Virkon S Virucidal Efficacy

Total Page:16

File Type:pdf, Size:1020Kb

Virkon S Virucidal Efficacy Virkon S Virucidal Efficacy Group Genera Organism Ref. Strain Country Dilution DNA /RNA Disease Organism No Adenoviridae Aviadenovirus Adenovirus 51 Italy 1:100 dsDNA Aviadenovirus Adenovirus 89 France 1:100 dsDNA Aviadenovirus Adenovirus 12 Strain EDS England 1:100 dsDNA egg drop poultry ana1 127 syndrome Aviadenovirus Adenovirus 71 ATCC VR-921 USA 1:100 dsDNA egg drop poultry ana2 (Duck) syndrome Mastadenovirus ICH virus 49 Purdue strain USA 1:100 dsDNA ICH dog Mastadenovirus Bovine 143 ATCC VR-640 USA 1:100 dsDNA cattle adenovirus type 4 Mastadenovirus ICH virus 171 ATCC VR800 USA 1:100 dsDNA ICH dog Arenaviridae Arenavirus Lassa fever 19 England 1:200 ssRNA lassa fever man virus Astroviridae Astrovirus PEMS 184 not specified USA 1:67 ssRNA Poult turkey associated Enteritis astrovirus Mortality Syndrome Baculoviridae Baculovirus White spotted 181 White spotted Thailand 9ppm dsDNA White Spot Prawn / red baculovirus red virus Syndrome shrimp Birnaviridae Birnavirus IBD virus 5 Strain 52/70 England 1:250 dsRNA Gumboro poultry IBD virus 44 Strain DV86 England 1:250 dsRNA Gumboro poultry IBD virus 111 USA 1:100 dsRNA Gumboro poultry IBD virus 154 USA 1:100 dsRNA Gumboro IBD virus 177 Canada 1:100 dsRNA Gumboro Bunyaviridae Phlebovirus Rift valley fever 18 England 1:400 ssRNA rift valley cattle, virus fever man Phlebovirus Rift valley fever 82 Ar 55171 Nigeria 1:500 ssRNA rift valley sheep, virus fever goats Caliciviridae Calicivirus Feline calici 135 England 1:50 ssRNA resp. cat virus disease complex Feline calici 138 ATCC VR782 USA 1:100 ssRNA resp. cat virus disease complex Circoviridae Circovirus Chicken 134 Cux 1 England 1:250 ssDNA chicken poultry anaemia virus anaemia Circovirus Porcine 185 ISU 31 USA 1:100 ssDNA Post- pig circovirus type weaning 2 multi systemic wasting syndrome (PMWS) Circovirus Porcine 200 PCV2 USA 1:200 ssDNA Post- Pig circovirus type weaning 2 multi systemic wasting syndrome (PMWS) Coronaviridae Coronavirus Infectious 131 AOAC USA 1:100 ssRNA infectious poultry Bronchitis Virus standard bronchitis Coronavirus TGE Virus 8 Strain England 1:450 ssRNA trans. pig FS216/63 gastro- enteritis Coronavirus TGE Virus 71 ATCC VR-763 USA 1:100 ssRNA trans. pig gastro- enteritis Coronavirus Feline 172 ATCC USA 1:100 ssRNA Infectious cat infectious VR2202 Peritonitis Peritonitis Coronavirus Canine 175 ATCC VR-809 USA 1:100 ssRNA Coronaviral dog Coronavirus enteritis Hepadnaviridae Hepadanavirus Hepatitis B 14 England 1:50 dsDNA hepatitis man virus Hepadanavirus Hepatitis B 43 Thailand 1:100 dsDNA hepatitis man virus Hepadanavirus Hepatitis B 99 Italy 1:100 dsDNA hepatitis man virus Hepadanavirus Hepatitis B 179 UK 1:100 dsDNA hepatitis man virus Hepadanavirus Hepatitis C 180 UK 1:100 dsDNA hepatitis man virus Herpesviridae alpha Equid herpes 112 Type 3 (alpha) USA 1:100 dsDNA coital horse virus 3 exanthema alpha Equid herpes 123 Type 1 (alpha) USA 1:100 dsDNA viral horse virus 1 pneumoniti s alpha Herpes Simplex 79 Type 1 Japan 1:200 dsDNA coldsores man Virus 1 alpha Bovid 9 Oxford strain England 1:600 dsDNA bovine cattle herpesvirus 1 rhinotrachei tis alpha Bovid 71 ATCC VR-188 USA 1:100 dsDNA mammillitis cattle herpesvirus 2 alpha Suid herpes 34 N Zealand 1:200 dsDNA aujeskys pig virus 1 disease alpha Suid herpes 71 ATCC VR-135 USA 1:100 dsDNA aujeskys pig virus 2 disease alpha Felid herpes 137 ATCC VR636 USA 1:100 dsDNA feline cat virus 1 rhinotrachei tis gamma Gallid herpes 69 England 1:200 dsDNA fowl poultry virus 1 paralysis (Mareks) gamma Gallid herpes 15 Strain England 1:200 dsDNA turkey turkey virus 3 CVL14/1CEF( rhinotrachei 4) tis gamma Gallid herpes 156 USA 1:100 dsDNA avian fowl virus 4 influenza Herpes virus 51 Italy 1:100 dsDNA Iridoviridae Iridovirus ASF virus 183 20/1 England 1:800 ssDNA African pig swine fever Orthomyxoviridae type A Avian influenza 11 England 1:320 ssRNA fowl plague poultry virus type A Avian influenza 155 USA 1:100 ssRNA fowl plague poultry virus type A Equine 128 ATCC VR- USA 1:100 ssRNA equine horse influenza virus 2070 influenza type A Avian AVIH5 H5N1 China 1:800 ssRNA fowl plague poultry Influzenza N1 Infectious 187 Canada 1:200 Infectious Salmon Salmon Anaemia Virus Anaemia (ISAV) Infectious 188 Canada 1:100 Infectious Salmon Salmon Anaemia Virus Anaemia (ISAV) type A Avian influenza THH5N H5N1 Thailand 1:500 ssRNA fowl plague poultry virus 1 Papovaviridae Pappiloma Bovine polyoma 2 England 1:100 dsDNA papillomato cattle viruses virus sis Pappiloma SV40 Virus 110 ATCC VR-305 USA 1:100 dsDNA tumours monkey viruses (simian) Paramyxoviridae Morbillivirus Measles 82 M135F13A Nigeria 1:250 ssRNA measles man (rubeola) virus Avian Avian 1 England 1:280 ssRNA Newcastle poultry paramyxovirus paramyxovirus 1 disease Avian Avian 153 USA 1:100 ssRNA Newcastle poultry paramyxovirus paramyxovirus disease 1 Avian Avian 177 Canada 1:100 ssRNA Newcastle poultry paramyxovirus paramyxovirus disease 1 Parainfluenza 71 ATCC VR-281 USA 1:100 ssRNA no serotype poultry virus Metapneumoviru Gallid herpes 71 ATCC VR-584 USA 1:100 dsDNA avirulent turkey s virus 2 C (TRT) Paromyxovirus parainfluenza 5 173 ATCC VR666 USA 1:100 ssRNA kennel dog cough Parvoviridae species specific Canine 7 England 1:50 ssDNA parvoviral dog parvovirus enteritis Canine 34 N Zealand 1:50 ssDNA parvoviral dog parvovirus enteritis Canine 49 Cornell strain USA 1:100 ssDNA parvoviral dog parvovirus enteritis Parvovirus 71 ATCC VR-742 USA 1:100 ssDNA no serotype Feline 136 ATCC VR648 USA 1:100 ssDNA feline cat panleucope parvovirus nia Canine 174 ATCC USA 1:100 ssDNA parvoviral dog parvovirus VR2017 enteritis Aleutian 178 Holland 1:50 ssDNA Aleutian mink Disease Virus disease Parvovirus Mouse 199 ATCC VR- USA 1:100 ssDNA Minute Mice Parvovirus 1346 virus of mice Picornaviridae Apthovirus Foot and mouth 1 England 1:1300 ssRNA foot & all - (see*) disease virus mouth disease Enterovirus Echo Virus 107 Type 6 Italy 1:100 ssRNA aseptic man (type 6) meningitis Enterovirus Swine 1 England 1:200 ssRNA swine pig enterovirus vesicular disease Enterovirus Polio virus 51 Italy 1:100 ssRNA poliomyeliti man s Enterovirus Polio virus 48 Type 2, strain England 1:100 ssRNA poliomyeliti man MEF-1 s Enterovirus Polio virus (type 79 Type 1 Japan 1:200 ssRNA poliomyeliti man 1) s Enterovirus Polio virus (type 82 Types 1, 2 & 3 Nigeria 1:200 ssRNA poliomyeliti man 1) s Enterovirus Polio virus (Lsc 83 Type 1 (Lsc Russia 1:50 ssRNA poliomyeliti man 2ab) 2ab) s Enterovirus Polio virus (Lsc 83 Type 1 (Lsc Russia 1:100 ssRNA poliomyeliti man 2ab) 2ab) s Enterovirus Polio virus 89 Sabin strain France 1:100 ssRNA poliomyeliti man s Enterovirus Polio virus 107 Type 1 Italy 1:100 ssRNA poliomyeliti man s Poxviridae Parapox virus Bovine 3 England 1:300 dsDNA pseudocow cattle Para- capri- and pseudocowpox pox lepropox viruses virus are ether sensitive, but otherwise all pox Orthopox virus Vaccinia variola 89 Vaccine strain France 1:100 dsDNA cowpox cattle viruses are stable and very Orthopox virus Vaccinia variola 51 Italy 1:1000 dsDNA cowpox cattle resistant to temperature change, Avipox Avian Poxvirus 177 Canada 1:100 dsDNA particularly in dry conditions. They last months and years in dust. Reoviridae Reovirus Avian reovirus 20 England 1:200 dsDNA tenosynoviti poultry s Reovirus Avian reovirus 177 Canada 1:100 dsDNA tenosynoviti poultry s Rotavirus Rotavirus 87 5A-II Russia 1:250 dsRNA rotaviral cattle enteritis Rotavirus Rotavirus 87 Human strain Russia 1:200 dsRNA rotaviral pig enteritis Rotavirus Calf rotavirus 71 ATCC VR 452 USA 1:100 dsRNA rotaviral cattle enteritis Retroviridae Lentivirus HIV 13 England 1:200 ssRNA AIDS man Lentivirus HIV 57 S. Africa 1:100 ssRNA AIDS man Lentivirus HIV 127 Type 1 USA 1:100 ssRNA AIDS man Lentivirus Maedi and 6 K184 strain England 1:1400 ssRNA wasting / sheep visna virus dyspnoea Oncovirus Avian leucosis 176 Strain J England 1:200 ssRNA Myeloid poultry virus leucosis Rhabdoviridae Lyssavirus Rabies virus 16 CBS Strain England 1:600 ssRNA viral dog/man encephalo myelitis Snakehead 80 Strain 19 Scotland 1:500 ssRNA fish rhabdovirus Snakehead 80 Ban Pako Scotland 1:500 ssRNA fish rhabdovirus strain Togaviridae Arterivirus PRRS virus 81 England 1:700 ssRNA porcine pig blue ear / PRRS Arterivirus PRRS Virus 208 NVSL Strain USA 1:500 ssRNA Porcine pig Respiratory & Reproductiv e Syndrome Flavivirus West Nile Virus 82 IBAN 4067 Nigeria 1:250 ssRNA west Nile all fever Flavivirus Yellow fever 82 IBH 43913 Nigeria 1:250 ssRNA yellow fever monkeys virus Togaviridae Pestivirus Bovine viral 71 ATCC VR 534 USA 1:100 ssRNA viral cattle diarrhoea virus diarrhoea Pestivirus Equine arteritis 10 Bucyrus strain England 1:350 ssRNA viral horse virus arteritis Pestivirus Equine arteritis 71 ATCC VR-796 USA 1:100 ssRNA viral horse virus arteritis Pestivirus Classical Swine 170 England 1:150 ssRNA classical pig Fever Virus swine fever Unclassified Infectious 66 Norway 1:100 dsRNA IPN fish pancreatic necrosis Pepper mild 162 Holland 1:20 mottle virus potex virus Potato X virus 182 Holland 1:100 ssRNA potato X potato / disease tobacco Last Update: 16th March 2006 .
Recommended publications
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Genetic Content and Evolution of Adenoviruses Andrew J
    Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
    [Show full text]
  • Human Adenovirus: Viral Pathogen with Increasing Importance
    European Journal of Microbiology and Immunology 4 (2014) 1, pp. 26–33 DOI: 10.1556/EuJMI.4.2014.1.2 HUMAN ADENOVIRUS: VIRAL PATHOGEN WITH INCREASING IMPORTANCE B. Ghebremedhin1,2,* 1 Faculty of Health, University of Witten/Herdecke, 58448 Witten, Germany 2 HELIOS Clinic Wuppertal, Institute of Medical Laboratory Diagnostics, 42283 Wuppertal, Germany Received: December 12, 2013; Accepted: December 21, 2013 The aim of this review is to describe the biology of human adenovirus (HAdV), the clinical and epidemiological characteristics of adenoviral epidemic keratoconjunctivitis and to present a practical update on its diagnosis, treatment, and prophylaxis. There are two well-defined adenoviral keratoconjunctivitis clinical syndromes: epidemic keratoconjunctivitis (EKC) and pharyngoconjuncti- val fever (PCF), which are caused by different HAdV serotypes. The exact incidence of adenoviral conjunctivitis is still poorly known. However, cases are more frequent during warmer months. The virus is endemic in the general population, and frequently causes severe disease in immunocompromised patients, especially the pediatric patients. Contagion is possible through direct con- tact or fomites, and the virus is extremely resistant to different physical and chemical agents. The clinical signs or symptoms of conjunctival infection are similar to any other conjunctivitis, with a higher incidence of pseudomembranes. In the cornea, adenovi- ral infection may lead to keratitis nummularis. Diagnosis is mainly clinical, but its etiology can be confirmed using cell cultures, antigen detection, polymerase chain reaction or immunochromatography. Multiple treatments have been tried for this disease, but none of them seem to be completely effective. Prevention is the most reliable and recommended strategy to control this contagious infection.
    [Show full text]
  • HUMAN ADENOVIRUS Credibility of Association with Recreational Water: Strongly Associated
    6 Viruses This chapter summarises the evidence for viral illnesses acquired through ingestion or inhalation of water or contact with water during water-based recreation. The organisms that will be described are: adenovirus; coxsackievirus; echovirus; hepatitis A virus; and hepatitis E virus. The following information for each organism is presented: general description, health aspects, evidence for association with recreational waters and a conclusion summarising the weight of evidence. © World Health Organization (WHO). Water Recreation and Disease. Plausibility of Associated Infections: Acute Effects, Sequelae and Mortality by Kathy Pond. Published by IWA Publishing, London, UK. ISBN: 1843390663 192 Water Recreation and Disease HUMAN ADENOVIRUS Credibility of association with recreational water: Strongly associated I Organism Pathogen Human adenovirus Taxonomy Adenoviruses belong to the family Adenoviridae. There are four genera: Mastadenovirus, Aviadenovirus, Atadenovirus and Siadenovirus. At present 51 antigenic types of human adenoviruses have been described. Human adenoviruses have been classified into six groups (A–F) on the basis of their physical, chemical and biological properties (WHO 2004). Reservoir Humans. Adenoviruses are ubiquitous in the environment where contamination by human faeces or sewage has occurred. Distribution Adenoviruses have worldwide distribution. Characteristics An important feature of the adenovirus is that it has a DNA rather than an RNA genome. Portions of this viral DNA persist in host cells after viral replication has stopped as either a circular extra chromosome or by integration into the host DNA (Hogg 2000). This persistence may be important in the pathogenesis of the known sequelae of adenoviral infection that include Swyer-James syndrome, permanent airways obstruction, bronchiectasis, bronchiolitis obliterans, and steroid-resistant asthma (Becroft 1971; Tan et al.
    [Show full text]
  • Characterization of a Novel Species of Adenovirus from Japanese Microbat
    www.nature.com/scientificreports OPEN Characterization of a novel species of adenovirus from Japanese microbat and role of CXADR Received: 23 August 2018 Accepted: 4 December 2018 as its entry factor Published: xx xx xxxx Tomoya Kobayashi1, Hiromichi Matsugo1, Junki Maruyama 2, Haruhiko Kamiki1, Ayato Takada2, Ken Maeda3, Akiko Takenaka-Uema1, Yukinobu Tohya4, Shin Murakami1 & Taisuke Horimoto1 Recently, bat adenoviruses (BtAdVs) of genus Mastadenovirus have been isolated from various bat species, some of them displaying a wide host range in cell culture. In this study, we isolated two BtAdVs from Japanese wild microbats. While one isolate was classifed as Bat mastadenovirus A, the other was phylogenetically independent of other BtAdVs. It was rather related to, but serologically diferent from, canine adenoviruses. We propose that the latter, isolated from Asian parti-colored bat, should be assigned to a novel species of Bat mastadenovirus. Both isolates replicated in various mammalian cell lines, implying their wide cell tropism. To gain insight into cell tropism of these BtAdVs, we investigated the coxsackievirus and adenovirus receptor (CXADR) for virus entry to the cells. We prepared CXADR- knockout canine kidney cells and found that replication of BtAdVs was signifcantly hampered in these cells. For confrmation, their replication in canine CXADR-addback cells was rescued to the levels with the original cells. We also found that viral replication was corrected in human or bat CXADR-transduced cells to similar levels as in canine CXADR-addback cells. These results suggest that BtAdVs were able to use several mammalian-derived CXADRs as entry factors. Adenovirus (AdV) is a non-enveloped, double-stranded DNA virus, and is divided into five genera: Mastadenovirus, Atadenovirus, Ichtadenovirus, Siadenovirus, and Aviadenovirus.
    [Show full text]
  • Review of Coliphages As Possible Indicators of Fecal Contamination for Ambient Water Quality
    REVIEW OF COLIPHAGES AS POSSIBLE INDICATORS OF FECAL CONTAMINATION FOR AMBIENT WATER QUALITY 820-R-15-098 EPA Office of Water Office of Science and Technology Health and Ecological Criteria Division April 17, 2015 NOTICES This document has been drafted and approved for publication by the Health and Ecological Criteria Division, Office of Science and Technology, United States (U.S.) Environmental Protection Agency (EPA), and is approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. i ACKNOWLEDGMENTS The development of this criteria document was made possible through an effort led by Sharon Nappier, EPA Project Manager, EPA, Office of Science and Technology, Office of Water. EPA acknowledges the valuable contributions of EPA Internal Technical Reviewers who reviewed this document: Jamie Strong and Elizabeth Doyle. The project described here was managed by the Office of Science and Technology, Office of Water, EPA under EPA Contract EP-C-11-005 to ICF International. EPA also wishes to thank Audrey Ichida, Kirsten Jaglo, Jeffrey Soller, Arun Varghese, Alexandria Boehm, Kara Nelson, Margaret Nellor, and Kaedra Jones for their contributions and invaluable support. The primary contact regarding questions or comments to this document is: Sharon Nappier U.S. EPA Headquarters Office of Science and Technology, Office of Water 1200 Pennsylvania Ave., NW Washington, DC 20460 Mail Code 4304T Phone: (202) 566-0740 Email: [email protected] ii EXTERNAL PEER REVIEW WORKGROUP The External Peer Review was managed by the Office of Science and Technology, Office of Water, EPA under EPA Contract No. EP-C-13-010 to Versar, Inc.
    [Show full text]
  • Functionalized Surfaces As a Tool for Virus Sensing: a Demonstration of Human Mastadenovirus Detection in Environmental Waters
    chemosensors Article Functionalized Surfaces as a Tool for Virus Sensing: A Demonstration of Human mastadenovirus Detection in Environmental Waters Juliana Schons Gularte 1,2,* , Roana de Oliveira Hansen 3 , Meriane Demoliner 1,2, Jacek Fiutowski 3, Ana Karolina Antunes Eisen 1,2, Fagner Henrique Heldt 1,2 , Paula Rodrigues de Almeida 1,2 , Daniela Müller de Quevedo 4, Horst-Günter Rubahn 3 and Fernando Rosado Spilki 1,2 1 Laboratório de Microbiologia Molecular, Universidade Feevale, ERS 239, 2755, Novo Hamburgo RS 93352-000, Brazil; [email protected] (M.D.); [email protected] (A.K.A.E.); [email protected] (F.H.H.); [email protected] (P.R.d.A.); [email protected] (F.R.S.) 2 Laboratório de Saúde Única, Feevale Techpark, Universidade Feevale, Av. Edgar Hoffmeister, 600–Zona Industrial Norte, Campo Bom RS 93700-000, Brazil 3 NanoSYD, The Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark; [email protected] (R.d.O.H.); fi[email protected] (J.F.); [email protected] (H.-G.R.) 4 Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, ERS 239, 2755, Novo Hamburgo RS 93352-000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-51-3586-8800 (ext. 9284) Abstract: The main goal of this study was to apply magnetic bead surface functionalization in the Citation: Gularte, J.S.; de Oliveira form of immunomagnetic separation (IMS) combined with real-time polymerase chain reaction Hansen, R.; Demoliner, M.; Fiutowski, (qPCR) (IMS-qPCR) to detect Human mastadenovirus species C (HAdV-C) and F (HAdV-F) in water J.; Eisen, A.K.A.; Heldt, F.H.; Almeida, samples.
    [Show full text]
  • Viruses Infecting Reptiles
    Viruses 2011, 3, 2087-2126; doi:10.3390/v3112087 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Viruses Infecting Reptiles Rachel E. Marschang Institut für Umwelt und Tierhygiene, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; E-Mail: [email protected]; Tel.: +49-711-459-22468; Fax: +49-711-459-22431 Received: 2 September 2011; in revised form: 19 October 2011 / Accepted: 21 October 2011 / Published: 1 November 2011 Abstract: A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. Keywords: reptile; taxonomy; iridovirus; herpesvirus; adenovirus; paramyxovirus 1. Introduction Reptile virology is a relatively young field that has undergone rapid development over the past few decades.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0042898A1 Berenson Et Al
    US 20170042898A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0042898A1 Berenson et al. (43) Pub. Date: Feb. 16, 2017 (54) METHODS AND COMPOSITIONS FOR Publication Classification TREATINGVIRAL OR VIRALLY-INDUCED (51) Int. Cl. CONDITIONS A63L/506 (2006.01) A6IR 9/00 (2006.01) (71) Applicants: HEMAQUEST A638/12 (2006.01) PHARMACEUTICALS, INC., San A6II 3/19 (2006.01) Diego, CA (US); TRUSTEES OF A6II 3/18 (2006.01) BOSTON UNIVERSITY, Boston, MA A6II 3/167 (2006.01) (US) A63L/4045 (2006.01) (72) Inventors: Ronald J. Berenson, Mercer Island, A6II 3/165. (2006.01) WA (US); Douglas V. Faller, Weston, A638/15 (2006.01) A6II 3/4402 (2006.01) MA (US) A6II 3/522 (2006.01) (73) Assignees: HEMAQUEST A6II 3/473 (2006.01) PHARMACEUTICALS, INC., San (52) U.S. Cl. Diego, CA (US); TRUSTEES OF CPC ........... A61 K3I/506 (2013.01); A61 K3I/522 BOSTON UNIVERSITY, Boston, MA (2013.01); A61K 9/0053 (2013.01); A61 K (US) 38/12 (2013.01); A61K 31/19 (2013.01); A61 K 3 1/473 (2013.01); A61K 31/167 (2013.01); (21) Appl. No.: 15/335,776 A61K 31/4045 (2013.01); A61K 3 1/165 (2013.01); A61K 38/15 (2013.01); A61 K (22) Filed: Oct. 27, 2016 3I/4402 (2013.01); A61K 31/18 (2013.01) Related U.S. Application Data (63) Continuation of application No. 14/728,592, filed on (57) ABSTRACT Jun. 2, 2015, now abandoned, which is a continuation of application No. 13/912,637, filed on Jun. 7, 2013, Provided are methods and compositions for the prevention now abandoned, which is a continuation of applica and/or treatment of viral conditions, virally-induced condi tion No.
    [Show full text]
  • Unveiling Viruses Associated with Gastroenteritis Using a Metagenomics Approach
    viruses Article Unveiling Viruses Associated with Gastroenteritis Using a Metagenomics Approach 1, , , 1, 1,2 Xavier Fernandez-Cassi * y z, Sandra Martínez-Puchol y , Marcelle Silva-Sales , Thais Cornejo 3, Rosa Bartolome 3, Silvia Bofill-Mas 1 and Rosina Girones 1 1 Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028 Barcelona, Spain; [email protected] (S.M.-P.); marcelle.fi[email protected] (M.S.-S.); Sbofi[email protected] (S.B.-M.); [email protected] (R.G.) 2 Laboratory of Virology and Cell Culture, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiânia, GO 74605-050, Brazil 3 Hospital Universitari Vall d’Hebron, Microbiology Service, 08035 Barcelona, Spain; [email protected] (T.C.); [email protected] (R.B.) * Correspondence: [email protected] These authors contributed equally to this work. y Present address: Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental z Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. Academic Editor: Lennart Svensson Received: 4 November 2020; Accepted: 8 December 2020; Published: 13 December 2020 Abstract: Acute infectious gastroenteritis is an important illness worldwide, especially on children, with viruses accounting for approximately 70% of the acute cases. A high number of these cases have an unknown etiological agent and the rise of next generation sequencing technologies has opened new opportunities for viral pathogen detection and discovery. Viral metagenomics in routine clinical settings has the potential to identify unexpected or novel variants of viral pathogens that cause gastroenteritis. In this study, 124 samples from acute gastroenteritis patients from 2012–2014 previously tested negative for common gastroenteritis pathogens were pooled by age and analyzed by next generation sequencing (NGS) to elucidate unidentified viral infections.
    [Show full text]
  • Overlapping Genes and Size Constraints in Viruses - an Evolutionary Perspective
    bioRxiv preprint doi: https://doi.org/10.1101/026203; this version posted September 6, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Submitted to Genome Research 1 Sep 2015 Overlapping Genes and Size Constraints in Viruses - An Evolutionary Perspective Nadav Brandes1* and Michal Linial2 1Einstein Institute of Mathematics; 2Department of Biological Chemistry, Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel NB: [email protected] ML: [email protected] * Corresponding author Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, The Edmond J. Safra Campus Givat Ram, Jerusalem 91904 ISRAEL Telephone: 972-2-6584884; 972-54-8820035, FAX: 972-2-6523429 Running title: Evolution view on size and shape of viruses 1 bioRxiv preprint doi: https://doi.org/10.1101/026203; this version posted September 6, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Viruses are the simplest replicating units, characterized by a limited number of coding genes and an exceptionally high rate of overlapping genes. We sought a unified explanation for the evolutionary constraints that govern genome sizes, gene overlapping and capsid properties. We performed an unbiased statistical analysis over the ~100 known viral families, and came to refute widespread assumptions regarding viral evolution. We found that the volume utilization of viral capsids is often low, and greatly varies among families.
    [Show full text]
  • The Vaginal Virome—Balancing Female Genital Tract Bacteriome, Mucosal Immunity, and Sexual and Reproductive Health Outcomes?
    viruses Review The Vaginal Virome—Balancing Female Genital Tract Bacteriome, Mucosal Immunity, and Sexual and Reproductive Health Outcomes? Anna-Ursula Happel 1,* , Arvind Varsani 2,3 , Christina Balle 1 , Jo-Ann Passmore 1,4,5 and Heather Jaspan 1,6,7 1 Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; [email protected] (C.B.); [email protected] (J.-A.P.); [email protected] (H.J.) 2 The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA; [email protected] 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa 4 NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa 5 National Health Laboratory Service, Anzio Road, Observatory, Cape Town 7925, South Africa 6 Department of Pediatrics and Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA 98195, USA 7 Seattle Children’s Research Institute, 307 Westlake Ave N, Seattle, WA 98109, USA * Correspondence: [email protected] Received: 12 June 2020; Accepted: 24 July 2020; Published: 30 July 2020 Abstract: Besides bacteria, fungi, protists and archaea, the vaginal ecosystem also contains a range of prokaryote- and eukaryote-infecting viruses, which are collectively referred to as the “virome”. Despite its well-described role in the gut and other environmental niches, the vaginal virome remains understudied.
    [Show full text]