treadmill, have been calculated by applying a mathematical method based on the Fourier analysis of the three coordinates of the centre of mass (COM) over time. Two main gaits, a slow and a fast one characterised by distinctive 3D trajectories of COM, have been identified. 5 The calculated total mechanical work (= external+internal) and metabolic data from the literature allowed estimating the locomotion efficiency of this species, which resulted less than 4%. Octopod gait pattern due to alternating limb support, which generates asymmetrical COM trajectories and a small but consistent energy transfer between potential and kinetic energies of COM, can be considered as formed by two subsequent quadrupeds, where the first two pairs of feet (1 and 2) are the fore and the hind feet of the first quadruped, and the third and fourth pairs are the fore and hind feet of the second quadruped. The two quadrupeds are almost in phase, being the first and third pairs synchronised in their movements as well as the second and fourth. Octopedal locomotion exhibits two main gaits, neither of which incorporating a flight phase, characterised by a consistent limb pattern and a small but remarkable energy recovery index. Gallop has been chosen as model of asymmetric cursorial locomotion in quadrupeds. In transverse gallop the placement of the second hind foot is followed by that of the contralateral forefoot, while in rotary gallop is followed by the ipsilateral forefoot, and the sequence of footfalls appears to rotate around the body. The question are: why two models of gallop? Are they specie-specific? Which are the biomechanical determinants of the choice between transverse and rotary gallop? Aims of this part of the research were: i) assess, when possible, the specie-specificity of the gallop type in different cursorial mammal species, ii) phylogenetically classify the investigated species, iii) Made a comparative analysis based on morphological, physiological and environmental differences. 351 ilmed sequences have been analysed to assess the gallop type of 89 investigated mammal species belonging to Carnivora, Artiodactyla and Perissodactyla orders. 23 biometrical, ecological and physiological parameters have been collected for each species both from literature data and from experimental measures. Most of the species showed only one kind of gallop: transverse (42%) or rotary (39%), while some species performed rotary gallop only at high speed (19%). In a multivariate factorial analysis the irst principal component (PC),
Recommended publications
  • Fish Locomotion: Recent Advances and New Directions
    MA07CH22-Lauder ARI 6 November 2014 13:40 Fish Locomotion: Recent Advances and New Directions George V. Lauder Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138; email: [email protected] Annu. Rev. Mar. Sci. 2015. 7:521–45 Keywords First published online as a Review in Advance on swimming, kinematics, hydrodynamics, robotics September 19, 2014 The Annual Review of Marine Science is online at Abstract marine.annualreviews.org Access provided by Harvard University on 01/07/15. For personal use only. Research on fish locomotion has expanded greatly in recent years as new This article’s doi: approaches have been brought to bear on a classical field of study. Detailed Annu. Rev. Marine. Sci. 2015.7:521-545. Downloaded from www.annualreviews.org 10.1146/annurev-marine-010814-015614 analyses of patterns of body and fin motion and the effects of these move- Copyright c 2015 by Annual Reviews. ments on water flow patterns have helped scientists understand the causes All rights reserved and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swim- ming fish in the oceans and the vorticity present in fin and body wakes sup- port the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.
    [Show full text]
  • Pyramid of Training – Rhythm
    Chapter 9 PYRAMID OF TRaining – RHYTHM Energy and Tempo Rhythm is the term used for the characteristic sequence of footfalls and timing of a pure walk, pure trot, and pure canter. The rhythm should be expressed with energy and in a suitable and consistent tempo, with the horse remaining in the bal- ance and self-carriage appropriate to its individual conformation and level of training. “The object of correct dressage is not to teach the horse to perform the exercises of the High School in the collected gaits at the expense of the elementary gaits. The classical school, on the contrary, demands that as well as teaching the difficult exercises, the natural gaits of the horse should not only be preserved but should also be improved by the fact that the horse has been strengthened by gymnastics. Therefore, if during the course of training the natural paces are not improved, it would be proof that the training was incorrect.” [The Complete Training of Horse and Rider, p 161] One important function of basic training is to preserve and refine the purity and regularity of the natural gaits. It is there- fore essential that the trainer knows exactly how the horse moves in each of the three basic gaits, because only then will he be in a position to take the appropriate action to correct or improve them. When establishing rhythm, “the horse should be ridden in the basic pace best suited to it.” [Principles of Riding, p. 160] The rhythm must be maintained in each of the basic gaits, and in each form of the gait, i.e.
    [Show full text]
  • Health, the Global Ocean and Marine Resources 1  Marine Pollution Can Poison Us
    HEALTH, THE GLOBAL OCEAN AND MARINE POLICY BRIEF RESOURCES The global ocean (interconnected system of Earth’s oceanic waters) plays Key messages a central and positive role in human life, including through the climate system. Damage to the ocean is far-reaching in its effects, in terms of Taking action on one SDG productivity, species diversity and resilience. Global ocean activities are gets results in others: health putting populations at risk (1). runs through every SDG. The “health” of the global ocean is both affected by and a threat to human activities. People have lived in harmony with the ocean for generations and ENSURE HEALTHY have relied on its bounty. Fish and seafood from a healthy ocean LIVES AND PROMOTE contribute to our health. The best-documented and direct benefits WELL-BEING FOR ALL AT ALL AGES. to human health and well-being from the ocean are linked to the consumption of fish and seafood, rich in omega-3 fatty acids, and non-terrestrial animal proteins. Indirect benefits to health also CONSERVE AND SUSTAINABLY USE arise from marine-derived pharmaceuticals and vitamins. THE OCEANS, SEAS AND MARINE RESOURCES FOR SUSTAINABLE Society benefits from the seas. The coastal waters provide DEVELOPMENT. employment, commerce, cultural, social interaction and artistic activities. They offer a variety of social, economic, health, cultural and environmental benefits to human livelihoods (2). The global ocean helps people to feel good. There is increasing recognition of the value of coastal waters in promoting better mental health through decreased vulnerability to depression. Better physical and mental health is also gained through exercise, such as swimming, walking and sailing.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • Energetics of Locomotion by the Australian Water Rat (Hydromys Chrysogaster): a Comparison of Swimming and Running in a Semi-Aquatic Mammal
    The Journal of Experimental Biology 202, 353–363 (1999) 353 Printed in Great Britain © The Company of Biologists Limited 1999 JEB1742 ENERGETICS OF LOCOMOTION BY THE AUSTRALIAN WATER RAT (HYDROMYS CHRYSOGASTER): A COMPARISON OF SWIMMING AND RUNNING IN A SEMI-AQUATIC MAMMAL F. E. FISH1,* AND R. V. BAUDINETTE2 1Department of Biology, West Chester University, West Chester, PA 19383, USA and 2Department of Zoology, University of Adelaide, Adelaide 5005, Australia *e-mail: [email protected] Accepted 24 November 1998; published on WWW 21 January 1999 Summary Semi-aquatic mammals occupy a precarious ‘hollows’ for wave drag experienced by bodies moving at evolutionary position, having to function in both aquatic the water surface. Metabolic rate increased linearly during and terrestrial environments without specializing in running. Over equivalent velocities, the metabolic rate for locomotor performance in either environment. To examine running was 13–40 % greater than for swimming. The possible energetic constraints on semi-aquatic mammals, minimum cost of transport for swimming (2.61 J N−1 m−1) we compared rates of oxygen consumption for the was equivalent to values for other semi-aquatic mammals. Australian water rat (Hydromys chrysogaster) using The lowest cost for running (2.08 J N−1 m−1) was 20 % lower different locomotor behaviors: swimming and running. than for swimming. When compared with specialists at the Aquatic locomotion was investigated as animals swam in a extremes of the terrestrial–aquatic continuum, the water flume at several speeds, whereas water rats were run energetic costs of locomoting either in water or on land on a treadmill to measure metabolic effort during were high for the semi-aquatic Hydromys chrysogaster.
    [Show full text]
  • Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together.
    [Show full text]
  • Alaska Birds & Wildlife
    Alaska Birds & Wildlife Pribilof Islands - 25th to 27th May 2016 (4 days) Nome - 28th May to 2nd June 2016 (5 days) Barrow - 2nd to 4th June 2016 (3 days) Denali & Kenai Peninsula - 5th to 13th June 2016 (9 days) Scenic Alaska by Sid Padgaonkar Trip Leader(s): Forrest Rowland and Forrest Davis RBT Alaska – Trip Report 2016 2 Top Ten Birds of the Tour: 1. Smith’s Longspur 2. Spectacled Eider 3. Bluethroat 4. Gyrfalcon 5. White-tailed Ptarmigan 6. Snowy Owl 7. Ivory Gull 8. Bristle-thighed Curlew 9. Arctic Warbler 10. Red Phalarope It would be very difficult to accurately describe a tour around Alaska - without drowning the narrative in superlatives to the point of nuisance. Not only is it an inconceivably huge area to describe, but the habitats and landscapes, though far north and less biodiverse than the tropics, are completely unique from one portion of the tour to the next. Though I will do my best, I will fail to encapsulate what it’s like to, for example, watch a coastal glacier calving into the Pacific, while being observed by Harbour Seals and on-looking Murrelets. I can’t accurately describe the sense of wilderness felt looking across the vast glacial valleys and tundra mountains of Nome, with Long- tailed Jaegers hovering overhead, a Rock Ptarmigan incubating eggs near our feet, and Muskoxen staring at us strangers to these arctic expanses. Finally, there is Denali: squinting across jagged snowy ridges that tower above 10,000 feet, mere dwarfs beneath Denali standing 20,300 feet high, making everything else in view seem small, even toy-like, by comparison.
    [Show full text]
  • Change of Canter Lead Through Trot on the Diagonal
    Chapter 19 CHANGES OF LEAD AND FLYING CHANGE OF LEAD Definition Change of Lead Through Trot “This is a change of lead where the horse is brought back to the trot and after a few trot strides, is restarted into a canter with the other leg leading.” [USEF Rule Book DR105] Simple Change of Lead “This is a change of lead where the horse is brought back immediately into walk and, after a few steps, is restarted im- mediately into a canter on the opposite lead, with no steps at the trot.” [USEF Rule Book DR105] Gymnastic Purpose The gymnastic purposes of changes of lead are to help develop, as well as test, the horse’s collection, coordination and balance, and to improve the quality of the canter. Qualities Desired The qualities desired in ‘Changes of Lead through Trot,’ are that the horse maintains his straightness, makes a balanced transition to two to three steps of trot, and strikes off clearly to the new canter lead. The qualities desired in a ‘Simple Change of lead’ are basically the same as the change through the trot except that the transition from canter should go directly to two to three walk steps, and to the new canter lead with no trot steps. The transition to walk must be immediate without any intervening vaguely trot-like strides, but also smooth. The steps must be determined and the four footfalls of the gait must be distinct. The transition to the new canter must also be im- mediate. The horse must canter straight and must constantly remain on the bit.” [Dressage, A Guidebook for the Road to Success, p 103] Aids The aids for changes of lead are the same as the aids for the canter.
    [Show full text]
  • Convert That Trot by Lee Ziegler
    trot Page 1 of 5 Convert That Trot by Lee Ziegler It doesn’t happen very often, but sometimes a gaited horse isn’t as ‘gaited’ as he should be. Some of them just seem to prefer to hard trot most or even all of the time. These horses are not as difficult to deal with as their pacing cousins, but they can be frustrating, especially for riders who have bought gaited horses in the hopes of never having to deal with a hard trot again. Horses trot for the same reasons they do any other gait – their conformation, body position, muscle use and neurological “wiring” incline them to do the gait. For a gaited bred horse that trots, in addition to these factors, there may also be a lack of rhythm that causes the horse to miss out on the special harmony that should produce his easy gait. Conformation that inclines to a trot: Horses with functional backs that are shorter than the average for their breed will often trot. Horses with relatively short lumbar spans (the vertebrae between the last rib and the lumbo-sacral junction) will also be more inclined to trot. Low headed horses that stretch easily forward will also be more inclined to trot than higher headed types. Horses with hind and front legs that are about the same length, elbow to ground and stifle to ground, may be inclined to trot. Body/muscle use that inclines to a trot: Horses with slightly rounded backs, and stretched toplines will be inclined to trot. Horses that easily tip their pelvises downward and flex downward from the lumbo-sacral junction will be inclined to trot.
    [Show full text]
  • Professor Robert Mcneill Alexander, CBE, FRS. Publications
    Professor Robert McNeill Alexander, CBE, FRS. Publications Books: 1967 Functional Design in Fishes Hutchinson, London. second and third editions 1970, 1974 1968 Animal Mechanics Sidgwick & Jackson, London. Russian translation 1970 second edition 1983. Blackwell, Oxford. Identified as a "Citation Classic" in Current Contents 20 (16), 1989 (various editions) 1971 Size and Shape Edward Arnold, London. 1975 The Chordates Cambridge University Press, London. second edition 1981. Selected for the British National Corpus, 1993 1975 Biomechanics Chapman & Hall, London. Japanese translation 1976 Spanish translation 1982 1977 (R.McN. Alexander & G. Goldspink, editors) Mechanics and Energetics of Animal Locomotion Chapman & Hall, London. 1979 The Invertebrates Cambridge University Press, Cambridge. Italian translation 1983 1982 Locomotion of Animals Blackie, Glasgow. 1982 Optima for Animals Arnold, London. revised edition 1996, Princeton University Press 1986 (editor) The Collins Encyclopaedia of Animal Biology Collins, London. Swedish translation 1987 Japanese translation 1987 1986 P. Slater & R.McN. Alexander (editors) The Encyclopaedia of Animal Biology and Behaviour Grolier International. Italian translation 1989 1988 Elastic Mechanisms in Animal Movement Cambridge University Press, Cambridge. 1989 Dynamics of Dinosaurs and other Extinct Giants Columbia University Press, New York. Japanese translation 1992 1990 Animals Cambridge University Press 1992 The Human Machine Natural History Museum Publications and Columbia University Press. 1992 (editor) The Mechanics of Animal Locomotion Springer-Verlag. 1992 Exploring Biomechanics : Animals in Motion Scientific American Library. Japanese translation 1992. 1994 Bones : The Unity of Form and Function Macmillan, New York and Weidenfeld & Nicholson, London. 1999 Energy for Animal Life Oxford University Press, Oxford. 2003 Principles of Animal Locomotion Princeton University Press 2005 Human Bones Pi Press, New York.
    [Show full text]
  • Running Birds from Quail to Ostrich Prioritise Leg Safety and Economy
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 3786-3796 doi:10.1242/jeb.102640 RESEARCH ARTICLE Don’t break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain Aleksandra V. Birn-Jeffery1,*,‡, Christian M. Hubicki2,‡, Yvonne Blum1, Daniel Renjewski2, Jonathan W. Hurst2 and Monica A. Daley1,§ ABSTRACT Daley, 2012; Dial, 2003; Jindrich et al., 2007; Rubenson et al., Cursorial ground birds are paragons of bipedal running that span a 2004). These athletes span the broadest body mass range among 500-fold mass range from quail to ostrich. Here we investigate the extant bipeds, over 500-fold from quail to ostrich. Birds thus provide task-level control priorities of cursorial birds by analysing how they a natural animal model for understanding the functional demands of negotiate single-step obstacles that create a conflict between body striding bipedalism and how these demands change with body size stability (attenuating deviations in body motion) and consistent leg (Gatesy and Biewener, 1991; Hutchinson and Garcia, 2002; Roberts force–length dynamics (for economy and leg safety). We also test the et al., 1998a). hypothesis that control priorities shift between body stability and leg Here, we ask two questions fundamental to locomotor behaviour: safety with increasing body size, reflecting use of active control to (1) what are the task-level leg control priorities of running animals; overcome size-related challenges. Weight-support demands lead to and (2) how do these priorities vary with terrain and body size? a shift towards straighter legs and stiffer steady gait with increasing Running animals must control their legs to balance numerous, body size, but it remains unknown whether non-steady locomotor sometimes conflicting, task-level demands including minimising priorities diverge with size.
    [Show full text]
  • Three Gray Classics on the Biomechanics of Animal Movement
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Three Gray Classics on the Biomechanics of Animal Movement The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lauder, G. V., Eric Tytell. 2004. Three Gray Classics on the Biomechanics of Animal Movement. Journal of Experimental Biology 207, no. 10: 1597–1599. doi:10.1242/jeb.00921. Published Version doi:10.1242/jeb.00921 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30510313 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA JEB Classics 1597 THREE GRAY CLASSICS locomotor kinematics, muscle dynamics, JEB Classics is an occasional ON THE BIOMECHANICS and computational fluid dynamic column, featuring historic analyses of animals moving through publications from The Journal of OF ANIMAL MOVEMENT water. Virtually every recent textbook in Experimental Biology. These the field either reproduces one of Gray’s articles, written by modern experts figures directly or includes illustrations in the field, discuss each classic that derive their inspiration from his paper’s impact on the field of figures (e.g. Alexander, 2003; Biewener, biology and their own work. A 2003). PDF of the original paper accompanies each article, and can be found on the journal’s In his 1933a paper, Gray aimed to website as supplemental data.
    [Show full text]